
Citation: Zardzewiały, M.; Matłok,

N.; Piechowiak, T.; Saletnik, B.;

Balawejder, M.; Gorzelany, J.

Preliminary Tests of Tomato Plant

Protection Method with Ozone Gas

Fumigation Supported with

Hydrogen Peroxide Solution and Its

Effect on Some Fruit Parameters.

Sustainability 2024, 16, 3481. https://

doi.org/10.3390/su16083481

Academic Editor: Rajeev Bhat

Received: 16 March 2024

Revised: 16 April 2024

Accepted: 18 April 2024

Published: 22 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Preliminary Tests of Tomato Plant Protection Method with
Ozone Gas Fumigation Supported with Hydrogen Peroxide
Solution and Its Effect on Some Fruit Parameters
Miłosz Zardzewiały 1,* , Natalia Matłok 1 , Tomasz Piechowiak 2 , Bogdan Saletnik 3 , Maciej Balawejder 2

and Józef Gorzelany 1

1 Department of Food and Agriculture Production Engineering, University of Rzeszow,
4 Zelwerowicza Street, 35-601 Rzeszów, Poland

2 Department of Chemistry and Food Toxicology, University of Rzeszow, 1a Ćwiklińskiej Street,
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Abstract: The aim of this research was to determine the impact of hydrogen peroxide spraying
and ozone gas fumigation during the growing season of tomato plants grown under cover on the
mechanical and chemical parameters of fruit harvested from these plants. Tomato plants were grown
under cover in accordance with the principles of good agricultural practice in the soil and climatic
conditions of southeastern Poland. During the growing season, tomato fruits were collected for
testing in order to determine the impact of the applied variable factors on the modification of selected
metabolic pathways of bioactive compounds. As part of the tests on the chemical properties of the
fruits, the content of ascorbic acid, the total content of polyphenols, and the antioxidant potential were
determined. Additionally, the influence of the tested variable factors on the mechanical properties
of tomato fruits was determined. In the case of the total polyphenol content, the most beneficial
effects were observed for fruits collected from plants treated with ozonation at a dose of 2 ppm for
3 min and spraying the plants with 1% hydrogen peroxide. The highest antioxidant potential was
recorded for fruits of the variants ozonated with doses of 2 ppm for 1 min, 2 ppm for 1.5 min, and
2 ppm for 3 min compared to the remaining variants and controls. In turn, the vitamin C content
increased significantly in the tested fruits after the ozonation of plants with a dose of 2 ppm for 1 min
and ozonation with a dose of 2 ppm for 3 min combined with spraying plants with 3% hydrogen
peroxide. In the case of the mechanical properties of tomato fruits, only the ozonation dose of 2 ppm
for 3 min significantly improved them.

Keywords: tomato fruit; ozone gas; hydrogen peroxide; chemical properties; residue-free methods;
sustainable agriculture; sustainable food production

1. Introduction

Tomato (Lycopersicon esculentum Mill.) is cultivated in an area spanning 5.1 million
hectares across the world. Due to their numerous properties and wide culinary use, tomato
fruits are very popular among consumers [1,2]. The main producer of tomatoes is China,
with a production of 64.9 million tons, followed by India with 20.6 million tons, Turkey
with 13.2 million tons, and the USA with 12.2 million tons [1]. Tomatoes are consumed
largely as processed products, e.g., ketchup and purees. Recently, there has been increased
interest in the use of tomato seeds [3,4] to produce oils with a high content of unsaturated
fatty acids [5]. Tomato is considered an excellent source of bioactive compounds, especially
carotenoids, such as lycopene and β-carotene, ascorbic acid, tocopherols, and flavonoids,
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which have high antioxidant capabilities [6]. The high content of antioxidants present in
tomatoes and tomato products is associated with a reduced risk of certain types of cancer
and cardiovascular diseases [7–9].

Attention to the quality of the products of plant origin and the production environment
in agriculture and horticulture has led to the withdrawal of many plant protection products
from crops. Currently, there is increasing interest in biocides that leave no residues in the
produced plant raw materials and are non-toxic to the natural environment [10]. When
growing plants in both field and sheltered conditions, they are exposed to various biotic
and abiotic stress factors. It is worth noting that plants have developed mechanisms that
allow them to adapt to environmental stressors. Additionally, plants have developed stress
tolerance mechanisms [11,12]. Currently, unconventional methods of plant protection that
do not pollute the natural environment and produced food are currently in demand. Some
hopes are associated with hydrogen peroxide [10] or ozone gas [13], which are perceived
as stress factors, but an appropriately selected dose of each stress factor can bring benefits
without causing losses during plant cultivation.

Due to its properties, hydrogen peroxide has a number of applications in the medicine,
cosmetics, food, chemical, paper, and textile industries. Additionally, it is commonly used
to disinfect water [14]. It is considered a “green industrial oxidant” because it leaves no
harmful residues and quickly decomposes into water and oxygen molecules [15]. The use
of hydrogen peroxide in sustainable agriculture is due to the fact that it fights harmful
microorganisms, modifies the internal resistance of plants to biotic and abiotic stresses, and
affects plant growth. In plant production, H2O2 is used as a compound to combat viral,
bacterial, and fungal pathogens and plant pests. Additionally, it is an excellent agent for
disinfecting storage rooms and protecting plant products intended for storage [16]. The
action of hydrogen peroxide is associated with the activation of immune functions in plants.
Its action results in the strengthening of cell walls, increased growth and development
of plants, and production of growth regulators and phytoalexins [17,18]. In medicine,
hydrogen peroxide solutions up to 3% are used, while in cosmetology 6% solutions are
used, but only externally. In the case of plants, hydrogen peroxide concentrations of up to
18% have been used, but good effects are already observed at lower concentrations [19].

As a result of normal metabolic reactions, reactive oxygen species (ROS) are produced
in plants [20,21], which occur in free radical and non-radical forms. Non-radical forms,
including hydrogen peroxide, have a half-life in various types of systems, including bio-
logical ones. Its action may have a longer effect on the plant. Radical forms, including the
hydroxyl radical, are extremely reactive, and their presence usually leads to serious damage
to tissues or cellular systems. The overproduction and accumulation of ROS is the result of
primarily biotic and abiotic stresses [22,23]. The result of high levels of ROS is damage to
plant cells, which may ultimately lead to the destruction of the entire plant [24,25]. H2O2
can cause damage by oxidizing various macromolecules and enzymes of the Calvin–Benson
cycle. Biotic and abiotic stress contribute to the accumulation of reactive oxygen species
and may be the main cause of loss of crop productivity [26,27].

Ozone was approved by the US Food and Drug Administration in 2001 as a disin-
fectant, which resulted in great interest in this gas from various industrial sectors and
scientists [28]. Ozone gas has antibacterial properties and is non-toxic, which is why it is
widely used in the food industry [29]. It is also possible to use ozone dissolved in water [30].
It is important to determine the appropriate dose of ozone that will have a beneficial effect
on selected fruits or vegetables. Ozone gas has been tested in many studies and found
to have a positive effect on the storage life and quality of stored raw materials [31,32].
Ozone gas eliminates pathogen spores, thereby reducing the microbial population [28,33].
Additionally, it is used to reduce the burden of mycotoxins and pesticide residues [34,35].
The exposure of plants and harvested fruits and vegetables to O3 during vegetation causes
metabolic changes. Therefore, the biosynthesis of secondary metabolites takes place, such
as polyphenols in the plants themselves and products of plant origin. The amount and
type of secondary metabolites produced are closely related to various factors, e.g., the dose
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of ozone or the variety of plant treated with this gas [36,37]. Currently, many studies are
related to the possibility of using ozone as an abiotic stressor that can be used to influence
the content of bioactive compounds in plants and plant products [28,38].

Currently, there are many scientific studies available that report the effects of ozone
on plants. Ozone affects the growth of plants and their metabolism. The effect of ozone
gas on plants depends on the concentration of this gas, the duration of exposure, and
the type of plant [39,40]. Generally, plant responses to ozone exposure are determined
mainly by the level of oxidative cell damage [41]. As a result of toxic doses of ozone,
oxidative stress increases and leads to the reduced transcription of genes encoding proteins
involved in photosynthesis and ultimately promotes leaf degradation [42,43]. Scientific
reports indicate that high exposure to ozone may have a negative impact on the chlorophyll
content in the green parts of plants [44,45]. In the case of plants grown for economic
purposes, determining the impact of ozone gas is primarily based on yield losses [46].

In the case of ozone gas, a safe concentration cannot be clearly determined. The ozone
dose, i.e., exposure time and concentration, is important. The negative effects of ozone
on plants can already be observed at a few ppb during long exposure to this gas [47]. In
addition, plants can withstand several hundred ppm without harm with short exposure [48].

The aim of this study was to assess the impact of foliar spraying with various concen-
trations of H2O2 and fumigation with ozone gas on the selected fruit parameters of tomato
plants and to determine safe doses of variable factors that can be used in tomato cultivation
under cover.

2. Materials and Methods
2.1. Plant Material and Tomato Growing Conditions
2.1.1. Plant Material in a Field Experiment under Cover

The field experiment was conducted for two years on tomatoes of the Remiz F1 variety
(Solanum lycopersicum). The variety grown as part of the experiment in question is dedicated
to cultivation in greenhouses and foil tunnels.

A field experiment under cover was assumed for four variants:

- Control sample—no variable factors were used (control);
- Variant of plants sprayed with hydrogen peroxide—only hydrogen peroxide sprays

were used (W1—1% H2O2; W2—3% H2O2);
- Variant of ozonated plants—fumigation with ozone gas was carried out (W3—2 ppm

1 min; W4—2 ppm 1.5 min; W5—2 ppm 3 min);
- Variant of plants ozonated and sprayed with hydrogen peroxide—fumigation with

ozone gas and hydrogen peroxide spraying were carried out (W6—2 ppm 1 min
and 1% H2O2; W7—2 ppm 1.5 min and 1% H2O2; W8—2 ppm 3 min and 1% H2O2;
W9—2 ppm 1 min and 3% H2O2; W10—2 ppm 1.5 min and 3% H2O2; W11—2 ppm
3 min and 3% H2O2). See Supplementary Materials: S4.

2.1.2. Tomato Growing Conditions

For each year of the experiment, the fore crop for tomatoes was garlic. Fertilization
doses for tomatoes were developed based on soil analysis. In autumn, phosphorus–potassium
fertilization was applied, and tillage treatments were carried out. Pre-sowing cultivation was
carried out in spring. Then, the foil tunnels were installed. The gardening foil used in the
experiment was made of polypropylene. Tomato seedlings were planted under cover at the
beginning of May of each year of the study. The plants were planted in rows at a distance of
50 cm, leaving a 100 cm wide passage between the rows (Figure 1). Fertilization was applied
based on soil tests (see Supplementary Materials: S5). During the period of intensive flowering
and fruiting, sprays containing microelements were used. Tomato seedlings were grown “for
one shoot”, i.e., the growing side shoots were regularly removed to obtain high fruit yields.
Additionally, excess leaves were removed for better ventilation and improved light conditions
in the lower parts of the plants. In mid-August, the growth tips of the main shoots, above
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the last developed inflorescence, were removed. No additional lighting or heating was used
when growing tomatoes.
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2.2. Experimental Treatments Used during Plant Vegetation
2.2.1. Ozonation of Tomatoes Plant

Before establishing the field experiment, preliminary tests were carried out to deter-
mine the tolerance threshold of tomato plants of the Remiz variety to the gaseous ozone.
For this purpose, seedlings of the tested variety were produced and exposed to ozone gas
at a concentration of 2, 5, 10, 20, 40, and 100 ppm for 1, 3, 5, and 10 min. Based on the results
of the preliminary tests, possible doses of ozone were selected. As part of the experiment,
ozone gas was used at a concentration of 2 ppm for 1, 1.5, and 3 min because no phytotoxic
effects were observed on the tested plants under these conditions. The foil tunnels in which
the experiment was conducted were equipped with a system of channels that enabled the
supply of ozone to each plant. The foil tunnel was closed during fumigation, and ozone
gas was supplied via a hose from the Korona L5 ozone generator (Korona Science and
Implementation Laboratory, Piotrków Trybunalski). In the process of the fumigation of
tomato seedlings, the concentration of ozone gas was measured with a 106 M 2B Technolo-
gies ozone detector (2B Technologies, Broomfield, CO, USA), the measurement range of
which was 0–1000 ppm. The experiment under cover was carried out in three independent
repetitions. Ozonation was carried out once a week. Then, after the fumigation process, the
foil tunnels were opened and ventilated using mechanical ventilation, completely removing
ozone within 20 s.

2.2.2. Spraying with Hydrogen Peroxide (H2O2)

Before establishing the field experiment, preliminary tests were carried out to deter-
mine the tolerance threshold of tomato plants of the Remiz variety to various concentrations
of hydrogen peroxide. For this purpose, a hydrogen peroxide solution with concentra-
tions of 1, 3, 5, and 10% was applied to the produced seedlings. Based on the results of
the preliminary tests, possible doses of hydrogen peroxide were selected (solution with
concentrations of 1% and 3%), which did not have a phototoxic effect on the tested plants.
For the ozonated and sprayed-with-hydrogen-peroxide tomato plants variant and the vari-
ant for which only hydrogen peroxide spraying was applied during the growing season,
hydrogen peroxide at concentrations of 1% and 3% was used once a week. Moreover, each
time after the ozonation process for the “ozonation + hydrogen peroxide” variant, tomato
plants were sprayed with a 1% and 3% hydrogen peroxide solution. A hand-held backpack
sprayer was used for the spraying treatments. Depending on the growing season, from
10 to 200 mL of spray liquid was used per tomato plant. The hydrogen peroxide solution
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was prepared immediately before spraying. The spray solution was prepared from 40%
perhydrol (Chempur, Gdańsk, Poland).

2.3. Measurement of Mechanical Properties

Tests on the tissue resistance of ripe red tomato fruits to mechanical damage in the
process of uniaxial compression, taken for testing in August, were carried out on fruit
samples of similar sizes. The measurements were carried out on the control raw material
and the raw material tested with variable factors. Measurements were carried out in
36 repetitions for a given combination of the variable factor used. The process of the
uniaxial compression of tomato fruits was carried out on a Zwick/Roell Z010 testing
machine for the established operating parameters: initial sample stress force F = 2 N;
module speed during compression measurement V = 0.5 mm·s−1. Compression tests of the
samples were carried out at the height of the tomato fruit, where its diameter is the largest.

2.4. Antioxidant Potential, Contents of Polyphenols, and Vitamin C

The content of polyphenols in freshly harvested tomato fruits was measured according
to the methodology described by Matłok et al. [49] using the Folin–Ciocalteu method. The
total ascorbic acid content and DPPH antioxidant activity in freshly harvested tomato fruits
were determined according to the methodology described by Panich et al. [50]. The analysis
was performed in triplicate. In order to determine chemical properties, 500 g of fruit from
each experimental variant was used for the analyses. See Supplementary Materials: S1–S3.

2.5. Statistical Analysis

In order to check the significance of the effect of gaseous ozone and yeast spray on the
physiological parameters and disease infestation, a two-factor analysis of variance was used
for each measurement at the significance level of α = 0.05. These analyzes were performed
using STATISTICA 13.1 (TIBCO Software Inc., Hillview Avenue, Palo Alto, CA, USA).

3. Results and Discussion

The impact of the methods used to support the protection of tomato plants using
gaseous ozone (O3) and hydrogen peroxide (H2O2) on the total content of polyphenols
in the collected fruits over the years of this research is shown in Figure 1. It was found
that regardless of the conditions of the ozonation process (time of exposure of plants to O3)
(variant W5–W3) and the concentration of H2O2 solution (variant W1–W2), no significant
differences were recorded in the total content of polyphenols in tomato fruits harvested
at harvest maturity (Figure 2). In the case of using a combined method consisting of
the initial fumigation of tomato plants with ozone gas and then the foliar application of
solutions with different H2O2 concentrations, an influence of this method on the total
content of polyphenols in the fruit was found. However, this effect varied depending on
the H2O2 concentration used. In the case of the application of a solution with a lower
concentration (1% H2O2), a significant increase in the content of polyphenols in fruits was
noted, regardless of the time of exposure of the plants to O3 (variant W6–W8).

The mechanism of the modification of the intensity of the biosynthesis of the phenolic
compounds as a result of the combined method of protecting tomato plants using O3 and
H2O2 is probably related to the increase in the supply of H2O2 to plant tissues as a result of
the preceding action of ozone gas. It has been proven that in the event of photochemical
smog, ozone gas affects the degree of the opening of the stomata, which significantly
facilitates the penetration of vapors containing H2O2 or atomic oxygen resulting from its
decomposition. These factors have proven activity of inducing oxidative stress, which,
under controlled conditions, may lead to the modification of the biosynthesis of small
molecular antioxidants, including phenolic compounds [51]. The observed effect of the
increased biosynthesis of these compounds in tomato fruits harvested from plants exposed
to lower concentrations of H2O2 indicates that the effect of the disturbed homeostasis
caused the plant defense effect, the consequence of which was an increase in the content of
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phenolic compounds in the collected raw material. It cannot be ruled out that in the case of
higher concentrations of H2O2, there was no intensification of the biosynthesis of this group
of compounds, but they were decomposed under the influence of higher concentrations of
H2O2, or its decomposition products found in plant tissues.
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Figure 2. The influence of treatments supporting plant protection during the growing season on the
total polyphenol content in fruit in the years of research. Note: Different lowercase letters indicate
significant differences between individual experimental variants in a given year, while different
uppercase letters indicate significant differences between the same experimental variants in the
examined years; significant differences at p < 0.05.

The group of antioxidants includes many groups of compounds that shape the total
antioxidant potential of raw materials [52]. It was shown that a significant increase in this
potential in tomato fruits was caused by the use of gaseous O3 only. Ozone, as a gaseous
substance, has the highest ability to penetrate plant tissues among the factors used, which
comprehensively influenced the modification of the biosynthesis of the compounds that
contribute to the total antioxidant potential of tomato fruits. From analyzing the obtained
test results (Figures 2 and 3), it seems that a state of controlled oxidative stress was achieved
in the case of the use of gaseous ozone (Figure 2, W3–W5) and the combined method with
the use of solutions with a lower concentration of H2O2 (Figure 1, W6–W8). In other cases,
the number of oxidizing agents used caused a reaction that resulted in a reduction or no
significant increase in phenolic compounds compared to the control and others, shaping
the total antioxidant potential.

Vitamin C is a substance belonging to the group of small molecular antioxidants, the
biosynthesis of which in plants can be influenced by many factors. When the ozonation
process is used, its content changes significantly depending on the conditions used (O3
concentration and exposure time). Plant raw materials which have lost the ability to
metabolize have been subjected to the ozonation process, and in most cases, after the
process, they show a significantly lower content of this substance [53,54]. However, when
ozonated raw materials have the ability to metabolize, this process may intensify the
biosynthesis of vitamin C. A similar effect may be demonstrated by H2O2, the solutions
of which have a strong oxidizing effect, and its decomposition products are even more
active. The analysis of the obtained results (Figure 4) on the influence of the applied factors
supporting the protection of tomato plants showed that in most variants, an increase in the
content of vitamin C in tomato fruits was observed. However, this increase depended on
the ozonation process conditions used and the H2O2 concentration.
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Figure 4. The influence of treatments supporting plant protection during the growing season on
the vitamin C content in fruit in the years of research. Note: Different lowercase letters indicate
significant differences between individual experimental variants in a given year, while different
uppercase letters indicate significant differences between the same experimental variants in the years
studied; significant differences at p < 0.05.

Vitamin C is a one of many compounds which form antioxidant potential, the biosyn-
thesis of which in plants can be influenced by many factors. When the ozonation process is
used, its content changes significantly depending on the conditions used (O3 concentration
and exposure time) [55].

Fruit-bearing plants subjected to the ozonation process may undergo modifications
that delay the fruit ripening process. The mechanism of this action may be complex, but
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decomposition or inhibition of the action of ethylene is usually observed [56]. A measure
of this effect can be measuring the mechanical properties of the fruit.

The average values of the destructive force in the process of the uniaxial compression
of tomato fruits after fumigation with ozone gas and hydrogen peroxide spraying with
various combinations compared to the control are shown in Figure 5. Both in the first and
second year of the study only for the variant treated with ozone gas at a dose of 2 ppm for
3 min, there was a significant increase in destructive force compared to the control. For the
remaining combinations of variable factors used during the experiment, no positive impact
was noted compared to the control sample.
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Figure 5. The influence of treatments supporting plant protection during the growing season on the
value of the destructive force when pressing tomato fruits in the years of research. Note: Different
lowercase letters indicate significant differences between individual experimental variants in a given
year, while different uppercase letters indicate significant differences between the same experimental
variants in the examined years; significant differences at p < 0.05.

In the case of sea buckthorn fruit, an appropriately selected dose of ozone (10 ppm
for 15 min) increased the fruit’s resistance to mechanical damage [57]. Red currant fruits
ozonated with a dose of 10 ppm 30 min after 15 days of storage were characterized by
greater resistance to mechanical damage compared to the control fruits [58].

Both in field conditions and under cover, when growing Solanum lycopersicum, there is
a need to provide protection, mainly against fungal pathogens [59]. Even though growing
tomatoes under cover protects the plants against direct exposure to rain, which increases
the infection of plants with diseases, especially fungal ones [60], it is necessary to protect
them with plant protection products [61]. It should be noted that the use of pesticides affects
the quality of the produced tomato fruit, mainly by generating residues [62]. Moreover, the
applicable legal regulations related to the “European Green Deal” require the search for
alternative methods of protecting plants against diseases and pests, which will allow for
limiting the use of fungicides while maintaining the quality and quantity of the produced
raw material [63]. One of such potential methods may be the use of the plant ozonation
process using ozone gas. Ozone as an allotropic form of oxygen with high oxidizing
potential and strong fungicidal and bactericidal properties can be an effective factor limiting
the occurrence of fungal diseases in plant cultivation. Its greatest advantage is high
antibacterial effectiveness with no chemical residues in the produced plant raw materials.
It should be noted that standard plant protection products, by creating residues, also
extend the action of the product for a certain period of time after its foliar application. The
proposed methodological approach also allows for the use of spraying with a hydrogen
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peroxide solution, the half-life of which is much longer than in the case of the ozonation
treatment carried out under controlled conditions. Moreover, during its decomposition,
atomic oxygen is produced, which also has high antimicrobial effectiveness [64].

In recent years, plasma agriculture has emerged as a promising and innovative field
with the potential to evaluate conventional farming practices. The application of plasma-
based technologies in agriculture offers new opportunities, but the main barrier is the
possibility of the generation of various active species, including reactive oxygen (ROS) and
nitrogen species. Some nitrogen derivatives like nitrogen oxides could be converted to
nitric acid with potential phytotoxic effects [65].

4. Conclusions

This paper describes the impact of the ozonation process and hydrogen peroxide
spraying on tomato plants during two years of research. Research has shown that the
selected ozonation doses, 2 ppm 1 for min and 2 ppm for 3 min, and the combination of
two variable factors, 2 ppm for 3 min combined with spraying with 3% hydrogen peroxide,
influence the increased concentration of vitamin C in tomato fruits. In the case of the total
content of the phenolic compounds, it was observed that the ozone dose of 2 ppm for
1.5 min and 2 ppm for 3 min in combination with spraying with hydrogen peroxide at a
concentration of 1% significantly increased the concentration of these bioactive compounds.
However, the antioxidant potential of tomato fruit increased only after each dose of the
ozonation process compared to the control. The mechanical properties of the collected
fruits were also examined. The research shows that the use of variable factors in most cases
does not have a significant impact on the mechanical properties of the tested fruits. Only
fruits harvested from ozonated plants showed significantly higher resistance to damage,
which indicates a slower ripening process.

The research results show that ozonation and hydrogen peroxide can be effectively
used to improve the parameters determining the quality of tomato fruit grown under cover,
and after confirming their effectiveness, they can constitute an alternative to fungicides
used in tomato cultivation.
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35. Kuşvuran, E.; Yıldırım, D.; Mavruk, F.; Ceyhan, M. Removal of chloropyrifos ethyl, tetradifon and chlorothalonil pesticide
residues from citrus by using ozone. J. Hazard. Mater. 2012, 241–242, 287–300. [CrossRef]

36. Guzzon, R.; Nardin, T.; Micheletti, O.; Nicolini, G.; Larcher, R. Antimicrobial activity of ozone. Effectiveness against the main
wine spoilage microorganisms and evaluation of impact on simple phenols in wine. Aust. J. Grape Wine Res. 2013, 19, 180–188.
[CrossRef]

37. Río Segade, S.; Vilanova, M.; Pollon, M.; Giacosa, S.; Torchio, F.; Rolle, L. Grape VOCs response to postharvest short-term ozone
treatments. Front. Plant Sci. 2018, 9, 1826. [CrossRef] [PubMed]

38. Lv, Y.; Tahir, I.I.; Olsson, M.E. Effect of ozone application on bioactive compounds of apple fruit during short-term cold storage.
Sci. Hortic. 2019, 253, 49–60. [CrossRef]

39. Singh, A.A.; Fatima, A.; Mishra, A.K.; Chaudhary, N.; Mukherjee, A.; Agrawal, M.; Agrawal, S.B. Assessment of ozone toxicity
among 14 Indian wheat cultivars under field conditions: Growth and productivity. Environ. Monit. Assess. 2018, 190, 190.
[CrossRef]

40. Booker, F.; Muntifering, R.; McGrath, M.; Burkey, K.; Decoteau, D.; Fiscus, E.; Manning, W.; Krupa, S.; Chappelka, A.; Grantz,
D. The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and
interactions with invasive species. J. Integr. Plant Biol. 2009, 51, 337–351. [CrossRef]

41. Kangasjärvi, J.; Jaspers, P.; Kollist, H. Signalling and cell death in ozone-exposed plants. Plant Cell Environ. 2005, 28, 1021–1036.
[CrossRef]

42. Buchanan-Wollaston, V.; Morris, K. Senescence and cell death in Brassica napus and Arabidopsis. Program. Cell Death Anim.
Plants 2000, 52, 163–174.

43. Pell, E.J.; Schlagnhaufer, C.D.; Arteca, R.N. Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiol. Plant.
1997, 100, 264–273. [CrossRef]

44. Han, Y.J.; Gharibeshghi, A.; Mewis, I.; Förster, N.; Beck, W.; Ulrichs, C. Plant responses to ozone: Effects of different ozone
exposure durations on plant growth and biochemical quality of Brassica campestris L. ssp. chinensis. Sci. Hortic. 2020, 262, 108921.
[CrossRef]

45. Pääkkönen, E.; Günthardt-Goerg, M.; Holopainen, T. Responses of Leaf Processes in a Sensitive Birch (Betula pendula Roth.) Clone
to Ozone Combined with Drought. Ann. Bot. 1998, 82, 49–59. [CrossRef]

46. Schenone, G.; Botteschi, G.; Fumagalli, I.; Montinaro, F. Effects of ambient air pollution in open-top chambers on bean (Phaseolus
vulgaris L.) I. Effects on growth and yield. New Phytol. 1992, 122, 689–697. [CrossRef]

47. Shahrtash, F. Photochemical reactions and surface ozone measurements in Tehran city center. Renew. Energy Environ. Sustain.
2022, 7, 22. [CrossRef]

48. Available online: https://open.alberta.ca/dataset/5a1c43f9-ad11-4dcc-889b-48ffbfcbc6ba/resource/80369b84-eb10-47f2-8f72-
e05d2127df80/download/aenv-ozone-protection-in-plants-the-potential-use-of-chemical-protectants-to-measure-6718.pdf
(accessed on 9 April 2024).

49. Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Gorzelany, J.; Balawejder, M. Effects of Ozone Treatment on Microbial Status and the
Contents of Selected Bioactive Compounds in Origanum majorana L. Plants. Plants 2020, 9, 1637. [CrossRef] [PubMed]

50. Panich, S.; Amatatongchai, M. A non-toxic approach to assess total antioxidant capacity (TAC) of exotic tropical fruits from
Thailand. J. Food Sci. Technol. 2019, 56, 3547–3552. [CrossRef]

51. Wang, W.; Zhang, C.; Shang, M.; Lv, H.; Liang, B.; Li, J.; Zhou, W. Hydrogen peroxide regulates the biosynthesis of phenolic
compounds and antioxidant quality enhancement in lettuce under low nitrogen condition. Food Chem. X 2022, 16, 100481.
[CrossRef]

52. Zehiroglu, C.; Ozturk Sarikaya, S.B. The importance of antioxidants and place in today’s scientific and technological studies.
J. Food Sci. Technol. 2019, 56, 4757–4774. [CrossRef]

53. Liu, H.; Xu, L.; Yu, F.; Tan, J.; Cao, L.; Xing, Y.; Xu, Q.; Yang, S.; Liu, X.; Yang, P.; et al. Effects of different ozone treatments on the
storage quality and stability of fresh peeled garlic. RSC Adv. 2021, 11, 22530–22543. [CrossRef]

54. Rabie, M.A.; Soliman, A.Z.; Diaconeasa, Z.S.; Constantin, B. Effect of pasteurization and shelf life on the physicochemical
properties of Physalis (Physalis peruviana L.) juice. J. Food Process. Preserv. 2015, 39, 1051–1060. [CrossRef]

55. Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in Plants:
From Functions to Biofortification. Antioxidants 2019, 29, 519. [CrossRef] [PubMed]

56. Matłok, N.; Piechowiak, T.; Krempa, A.; Puchalski, C.; Balawejder, M. Cyclic Storage Chamber Ozonation as a Method to Inhibit
Ethylene Generation during Plum Fruit Storage. Agriculture 2023, 13, 2274. [CrossRef]

57. Zapałowska, A.; Matłok, N.; Zardzewiały, M.; Piechowiak, T.; Balawejder, M. Effect of Ozone Treatment on the Quality of Sea
Buckthorn (Hippophae rhamnoides L.). Plants 2021, 10, 847. [CrossRef] [PubMed]
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