Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = oxyhydrogen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2043 KB  
Article
Predictive Model for Combustion with Hydrogen Fumigation in Compression-Ignition Engines
by Edgar Eduardo Cedillo Cornejo, Rogelio González Oropeza, Stephen Samuel, William Vicente, Rodolfo Sosa Echeverría, Elías Granados Hernández, Gilberto Fuentes García, Graciela Velasco-Herrera and Sánchez Pablo Álvarez
Hydrogen 2025, 6(4), 118; https://doi.org/10.3390/hydrogen6040118 - 12 Dec 2025
Viewed by 407
Abstract
Using hydrogen in compression-ignition internal combustion engines can reduce pollutant emissions and improve performance by enabling faster and more complete combustion. However, it is essential to determine the optimal injection timing and duration for both hydrogen and conventional fuels. These factors are critical [...] Read more.
Using hydrogen in compression-ignition internal combustion engines can reduce pollutant emissions and improve performance by enabling faster and more complete combustion. However, it is essential to determine the optimal injection timing and duration for both hydrogen and conventional fuels. These factors are critical in engine modeling analysis. This study aimed to analyze pollutant emissions, combustion, and engine performance with oxyhydrogen fumigation applied to an instrumented Ricardo E6 engine running on diesel fuel. This analysis, necessary for developing a new predictive combustion model, was calibrated with experimental data in the Gamma Technologies Suite (GTS) simulator. The results show four main effects when increasing the oxyhydrogen flow rate from 0 to 2.8 L per minute (LPM), at an indicated mean effective pressure (IMEP) of 5.3 bar and a speed of 1500 RPM: (I) NOx levels increased by up to 6%, (II) CO2 levels decreased by 8%, (III) combustion durations remained relatively stable, and (IV) brake specific fuel consumption decreased by 8%. Overall, adding hydrogen to the intake flow of the compression-ignition engine reduced CO2 emissions and enhanced indicated thermal efficiency. Full article
Show Figures

Figure 1

31 pages, 9985 KB  
Article
Additively Manufactured 316L Stainless Steel: Hydrogen Embrittlement Susceptibility and Electrochemical Gas Production
by Reham Reda, Sabbah Ataya, Mohamed Ayman, Khaled Saad, Shimaa Mostafa, Gehad Elnady, Rashid Khan and Yousef G. Y. Elshaghoul
Appl. Sci. 2025, 15(11), 5824; https://doi.org/10.3390/app15115824 - 22 May 2025
Cited by 1 | Viewed by 3316
Abstract
Interest in hydrogen is rapidly growing due to rising greenhouse gas emissions and the depletion of fossil fuel reserves. Additive manufacturing (AM) is extensively employed to produce high-quality components, with a strong focus on enhancing mechanical properties. The efficiency and cost-effectiveness of AM [...] Read more.
Interest in hydrogen is rapidly growing due to rising greenhouse gas emissions and the depletion of fossil fuel reserves. Additive manufacturing (AM) is extensively employed to produce high-quality components, with a strong focus on enhancing mechanical properties. The efficiency and cost-effectiveness of AM have further increased interest in its application to manufacturing components capable of withstanding demanding conditions, such as those encountered in hydrogen technology. In this study, 316L stainless steel specimens were fabricated using AM via the selective laser melting (SLM) technique. The specimens then underwent various post-processing heat treatments (PPHT). A subset of these specimens, measuring 50 × 50 × 3 mm3, was tested as electrodes in a water electrolysis cell for oxyhydrogen (HHO) gas production. The HHO gas flow rate and electrolyzer efficiency were evaluated at 60 °C under varying currents. The remaining AM specimens were evaluated for their susceptibility to hydrogen embrittlement under various hydrogen storage conditions, including testing at both room and cryogenic temperatures. Tensile and Charpy impact specimens were fabricated and tested before and after hydrogen charging. The fracture surfaces were analyzed using scanning electron microscopy (SEM) to assess the influence of hydrogen on fracture characteristics. Additionally, as-rolled stainless-steel specimens were examined for comparison with AM and PPHT 316L stainless steel. The primary objective of this study is to determine the most efficient alloy processing condition for optimal performance in each application. Results indicate that PPHT 316L stainless steel exhibits superior performance both as electrodes for HHO gas production and as a material for hydrogen storage vessels, demonstrating high resistance to hydrogen embrittlement. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

16 pages, 4755 KB  
Article
Design, Development, and Performance Evaluation of an Oxyhydrogen (HHO) Generator for Enhanced Fuel Efficiency
by Charbel Akl, Joseph Dgheim and Nemr El Hajj
Sustainability 2025, 17(9), 3811; https://doi.org/10.3390/su17093811 - 23 Apr 2025
Cited by 1 | Viewed by 5146
Abstract
The growing need for clean and efficient energy has led to more interest in hydrogen-based technologies for improving combustion. Oxyhydrogen (HHO) generators have become a possible way to improve fuel efficiency and reduce emissions in engines by adding hydrogen to the air–fuel mix. [...] Read more.
The growing need for clean and efficient energy has led to more interest in hydrogen-based technologies for improving combustion. Oxyhydrogen (HHO) generators have become a possible way to improve fuel efficiency and reduce emissions in engines by adding hydrogen to the air–fuel mix. However, problems like energy loss, uneven hydrogen output, and inefficiency have slowed their use. This study looked at the design, development, and testing of a better HHO generator that solves these issues by adding a better cooling system and adjusting the potassium hydroxide (KOH) mixture (20 g, 25 g, and 30 g). The goal was to see how these changes affect hydrogen production, energy use, and system stability. The results showed that increasing the KOH mixture improved hydrogen production and electrical conductivity. The cooling system helped reduce energy loss and kept the output steady. The improved generator, using 30 g of KOH and the cooling system, produced a peak hydrogen concentration of 31 PPM—more than double that of a regular unit (14 PPM). It also worked with an efficiency of 21.4%, using 25 W of power compared to 30 W for the regular unit, saving 16.7% in energy. These findings show that this improved HHO generator could be a good and efficient solution for cars and renewable energy uses. Full article
Show Figures

Figure 1

18 pages, 3223 KB  
Article
Sustainable Production of Green Oxy-Hydrogen from Vehicles’ Air Conditioning Drains to Enhance Engine Efficiency and Reduce Greenhouse Gas Emissions
by Mohamed K. M. Gerwash, Amin M. K. Al-ghonemy, Mohamed A. Omara, Ibrahim L. M. Ahmed, Aly Saeed and Gamal B. Abdelaziz
Hydrogen 2024, 5(4), 958-975; https://doi.org/10.3390/hydrogen5040051 - 5 Dec 2024
Cited by 3 | Viewed by 6419
Abstract
Innovative and sustainable solutions are increasingly necessary as concerns about fossil fuels’ environmental and economic impacts grow. Accordingly, this study aims to enhance vehicle internal combustion engine efficiency by producing oxy-hydrogen (HHO) from drain water from the vehicle air conditioning system and utilizing [...] Read more.
Innovative and sustainable solutions are increasingly necessary as concerns about fossil fuels’ environmental and economic impacts grow. Accordingly, this study aims to enhance vehicle internal combustion engine efficiency by producing oxy-hydrogen (HHO) from drain water from the vehicle air conditioning system and utilizing it as a secondary fuel. A 1600 cc Daewoo engine equipped with electronic fuel injection was employed as the test subject. Initially, the engine’s performance was evaluated using various gasoline variants, 80, 92, and 95. The 92-octane gasoline demonstrated the highest efficiency, achieving a peak power of 113 kW and torque of 190 Nm. The engine had an 11:1 compression ratio. Then, different flow rates of oxy-hydrogen, 50, 248, 397, and 480 mL/min, generated from the air conditioner drain were combined with 92 fuel. A significant improvement was observed with the increase in the flow rate of oxy-hydrogen gas to the 92 fuel. The results indicated that incorporating 480 mL/min oxy-hydrogen gas into the fuel led to an 8.7% reduction in fuel consumption, 5.5% enhancement in thermal efficiency, and 7.9% in volumetric efficiency. Greenhouse gas emissions reductions of carbon monoxide, carbon dioxide, and hydrocarbons were recorded as 18%, 9.2%, and 9%, respectively. At the same time, nitrogen oxides increased by 12.5%. Therefore, utilizing a vehicle air conditioner drain water to generate oxy-hydrogen gas fuel in conjunction with 92-octane gasoline is an efficient solution to reduce fuel consumption, enhance energy efficiency, and mitigate the adverse effects of pollution. This approach also contributes to progress towards a more sustainable future. Full article
Show Figures

Figure 1

13 pages, 588 KB  
Review
Oxyhydrogen Gas: A Promising Therapeutic Approach for Lung, Breast and Colorectal Cancer
by Grace Russell and Alexander Nenov
Oxygen 2024, 4(3), 338-350; https://doi.org/10.3390/oxygen4030020 - 26 Aug 2024
Cited by 1 | Viewed by 14573
Abstract
Cancer remains one of the leading causes of death despite advancements in research and treatment, with traditional therapies often causing significant side effects and resistance. Oxyhydrogen gas, a mixture of 66% molecular hydrogen (H2) and 33% molecular oxygen (O2) [...] Read more.
Cancer remains one of the leading causes of death despite advancements in research and treatment, with traditional therapies often causing significant side effects and resistance. Oxyhydrogen gas, a mixture of 66% molecular hydrogen (H2) and 33% molecular oxygen (O2) has shown exceptional promise as a novel therapeutic agent due to its ability to modulate oxidative stress, inflammation, and apoptosis. H2, a key component of oxyhydrogen gas, neutralises reactive oxygen and nitrogen species, enhancing existing treatments and reducing harmful oxidative states in cancer cells. H2 also lowers proinflammatory mediators including chemokines, cytokines, and interleukins, inhibiting cancer cell proliferation and boosting the effectiveness of conventional therapies. Additionally, hydrogen can induce apoptosis in cancer cells by modulating pathways such as MAPK and inhibiting the PI3K/Akt phosphorylation cascade. Preclinical and clinical evidence supports oxyhydrogen gas’s potential in treating various cancers. In lung cancer models, it inhibits cell proliferation, induces apoptosis, and enhances chemotherapy sensitivity. Similar results have been observed in breast cancer, where patients reported improved quality of life. In colorectal cancer, oxyhydrogen gas suppresses tumour growth, induces apoptosis, and improves intestinal microflora dysbiosis. The unique properties of oxyhydrogen gas make it a promising adjunctive or standalone cancer treatment. However, further research is needed to understand H2s’ mechanisms, optimise treatment protocols, and evaluate long-term safety and efficacy in human patients. Full article
Show Figures

Figure 1

12 pages, 4034 KB  
Article
A Study on the Influence of Oxy-Hydrogen Gas Flame on the Combustion Stability of Coal Powder and Nitrogen Oxide Emissions
by Wenke Xiao, Jie Cui, Honggang Pan, Honglei Zhao, Shuo Yang, Zhijia Xue, Yudong Fu and Youning Xu
Processes 2024, 12(8), 1777; https://doi.org/10.3390/pr12081777 - 22 Aug 2024
Cited by 3 | Viewed by 1810
Abstract
Co-firing zero-carbon fuels as an effective emission reduction strategy in coal combustion processes has garnered widespread attention. This paper proposes utilizing the combustion performance of oxy-hydrogen gas derived from zero-carbon fuels to address issues related to low-concentration coal powder combustion and nitrogen oxide [...] Read more.
Co-firing zero-carbon fuels as an effective emission reduction strategy in coal combustion processes has garnered widespread attention. This paper proposes utilizing the combustion performance of oxy-hydrogen gas derived from zero-carbon fuels to address issues related to low-concentration coal powder combustion and nitrogen oxide emissions. A test apparatus for coal powder combustion initiated by oxy-hydrogen gas flames was constructed, and experimental and simulation methods were employed to study the impact of oxy-hydrogen gas flame initiation on the temperature inside the combustion chamber, coal powder gasification combustion reactions, and nitrogen oxide emissions. The results indicate that with an excess air coefficient of 0.8, as the oxy-hydrogen gas flow rate increased from 0.022 kg/h to 0.789 kg/h, the average temperature inside the combustion chamber increased from 801 K to 1459 K. The volatile matter release rate and its combustion reaction rate increased, leading to a decrease in volatile matter content. The peak concentration of volatiles was shifted from a position of 68 mm to 7 mm, and the proportion of Cchar–H2O reaction increased from 5% to 34%. NO emissions decreased from 132 ppm to 68 ppm, and the rate of reduction in NO emissions decreased from 15.38% to 5.49%. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

31 pages, 1849 KB  
Article
Applications of Oxyhydrogen, Direct Water Injection, and Early-Intake Valve Closure Technologies on a Petrol Spark Ignition Engine—A Path towards Zero-Emission Hydrogen Internal Combustion Engines
by Xiangtao Kong and Yaodong Wang
Energies 2024, 17(9), 2014; https://doi.org/10.3390/en17092014 - 24 Apr 2024
Cited by 3 | Viewed by 2241
Abstract
This study investigates the performance of a 4-MIX engine utilizing hydrogen combustion in pure oxygen, water injection, and the application of the early-intake valve closure (EIVC) Miller cycle. Transitioning from a standard petrol–oil mix to hydrogen fuel with pure oxygen combustion aims to [...] Read more.
This study investigates the performance of a 4-MIX engine utilizing hydrogen combustion in pure oxygen, water injection, and the application of the early-intake valve closure (EIVC) Miller cycle. Transitioning from a standard petrol–oil mix to hydrogen fuel with pure oxygen combustion aims to reduce emissions. Performance comparisons between baseline and oxyhydrogen engines showed proportional growth in the energy input rate with increasing rotational speed. The oxyhydrogen engine exhibited smoother reductions in brake torque and thermal efficiency as rotational speed increased compared to the baseline, attributed to hydrogen’s higher heating value. Water injection targeted cylinder and exhaust temperature reduction while maintaining a consistent injected mass. The results indicated a threshold of around 2.5 kg/h for the optimal water injection rate, beyond which positive effects on engine performance emerged. Investigation into the EIVC Miller cycle revealed improvements in brake torque, thermal efficiency, and brake specific fuel consumption as early-intake valve closure increased. Overall, the EIVC model exhibited superior energy efficiency, torque output, and thermal efficiency compared to alternative models, effectively addressing emissions and cylinder temperature concerns. Full article
(This article belongs to the Topic Hydrogen Energy Technologies, 2nd Edition)
Show Figures

Figure 1

17 pages, 2634 KB  
Article
Experimental Investigation on Oxy-Hydrogen Gas Flame Injecting Coal Powder Gasification and Combustion
by Jie Cui, Honglei Zhao, Youning Xu, Shuo Yang, Honggang Pan, Wenke Xiao, Yudong Fu and Zhijia Xue
Processes 2024, 12(4), 692; https://doi.org/10.3390/pr12040692 - 29 Mar 2024
Cited by 2 | Viewed by 2752
Abstract
Hydrogen energy is an important carrier for energy terminals to achieve green and low-carbon transformation. Hydrogen, as a carbon-free fuel, has great research and development value in the field of thermal power generation. This article proposes a solution for the stable combustion of [...] Read more.
Hydrogen energy is an important carrier for energy terminals to achieve green and low-carbon transformation. Hydrogen, as a carbon-free fuel, has great research and development value in the field of thermal power generation. This article proposes a solution for the stable combustion of coal powder using Oxy-hydrogen Gas ignition technology. An Oxy-hydrogen Gas flame injection coal powder combustion testing device was constructed to experimentally study the temperature distribution in the combustion chamber under Oxy-hydrogen Gas ignition technology, with primary air coal powder concentrations of 0.27, 0.32, and 0.36 (kg coal powder/kg air), as well as the concentration changes of volatile CO emissions during the ignition of coal powder using both Oxy-hydrogen Gas and CH4 flames. The sensitivity of the NO generation during coal gasification combustion under the Oxy-hydrogen Gas ignition was simulated and analyzed. The results show that at a coal powder concentration of 0.32 (kg coal/kg air) and an Oxy-hydrogen Gas flow rate of 2.1 L/min, the combustion effect of coal powder is the best, and the highest combustion chamber temperature can reach 1156 K; when the concentration of coal powder varies within a range from 0.32 to 0.27, the combustion chamber temperature can be maintained at around 850K, achieving stable combustion conditions for coal powder. The only product generated by the Oxy-hydrogen Gas combustion is high-temperature water vapor, which helps the rapid gasification of coal powder and releases a large amount of volatile CO, which is beneficial for the ignition and stable combustion of coal powder. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

9 pages, 1433 KB  
Proceeding Paper
Performance Assessment of Spark-Ignition Engine Combined with an HHO Generator
by Ummi Kultsum, Andi Ibrahim Soumi, Ananta Baharudin and Putra Dwi Manunggal
Eng. Proc. 2024, 63(1), 3; https://doi.org/10.3390/engproc2024063003 - 22 Feb 2024
Cited by 6 | Viewed by 2910
Abstract
This study investigates the performance of a four-stroke, spark-ignition engine equipped with a commercial HHO generator that utilizes tap water for HHO gas production. Employing adjustable voltage levels (15 V, 25 V, and 30 V), the generator’s impact on engine performance was assessed [...] Read more.
This study investigates the performance of a four-stroke, spark-ignition engine equipped with a commercial HHO generator that utilizes tap water for HHO gas production. Employing adjustable voltage levels (15 V, 25 V, and 30 V), the generator’s impact on engine performance was assessed through experimental dyno tests, measuring torque, power, and fuel consumption, complemented by numerical analyses of HHO production and thermal efficiency. The results, comparing engine operation with and without the HHO system, aim to evaluate the HHO generator’s effectiveness as a fuel supplement for enhancing engine performance. Full article
Show Figures

Figure 1

16 pages, 1549 KB  
Perspective
An Interplay of Gases: Oxygen and Hydrogen in Biological Systems
by Grace Russell, Jennifer May and John T. Hancock
Oxygen 2024, 4(1), 37-52; https://doi.org/10.3390/oxygen4010003 - 9 Feb 2024
Cited by 5 | Viewed by 6926
Abstract
Produced by photosynthesis, oxygen (O2) is a fundamentally important gas in biological systems, playing roles as a terminal electron receptor in respiration and in host defence through the creation of reactive oxygen species (ROS). Hydrogen (H2) plays a role [...] Read more.
Produced by photosynthesis, oxygen (O2) is a fundamentally important gas in biological systems, playing roles as a terminal electron receptor in respiration and in host defence through the creation of reactive oxygen species (ROS). Hydrogen (H2) plays a role in metabolism for some organisms, such as at thermal vents and in the gut environment, but has a role in controlling growth and development, and in disease states, both in plants and animals. It has been suggested as a medical therapy and for enhancing agriculture. However, the exact mode of action of H2 in biological systems is not fully established. Furthermore, there is an interrelationship between O2 and H2 in organisms. These gases may influence each other’s presence in solution, and may both interact with the same cellular components, such as haem prosthetic groups. It has also been suggested that H2 may affect the structures of some proteins, such as globins, with possible effects on O2 movement in organisms. Lastly, therapies may be based on supplying O2 and H2 together, such as with oxyhydrogen. Therefore, the relationship regarding how biological systems perceive and respond to both O2 and H2, and the interrelationship seen are worth considering, and will be discussed here. Full article
(This article belongs to the Special Issue Interaction of Oxygen and Other Gases with Haem Containing Proteins)
Show Figures

Figure 1

14 pages, 1595 KB  
Article
The Therapeutic Potential of Oxyhydrogen Gas in Oncology: A Study on Epstein–Barr Virus-Immortalised B-Lymphoblastoid (TK6) Cells
by Grace Russell, Adam D. Thomas, Alexander Nenov, Georgia Mannings and John T. Hancock
Hydrogen 2023, 4(4), 746-759; https://doi.org/10.3390/hydrogen4040047 - 4 Oct 2023
Cited by 1 | Viewed by 14107
Abstract
Cancer is a leading cause of mortality worldwide. B-cells are a keystone of the adaptive immune response and are essential for the presentation of tumor-associated antigens to various types of T-cells. Approximately 1.5% of global cancer cases, including breast and gastric carcinomas and [...] Read more.
Cancer is a leading cause of mortality worldwide. B-cells are a keystone of the adaptive immune response and are essential for the presentation of tumor-associated antigens to various types of T-cells. Approximately 1.5% of global cancer cases, including breast and gastric carcinomas and both Hodgkin’s and non-Hodgkin’s lymphomas, are linked with prior Epstein–Barr Virus (EBV) infection. Such properties make EBV-infected lymphocytes ideal models for understanding the effect of oxyhydrogen gas on dysfunctional cell cycling. The aim of this study is to assess the effects of the direct infusion of oxyhydrogen gas on the replicative capacity of EBV-immortalised B-lymphocytes. Oxyhydrogen gas was directly infused into cell culture media. Cells were incubated in 95% air and 5% CO2 for up to 72 h. Cell enumeration was assessed with and without the addition of mitogenic growth stimuli, and subsequent cell-cycle analysis was performed. Cell enumeration: An initial trend of replicative inhibition of TK6 cells is noted with a single oxyhydrogen treatment at the 24 and 48 h time points. The daily addition of oxyhydrogen-infused media showed statistically relevant data at 24 and 48 h but not at 72 h. In mitogen-stimulated cells, a non-statistical trend of inhibition was observed at 24, 48 and 72 h. Analysis details a significant increase in DNA in the Sub G1 phase, indicating increased apoptosis. Full article
Show Figures

Figure 1

14 pages, 4890 KB  
Article
Corrosion of Titanium Electrode Used for Solar Saline Electroflotation
by Felipe M. Galleguillos Madrid, María Arancibia-Bravo, Jonathan Cisterna, Álvaro Soliz, Sebastián Salazar-Avalos, Bastián Guevara, Felipe Sepúlveda and Luis Cáceres
Materials 2023, 16(9), 3514; https://doi.org/10.3390/ma16093514 - 3 May 2023
Cited by 9 | Viewed by 3004
Abstract
The solar electroflotation (EF) processes using saline electrolytes are today one of the great challenges for the development of electrochemical devices, due to the corrosion problems that are generated during the operation by being in permanent contact with Cl ions. This manuscript [...] Read more.
The solar electroflotation (EF) processes using saline electrolytes are today one of the great challenges for the development of electrochemical devices, due to the corrosion problems that are generated during the operation by being in permanent contact with Cl ions. This manuscript discloses the corrosion behavior of titanium electrodes using a superposition model based on mixed potential theory and the evaluation of the superficial performance of the Ti electrodes operated to 4 V/SHE solar electroflotation in contact with a solution of 0.5 M NaCl. Additionally provided is an electrochemical analysis of Ti electrodes regarding HER, ORR, OER, and CER that occur during the solar saline EF process. The non-linear superposition model by mixed potential theory gives electrochemical and corrosion parameters that complement the information published in scientific journals, the corrosion current density and corrosion potential in these conditions is 0.069 A/m2 and −7.27 mV, respectively. The formation of TiO2 and TiOCl on the anode electrode was visualized, resulting in a reduction of its weight loss of the anode electrode. Full article
(This article belongs to the Special Issue Corrosion and Oxidation of Metals)
Show Figures

Figure 1

20 pages, 3203 KB  
Article
Testing of a Low-Cost Dry Cell Prototype for Oxyhydrogen Production
by Lisa Bunge, Hugo G. Silva, Pedro L. Cruz and Muriel Iten
Designs 2022, 6(5), 79; https://doi.org/10.3390/designs6050079 - 7 Sep 2022
Cited by 1 | Viewed by 2697
Abstract
This work aims to study the production of oxyhydrogen gas by a small low-cost prototype consisting of six dry cells. Firstly, a molecular composition study of the gas was carried out, presenting concentrations of 67% H2 and 28% O2. The [...] Read more.
This work aims to study the production of oxyhydrogen gas by a small low-cost prototype consisting of six dry cells. Firstly, a molecular composition study of the gas was carried out, presenting concentrations of 67% H2 and 28% O2. The deviation from the stoichiometric yield is discussed to be caused by water vapor production and/or oxygen dissolution in the liquid phase. Secondly, an efficiency study was done, considering the ratio between the reversible voltage of an electrolytic cell and the voltage applied to the dry cell by an external power source. Different working conditions (electrolyte concentration, 3% (w/w) of KHO and 20% (w/w) of KHO) have been tested to analyze their effect on the efficiency of the system. The results show that a lower electrolyte concentration increases the applied cell voltage, and so the necessary power input for gas production to occur, resulting in lower cell efficiency. Overall, the efficiencies are below 69.8 ± 0.6% for the studied electrolyte concentrations and approach approximately the same value around 50% for higher powers. Full article
(This article belongs to the Special Issue Battery System Design)
Show Figures

Figure 1

15 pages, 5079 KB  
Article
Methods for Competitiveness Improvement of High-Temperature Steam Turbine Power Plants
by Andrey Rogalev, Nikolay Rogalev, Ivan Komarov, Vladimir Kindra and Sergey Osipov
Inventions 2022, 7(2), 44; https://doi.org/10.3390/inventions7020044 - 16 Jun 2022
Cited by 7 | Viewed by 3944
Abstract
The paper is concerned with the problem of the development of high-temperature steam turbine power plants with ultra-supercritical (USC) initial parameters. One of the main disadvantages of the USC power unit’s creation is high price due to the application of expensive heat-resistant materials [...] Read more.
The paper is concerned with the problem of the development of high-temperature steam turbine power plants with ultra-supercritical (USC) initial parameters. One of the main disadvantages of the USC power unit’s creation is high price due to the application of expensive heat-resistant materials for boiler, live and reheat steam pipelines in turbines. To solve this problem, the following technical improvements to reduce the application of the heat-resistant materials and equipment metal consumption are proposed: horizontal boiler layout, high temperature steam turbine with a cooling system, oxy-hydrogen combustion chambers, and two-tier low-pressure turbine. The influence of the above-mentioned solutions on the high-temperature steam turbine power plant efficiency was estimated using thermodynamic analysis. The promising equipment design was developed based on the results of numerical and experimental research. The analysis of the proposed solutions’ influence upon the economic parameters of a high-temperature power facility was investigated based on the developed cost analysis model, which included the equipment metal and manufacturing expenses. The introduction of all the mentioned cost reduction methods led to a decrease in the facility’s price by RUB 10.5 billion or 15%. The discounted payback period was reduced from 27.5 to 10 years and the net present value increased by RUB 9.6 billion or 16 times. Full article
(This article belongs to the Special Issue Thermodynamic and Technical Analysis for Sustainability (Volume 2))
Show Figures

Figure 1

18 pages, 1157 KB  
Article
Lab-Scale Cultivation of Cupriavidus necator on Explosive Gas Mixtures: Carbon Dioxide Fixation into Polyhydroxybutyrate
by Vera Lambauer and Regina Kratzer
Bioengineering 2022, 9(5), 204; https://doi.org/10.3390/bioengineering9050204 - 10 May 2022
Cited by 45 | Viewed by 9436
Abstract
Aerobic, hydrogen oxidizing bacteria are capable of efficient, non-phototrophic CO2 assimilation, using H2 as a reducing agent. The presence of explosive gas mixtures requires strict safety measures for bioreactor and process design. Here, we report a simplified, reproducible, and safe cultivation [...] Read more.
Aerobic, hydrogen oxidizing bacteria are capable of efficient, non-phototrophic CO2 assimilation, using H2 as a reducing agent. The presence of explosive gas mixtures requires strict safety measures for bioreactor and process design. Here, we report a simplified, reproducible, and safe cultivation method to produce Cupriavidus necator H16 on a gram scale. Conditions for long-term strain maintenance and mineral media composition were optimized. Cultivations on the gaseous substrates H2, O2, and CO2 were accomplished in an explosion-proof bioreactor situated in a strong, grounded fume hood. Cells grew under O2 control and H2 and CO2 excess. The starting gas mixture was H2:CO2:O2 in a ratio of 85:10:2 (partial pressure of O2 0.02 atm). Dissolved oxygen was measured online and was kept below 1.6 mg/L by a stepwise increase of the O2 supply. Use of gas compositions within the explosion limits of oxyhydrogen facilitated production of 13.1 ± 0.4 g/L total biomass (gram cell dry mass) with a content of 79 ± 2% poly-(R)-3-hydroxybutyrate in a simple cultivation set-up with dissolved oxygen as the single controlled parameter. Approximately 98% of the obtained PHB was formed from CO2. Full article
(This article belongs to the Special Issue Advances in Polyhydroxyalkanoate (PHA) Production, Volume 3)
Show Figures

Graphical abstract

Back to TopTop