Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = oxy-hydrogen gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 9985 KiB  
Article
Additively Manufactured 316L Stainless Steel: Hydrogen Embrittlement Susceptibility and Electrochemical Gas Production
by Reham Reda, Sabbah Ataya, Mohamed Ayman, Khaled Saad, Shimaa Mostafa, Gehad Elnady, Rashid Khan and Yousef G. Y. Elshaghoul
Appl. Sci. 2025, 15(11), 5824; https://doi.org/10.3390/app15115824 - 22 May 2025
Viewed by 812
Abstract
Interest in hydrogen is rapidly growing due to rising greenhouse gas emissions and the depletion of fossil fuel reserves. Additive manufacturing (AM) is extensively employed to produce high-quality components, with a strong focus on enhancing mechanical properties. The efficiency and cost-effectiveness of AM [...] Read more.
Interest in hydrogen is rapidly growing due to rising greenhouse gas emissions and the depletion of fossil fuel reserves. Additive manufacturing (AM) is extensively employed to produce high-quality components, with a strong focus on enhancing mechanical properties. The efficiency and cost-effectiveness of AM have further increased interest in its application to manufacturing components capable of withstanding demanding conditions, such as those encountered in hydrogen technology. In this study, 316L stainless steel specimens were fabricated using AM via the selective laser melting (SLM) technique. The specimens then underwent various post-processing heat treatments (PPHT). A subset of these specimens, measuring 50 × 50 × 3 mm3, was tested as electrodes in a water electrolysis cell for oxyhydrogen (HHO) gas production. The HHO gas flow rate and electrolyzer efficiency were evaluated at 60 °C under varying currents. The remaining AM specimens were evaluated for their susceptibility to hydrogen embrittlement under various hydrogen storage conditions, including testing at both room and cryogenic temperatures. Tensile and Charpy impact specimens were fabricated and tested before and after hydrogen charging. The fracture surfaces were analyzed using scanning electron microscopy (SEM) to assess the influence of hydrogen on fracture characteristics. Additionally, as-rolled stainless-steel specimens were examined for comparison with AM and PPHT 316L stainless steel. The primary objective of this study is to determine the most efficient alloy processing condition for optimal performance in each application. Results indicate that PPHT 316L stainless steel exhibits superior performance both as electrodes for HHO gas production and as a material for hydrogen storage vessels, demonstrating high resistance to hydrogen embrittlement. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

21 pages, 11172 KiB  
Article
Detection and Pattern Recognition of Chemical Warfare Agents by MOS-Based MEMS Gas Sensor Array
by Mengxue Xu, Xiaochun Hu, Hongpeng Zhang, Ting Miao, Lan Ma, Jing Liang, Yuefeng Zhu, Haiyan Zhu, Zhenxing Cheng and Xuhui Sun
Sensors 2025, 25(8), 2633; https://doi.org/10.3390/s25082633 - 21 Apr 2025
Viewed by 2716
Abstract
Chemical warfare agents (CWAs), including hydrogen cyanide (AC), 2-[fluoro(methyl)phosphoryl]oxypropane (GB), 3-[fluoro(methyl)phosphoryl]oxy-2,2-dimethylbutane (GD), ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate (VX), and di-2-chloroethyl sulfide (HD), pose a great threat to public safety; therefore, it is important to develop sensing technology for CWAs. Herein, a sensor array consisting of [...] Read more.
Chemical warfare agents (CWAs), including hydrogen cyanide (AC), 2-[fluoro(methyl)phosphoryl]oxypropane (GB), 3-[fluoro(methyl)phosphoryl]oxy-2,2-dimethylbutane (GD), ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate (VX), and di-2-chloroethyl sulfide (HD), pose a great threat to public safety; therefore, it is important to develop sensing technology for CWAs. Herein, a sensor array consisting of 24 metal oxide semiconductor (MOS)-based MEMS sensors with good gas sensing performance, a simple device structure (0.9 mm × 0.9 mm), and low power consumption (<10 mW on average) was developed. The experimental results show that there are always several sensors among the 24 sensors that show good sensing performance in relation to each CWA, such as a relatively significant response, a broad detection range (AC: 5.8–89 ppm; GB: 0.04–0.47 ppm; GD: 0.06–4.7 ppm; VX: 9.978 × 10−4–1.101 × 10−3; HD: 0.61–4.9 ppm), and a low detection limit that is lower than the immediately dangerous for life and health (IDLH) level of the five CWAs. This indicates that these sensors can meet the needs for qualitative detection and can provide an early warning regarding low concentrations of CWAs. In addition, features were extracted from the initial kinetic characteristics and dynamic change characteristics of the sensing response. Finally, principal component analysis (PCA) and machine learning algorithms were applied for CWA classification. The obtained PCA plots showed significant differences between groups, and the narrow neural network among the machine learning algorithms achieves a prediction accuracy of nearly 100.0%. In summary, the proposed MOS-based MEMS sensor array driven by pattern recognition algorithms can be integrated into portable devices, showing great potential and practical applications in the rapid, in situ, and on-site detection and identification of CWAs. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

13 pages, 1005 KiB  
Article
Multiparametric Study of Water–Gas Shift and Hydrogen Separation Performance in Membrane Reactors Fed with Biomass-Derived Syngas
by Nadia Cerone, Luca Contuzzi, Giuseppe Domenico Zito, Carmine Florio, Laura Fabbiano and Francesco Zimbardi
Hydrogen 2025, 6(1), 6; https://doi.org/10.3390/hydrogen6010006 - 22 Jan 2025
Viewed by 3928
Abstract
A multiparametric study was conducted on a hydrogen (H2) production rig designed to process 0.25 Nm3·h−1 of syngas. The rig consists of two Pd-Ag membrane permeator units and two Pd-Ag membrane reactor units for the water–gas shift (WGS) [...] Read more.
A multiparametric study was conducted on a hydrogen (H2) production rig designed to process 0.25 Nm3·h−1 of syngas. The rig consists of two Pd-Ag membrane permeator units and two Pd-Ag membrane reactor units for the water–gas shift (WGS) reaction, enabling a detailed and comprehensive analysis of its performance. The aim was to find the optimal conditions to maximize hydrogen production by WGS and its separation in a pure stream by varying the temperature, pressure, and steam-to-CO ratio (S/CO). Two syngas mixtures obtained from an updraft gasifier using different gasification agents (air–steam and oxy–steam) were used to investigate the effect of gas composition. The performance of the rig was investigated under nine combinations of temperature, pressure, and S/CO in the respective ranges of 300–350 °C, 2–8 bar, and 1.1–2 mol·mol−1, as planned with the help of design of experiment (DOE) software. The three parameters positively affected performance, both in terms of capacity to separate a pure stream of H2, reported as moles permeated per unit of surface area and time, and in producing new H2 from WGS, reported as moles of H2 produced per volume of catalyst unit and time. The highest yields were obtained using syngas from oxy–steam gasification, which had the highest H2 concentration and was free of N2. Full article
Show Figures

Figure 1

15 pages, 5032 KiB  
Article
Optimization of Hydrogen Supercritical Oxy-Combustion in Gas Turbines
by Sylwia Oleś, Jakub Mularski, Dariusz Pyka, Halina Pawlak-Kruczek and Artur Pozarlik
Fuels 2025, 6(1), 6; https://doi.org/10.3390/fuels6010006 - 14 Jan 2025
Cited by 2 | Viewed by 1590
Abstract
This study investigates the combustion of hydrogen in supercritical gas turbines, emphasizing the optimization of combustor design through computational fluid dynamics (CFD) simulations. Key parameters analysed include the number of oxygen inlets, operating pressure, excess working fluid in oxygen inlets, power output, and [...] Read more.
This study investigates the combustion of hydrogen in supercritical gas turbines, emphasizing the optimization of combustor design through computational fluid dynamics (CFD) simulations. Key parameters analysed include the number of oxygen inlets, operating pressure, excess working fluid in oxygen inlets, power output, and the use of different working fluids: supercritical argon (sAr) and supercritical xenon (sXe). The results highlight how these parameters influence temperature distribution, flame stability, and overall combustion efficiency. Findings suggest that increasing the number of oxygen inlets can significantly affect temperature profiles, while higher operating pressures lead to shorter flames. The dilution of oxygen by argon reduces the peak temperatures, and the choice of working fluid impacts cooling efficiency and flame dynamics. This study provides valuable information on optimizing the design of supercritical combustion chambers for hydrogen combustion in novel supercritical gas turbine systems. Full article
Show Figures

Figure 1

18 pages, 3223 KiB  
Article
Sustainable Production of Green Oxy-Hydrogen from Vehicles’ Air Conditioning Drains to Enhance Engine Efficiency and Reduce Greenhouse Gas Emissions
by Mohamed K. M. Gerwash, Amin M. K. Al-ghonemy, Mohamed A. Omara, Ibrahim L. M. Ahmed, Aly Saeed and Gamal B. Abdelaziz
Hydrogen 2024, 5(4), 958-975; https://doi.org/10.3390/hydrogen5040051 - 5 Dec 2024
Cited by 1 | Viewed by 4272
Abstract
Innovative and sustainable solutions are increasingly necessary as concerns about fossil fuels’ environmental and economic impacts grow. Accordingly, this study aims to enhance vehicle internal combustion engine efficiency by producing oxy-hydrogen (HHO) from drain water from the vehicle air conditioning system and utilizing [...] Read more.
Innovative and sustainable solutions are increasingly necessary as concerns about fossil fuels’ environmental and economic impacts grow. Accordingly, this study aims to enhance vehicle internal combustion engine efficiency by producing oxy-hydrogen (HHO) from drain water from the vehicle air conditioning system and utilizing it as a secondary fuel. A 1600 cc Daewoo engine equipped with electronic fuel injection was employed as the test subject. Initially, the engine’s performance was evaluated using various gasoline variants, 80, 92, and 95. The 92-octane gasoline demonstrated the highest efficiency, achieving a peak power of 113 kW and torque of 190 Nm. The engine had an 11:1 compression ratio. Then, different flow rates of oxy-hydrogen, 50, 248, 397, and 480 mL/min, generated from the air conditioner drain were combined with 92 fuel. A significant improvement was observed with the increase in the flow rate of oxy-hydrogen gas to the 92 fuel. The results indicated that incorporating 480 mL/min oxy-hydrogen gas into the fuel led to an 8.7% reduction in fuel consumption, 5.5% enhancement in thermal efficiency, and 7.9% in volumetric efficiency. Greenhouse gas emissions reductions of carbon monoxide, carbon dioxide, and hydrocarbons were recorded as 18%, 9.2%, and 9%, respectively. At the same time, nitrogen oxides increased by 12.5%. Therefore, utilizing a vehicle air conditioner drain water to generate oxy-hydrogen gas fuel in conjunction with 92-octane gasoline is an efficient solution to reduce fuel consumption, enhance energy efficiency, and mitigate the adverse effects of pollution. This approach also contributes to progress towards a more sustainable future. Full article
Show Figures

Figure 1

17 pages, 13526 KiB  
Article
Hydrogen-Rich Syngas Production in a Ce0.9Zr0.05Y0.05O2−δ/Ag and Molten Carbonates Membrane Reactor
by José A. Raya-Colín, José A. Romero-Serrano, Cristian Carrera-Figueiras, José A. Fabián-Anguiano, Heberto Balmori-Ramírez, Oscar Ovalle-Encinia and José Ortiz-Landeros
ChemEngineering 2024, 8(5), 106; https://doi.org/10.3390/chemengineering8050106 - 15 Oct 2024
Cited by 1 | Viewed by 1495
Abstract
This study proposes a new dense membrane for selectively separating CO2 and O2 at high temperatures and simultaneously producing syngas. The membrane consists of a cermet-type material infiltrated with a ternary carbonate phase. Initially, the co-doped ceria of composition Ce0.9 [...] Read more.
This study proposes a new dense membrane for selectively separating CO2 and O2 at high temperatures and simultaneously producing syngas. The membrane consists of a cermet-type material infiltrated with a ternary carbonate phase. Initially, the co-doped ceria of composition Ce0.9Zr0.05Y0.05O2−δ (CZY) was synthesized by using the conventional solid-state reaction method. Then, the ceramic was mixed with commercial silver powders using a ball milling process and subsequently uniaxially pressed and sintered to form the disk-shaped cermet. The dense membrane was finally formed via the infiltration of molten salts into the porous cermet supports. At high temperatures (700–850 °C), the membranes exhibit CO2/N2 and O2/N2 permselectivity and a high permeation flux under different CO2 concentrations in the feed and sweeping gas flow rates. The observed permeation properties make its use viable for CO2 valorization via the oxy-CO2 reforming of methane, wherein both CO2 and O2 permeated gases were effectively utilized to produce hydrogen-rich syngas (H2 + CO) through a catalytic membrane reactor arrangement at different temperatures ranging from 700 to 850 °C. The effect of the ceramic filler in the cermet is discussed, and continuous permeation testing, up to 115 h, demonstrated the membrane’s superior chemical and thermal stability by confirming the absence of any chemical interaction between the material and the carbonates as well as the absence of significant sintering concerns with the pure silver. Full article
Show Figures

Graphical abstract

23 pages, 2386 KiB  
Article
Sustainable Biomethanol and Biomethane Production via Anaerobic Digestion, Oxy-Fuel Gas Turbine and Amine Scrubbing CO2 Capture
by Towhid Gholizadeh, Hamed Ghiasirad and Anna Skorek-Osikowska
Energies 2024, 17(18), 4703; https://doi.org/10.3390/en17184703 - 21 Sep 2024
Cited by 4 | Viewed by 2210
Abstract
Energy policies around the world are increasingly highlighting the importance of hydrogen in the evolving energy landscape. In this regard, the use of hydrogen to produce biomethanol not only plays an essential role in the chemical industry but also holds great promise as [...] Read more.
Energy policies around the world are increasingly highlighting the importance of hydrogen in the evolving energy landscape. In this regard, the use of hydrogen to produce biomethanol not only plays an essential role in the chemical industry but also holds great promise as an alternative fuel for global shipping. This study evaluates a system for generating biomethanol and biomethane based on anaerobic digestion, biogas upgrading, methanol synthesis unit, and high-temperature electrolysis. Thermal integration is implemented to enhance efficiency by linking the oxy-fuel gas turbine unit. The integrated system performance is evaluated through thermodynamic modeling, and Aspen Plus V12.1 is employed for the analysis. Our findings show that the primary power consumers are the Solid Oxide Electrolysis Cell (SOEC) and Methanol Synthesis Unit (MSU), with the SOEC system consuming 824 kW of power and the MSU consuming 129.5 kW of power, corresponding to a production scale of 23.2 kg/h of hydrogen and 269.54 kg/h of biomethanol, respectively. The overall energy efficiency is calculated at 58.09%, considering a production output of 188 kg/h of biomethane and 269 kg/h of biomethanol. The amount of carbon dioxide emitted per biofuel production is equal to 0.017, and the proposed system can be considered a low-carbon emission system. Key findings include significant enhancements in biomethanol capacity and energy efficiency with higher temperatures in the methanol reactor. Full article
Show Figures

Figure 1

13 pages, 588 KiB  
Review
Oxyhydrogen Gas: A Promising Therapeutic Approach for Lung, Breast and Colorectal Cancer
by Grace Russell and Alexander Nenov
Oxygen 2024, 4(3), 338-350; https://doi.org/10.3390/oxygen4030020 - 26 Aug 2024
Cited by 1 | Viewed by 8508
Abstract
Cancer remains one of the leading causes of death despite advancements in research and treatment, with traditional therapies often causing significant side effects and resistance. Oxyhydrogen gas, a mixture of 66% molecular hydrogen (H2) and 33% molecular oxygen (O2) [...] Read more.
Cancer remains one of the leading causes of death despite advancements in research and treatment, with traditional therapies often causing significant side effects and resistance. Oxyhydrogen gas, a mixture of 66% molecular hydrogen (H2) and 33% molecular oxygen (O2) has shown exceptional promise as a novel therapeutic agent due to its ability to modulate oxidative stress, inflammation, and apoptosis. H2, a key component of oxyhydrogen gas, neutralises reactive oxygen and nitrogen species, enhancing existing treatments and reducing harmful oxidative states in cancer cells. H2 also lowers proinflammatory mediators including chemokines, cytokines, and interleukins, inhibiting cancer cell proliferation and boosting the effectiveness of conventional therapies. Additionally, hydrogen can induce apoptosis in cancer cells by modulating pathways such as MAPK and inhibiting the PI3K/Akt phosphorylation cascade. Preclinical and clinical evidence supports oxyhydrogen gas’s potential in treating various cancers. In lung cancer models, it inhibits cell proliferation, induces apoptosis, and enhances chemotherapy sensitivity. Similar results have been observed in breast cancer, where patients reported improved quality of life. In colorectal cancer, oxyhydrogen gas suppresses tumour growth, induces apoptosis, and improves intestinal microflora dysbiosis. The unique properties of oxyhydrogen gas make it a promising adjunctive or standalone cancer treatment. However, further research is needed to understand H2s’ mechanisms, optimise treatment protocols, and evaluate long-term safety and efficacy in human patients. Full article
Show Figures

Figure 1

12 pages, 4034 KiB  
Article
A Study on the Influence of Oxy-Hydrogen Gas Flame on the Combustion Stability of Coal Powder and Nitrogen Oxide Emissions
by Wenke Xiao, Jie Cui, Honggang Pan, Honglei Zhao, Shuo Yang, Zhijia Xue, Yudong Fu and Youning Xu
Processes 2024, 12(8), 1777; https://doi.org/10.3390/pr12081777 - 22 Aug 2024
Cited by 1 | Viewed by 1151
Abstract
Co-firing zero-carbon fuels as an effective emission reduction strategy in coal combustion processes has garnered widespread attention. This paper proposes utilizing the combustion performance of oxy-hydrogen gas derived from zero-carbon fuels to address issues related to low-concentration coal powder combustion and nitrogen oxide [...] Read more.
Co-firing zero-carbon fuels as an effective emission reduction strategy in coal combustion processes has garnered widespread attention. This paper proposes utilizing the combustion performance of oxy-hydrogen gas derived from zero-carbon fuels to address issues related to low-concentration coal powder combustion and nitrogen oxide emissions. A test apparatus for coal powder combustion initiated by oxy-hydrogen gas flames was constructed, and experimental and simulation methods were employed to study the impact of oxy-hydrogen gas flame initiation on the temperature inside the combustion chamber, coal powder gasification combustion reactions, and nitrogen oxide emissions. The results indicate that with an excess air coefficient of 0.8, as the oxy-hydrogen gas flow rate increased from 0.022 kg/h to 0.789 kg/h, the average temperature inside the combustion chamber increased from 801 K to 1459 K. The volatile matter release rate and its combustion reaction rate increased, leading to a decrease in volatile matter content. The peak concentration of volatiles was shifted from a position of 68 mm to 7 mm, and the proportion of Cchar–H2O reaction increased from 5% to 34%. NO emissions decreased from 132 ppm to 68 ppm, and the rate of reduction in NO emissions decreased from 15.38% to 5.49%. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 3429 KiB  
Article
Low-Temperature Deposition of Diamond Films by MPCVD with Graphite Paste Additive
by Stephen Yang-En Guu, Fu-Cheng Lin, Yu-Sen Chien, Alen Jhang and Yon-Hua Tzeng
C 2024, 10(2), 39; https://doi.org/10.3390/c10020039 - 16 Apr 2024
Cited by 1 | Viewed by 3785
Abstract
Modern integrated circuits (ICs) take advantage of three-dimensional (3D) nanostructures in devices and interconnects to achieve high-speed and ultra-low-power performance. The choice of electrical insulation materials with excellent dielectric strength, electrical resistivity, strong mechanical strength, and high thermal conductivity becomes critical. Diamond possesses [...] Read more.
Modern integrated circuits (ICs) take advantage of three-dimensional (3D) nanostructures in devices and interconnects to achieve high-speed and ultra-low-power performance. The choice of electrical insulation materials with excellent dielectric strength, electrical resistivity, strong mechanical strength, and high thermal conductivity becomes critical. Diamond possesses these properties and is recently recognized as a promising dielectric material for the fabrication of advanced ICs, which are sensitive to detrimental high-temperature processes. Therefore, a high-rate low-temperature deposition technique for large-grain, high-quality diamond films of the thickness of a few tens to a few hundred nanometers is desirable. The diamond growth rate by microwave plasma chemical vapor deposition (MPCVD) decreases rapidly with lowering substrate temperature. In addition, the thermal conductivity of non-diamond carbon is much lower than that of diamond. Furthermore, a small-grain diamond film suffers from poor thermal conductivity due to frequent phonon scattering at grain boundaries. This paper reports a novel MPCVD process aiming at high growth rate, large grain size, and high sp3/sp2 ratio for diamond films deposited on silicon. Graphite paste containing nanoscale graphite and oxy-hydrocarbon binder and solvent vaporizes and mixes with gas feeds of hydrogen, methane, and carbon dioxide to form plasma. Rapid diamond growth of diamond seeds at 450 °C by the plasma results in large-grained diamond films on silicon at a high deposition rate of 200 nm/h. Full article
Show Figures

Graphical abstract

17 pages, 2634 KiB  
Article
Experimental Investigation on Oxy-Hydrogen Gas Flame Injecting Coal Powder Gasification and Combustion
by Jie Cui, Honglei Zhao, Youning Xu, Shuo Yang, Honggang Pan, Wenke Xiao, Yudong Fu and Zhijia Xue
Processes 2024, 12(4), 692; https://doi.org/10.3390/pr12040692 - 29 Mar 2024
Cited by 1 | Viewed by 2113
Abstract
Hydrogen energy is an important carrier for energy terminals to achieve green and low-carbon transformation. Hydrogen, as a carbon-free fuel, has great research and development value in the field of thermal power generation. This article proposes a solution for the stable combustion of [...] Read more.
Hydrogen energy is an important carrier for energy terminals to achieve green and low-carbon transformation. Hydrogen, as a carbon-free fuel, has great research and development value in the field of thermal power generation. This article proposes a solution for the stable combustion of coal powder using Oxy-hydrogen Gas ignition technology. An Oxy-hydrogen Gas flame injection coal powder combustion testing device was constructed to experimentally study the temperature distribution in the combustion chamber under Oxy-hydrogen Gas ignition technology, with primary air coal powder concentrations of 0.27, 0.32, and 0.36 (kg coal powder/kg air), as well as the concentration changes of volatile CO emissions during the ignition of coal powder using both Oxy-hydrogen Gas and CH4 flames. The sensitivity of the NO generation during coal gasification combustion under the Oxy-hydrogen Gas ignition was simulated and analyzed. The results show that at a coal powder concentration of 0.32 (kg coal/kg air) and an Oxy-hydrogen Gas flow rate of 2.1 L/min, the combustion effect of coal powder is the best, and the highest combustion chamber temperature can reach 1156 K; when the concentration of coal powder varies within a range from 0.32 to 0.27, the combustion chamber temperature can be maintained at around 850K, achieving stable combustion conditions for coal powder. The only product generated by the Oxy-hydrogen Gas combustion is high-temperature water vapor, which helps the rapid gasification of coal powder and releases a large amount of volatile CO, which is beneficial for the ignition and stable combustion of coal powder. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 1549 KiB  
Perspective
An Interplay of Gases: Oxygen and Hydrogen in Biological Systems
by Grace Russell, Jennifer May and John T. Hancock
Oxygen 2024, 4(1), 37-52; https://doi.org/10.3390/oxygen4010003 - 9 Feb 2024
Cited by 4 | Viewed by 5107
Abstract
Produced by photosynthesis, oxygen (O2) is a fundamentally important gas in biological systems, playing roles as a terminal electron receptor in respiration and in host defence through the creation of reactive oxygen species (ROS). Hydrogen (H2) plays a role [...] Read more.
Produced by photosynthesis, oxygen (O2) is a fundamentally important gas in biological systems, playing roles as a terminal electron receptor in respiration and in host defence through the creation of reactive oxygen species (ROS). Hydrogen (H2) plays a role in metabolism for some organisms, such as at thermal vents and in the gut environment, but has a role in controlling growth and development, and in disease states, both in plants and animals. It has been suggested as a medical therapy and for enhancing agriculture. However, the exact mode of action of H2 in biological systems is not fully established. Furthermore, there is an interrelationship between O2 and H2 in organisms. These gases may influence each other’s presence in solution, and may both interact with the same cellular components, such as haem prosthetic groups. It has also been suggested that H2 may affect the structures of some proteins, such as globins, with possible effects on O2 movement in organisms. Lastly, therapies may be based on supplying O2 and H2 together, such as with oxyhydrogen. Therefore, the relationship regarding how biological systems perceive and respond to both O2 and H2, and the interrelationship seen are worth considering, and will be discussed here. Full article
(This article belongs to the Special Issue Interaction of Oxygen and Other Gases with Haem Containing Proteins)
Show Figures

Figure 1

25 pages, 7114 KiB  
Article
Temperature-Dependent Functions of the Electron–Neutral Momentum Transfer Collision Cross Sections of Selected Combustion Plasma Species
by Osama A. Marzouk
Appl. Sci. 2023, 13(20), 11282; https://doi.org/10.3390/app132011282 - 13 Oct 2023
Cited by 13 | Viewed by 2001
Abstract
The collision cross sections (CCS), momentum transfer cross sections (MTCS), or scattering cross sections (SCS) of an electron–neutral pair are important components for computing the electric conductivity of a plasma gas. Larger collision cross sections for electrons moving freely within neutral particles (molecules [...] Read more.
The collision cross sections (CCS), momentum transfer cross sections (MTCS), or scattering cross sections (SCS) of an electron–neutral pair are important components for computing the electric conductivity of a plasma gas. Larger collision cross sections for electrons moving freely within neutral particles (molecules or atoms) cause more scattering of these electrons by the neutral particles, which leads to degraded electron mobility, and thus reduced electric conductivity of the plasma gas that consists of electrons, neutral particles, and ions. The present work aimed to identify the level of disagreement between four different methods for describing how electron–neutral collision cross sections vary when they are treated as a function of electron temperature alone. These four methods are based on data or models previously reported in the literature. The analysis covered six selected gaseous species that are relevant to combustion plasma, which are as follows: carbon monoxide (CO), carbon dioxide (CO2), molecular hydrogen (H2), water vapor (H2O), potassium vapor (K), and molecular oxygen (O2). The temperature dependence of the collision cross sections for these species was investigated in the range from 2000 K to 3000 K, which is suitable for both conventional air–fuel combustion and elevated-temperature oxygen–fuel (oxy-fuel) combustion. The findings of the present study suggest that linear functions are enough to describe the variations in the collision cross sections of the considered species in the temperature range of interest for combustion plasma. Also, the values of the coefficient of variation (defined as the sample standard deviation divided by the mean) in the collision cross sections using the four methods were approximately 27% for CO, 42% for CO2, 13% for H2, 39% for H2O, 44% for K, and 19% for O2. The information provided herein can assist in simulating magnetohydrodynamic (MHD) power generators using computational fluid dynamics (CFD) models for combustion plasma flows. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

14 pages, 1595 KiB  
Article
The Therapeutic Potential of Oxyhydrogen Gas in Oncology: A Study on Epstein–Barr Virus-Immortalised B-Lymphoblastoid (TK6) Cells
by Grace Russell, Adam D. Thomas, Alexander Nenov, Georgia Mannings and John T. Hancock
Hydrogen 2023, 4(4), 746-759; https://doi.org/10.3390/hydrogen4040047 - 4 Oct 2023
Cited by 1 | Viewed by 13030
Abstract
Cancer is a leading cause of mortality worldwide. B-cells are a keystone of the adaptive immune response and are essential for the presentation of tumor-associated antigens to various types of T-cells. Approximately 1.5% of global cancer cases, including breast and gastric carcinomas and [...] Read more.
Cancer is a leading cause of mortality worldwide. B-cells are a keystone of the adaptive immune response and are essential for the presentation of tumor-associated antigens to various types of T-cells. Approximately 1.5% of global cancer cases, including breast and gastric carcinomas and both Hodgkin’s and non-Hodgkin’s lymphomas, are linked with prior Epstein–Barr Virus (EBV) infection. Such properties make EBV-infected lymphocytes ideal models for understanding the effect of oxyhydrogen gas on dysfunctional cell cycling. The aim of this study is to assess the effects of the direct infusion of oxyhydrogen gas on the replicative capacity of EBV-immortalised B-lymphocytes. Oxyhydrogen gas was directly infused into cell culture media. Cells were incubated in 95% air and 5% CO2 for up to 72 h. Cell enumeration was assessed with and without the addition of mitogenic growth stimuli, and subsequent cell-cycle analysis was performed. Cell enumeration: An initial trend of replicative inhibition of TK6 cells is noted with a single oxyhydrogen treatment at the 24 and 48 h time points. The daily addition of oxyhydrogen-infused media showed statistically relevant data at 24 and 48 h but not at 72 h. In mitogen-stimulated cells, a non-statistical trend of inhibition was observed at 24, 48 and 72 h. Analysis details a significant increase in DNA in the Sub G1 phase, indicating increased apoptosis. Full article
Show Figures

Figure 1

17 pages, 3452 KiB  
Article
In Silico RNAseq and Biochemical Analyses of Glucose-6-Phosphate Dehydrogenase (G6PDH) from Sweet Pepper Fruits: Involvement of Nitric Oxide (NO) in Ripening and Modulation
by María A. Muñoz-Vargas, Salvador González-Gordo, Jorge Taboada, José M. Palma and Francisco J. Corpas
Plants 2023, 12(19), 3408; https://doi.org/10.3390/plants12193408 - 27 Sep 2023
Cited by 8 | Viewed by 1806
Abstract
Pepper (Capsicum annuum L.) fruit is a horticultural product consumed worldwide which has great nutritional and economic relevance. Besides the phenotypical changes that pepper fruit undergo during ripening, there are many associated modifications at transcriptomic, proteomic, biochemical, and metabolic levels. Nitric oxide [...] Read more.
Pepper (Capsicum annuum L.) fruit is a horticultural product consumed worldwide which has great nutritional and economic relevance. Besides the phenotypical changes that pepper fruit undergo during ripening, there are many associated modifications at transcriptomic, proteomic, biochemical, and metabolic levels. Nitric oxide (NO) is a recognized signal molecule that can exert regulatory functions in diverse plant processes including fruit ripening, but the relevance of NADPH as a fingerprinting of the crop physiology including ripening has also been proposed. Glucose-6-phosphate dehydrogenase (G6PDH) is the first and rate-limiting enzyme of the oxidative phase of the pentose phosphate pathway (oxiPPP) with the capacity to generate NADPH. Thus far, the available information on G6PDH and other NADPH-generating enzymatic systems in pepper plants, and their expression during the ripening of sweet pepper fruit, is very scarce. Therefore, an analysis at the transcriptomic, molecular and functional levels of the G6PDH system has been accomplished in this work for the first time. Based on a data-mining approach to the pepper genome and fruit transcriptome (RNA-seq), four G6PDH genes were identified in pepper plants and designated CaG6PDH1 to CaG6PDH4, with all of them also being expressed in fruits. While CaG6PDH1 encodes a cytosolic isozyme, the other genes code for plastid isozymes. The time-course expression analysis of these CaG6PDH genes during different fruit ripening stages, including green immature (G), breaking point (BP), and red ripe (R), showed that they were differentially modulated. Thus, while CaG6PDH2 and CaG6PDH4 were upregulated at ripening, CaG6PDH1 was downregulated, and CaG6PDH3 was slightly affected. Exogenous treatment of fruits with NO gas triggered the downregulation of CaG6PDH2, whereas the other genes were positively regulated. In-gel analysis using non-denaturing PAGE of a 50–75% ammonium-sulfate-enriched protein fraction from pepper fruits allowed for identifying two isozymes designated CaG6PDH I and CaG6PDH II, according to their electrophoretic mobility. In order to test the potential modulation of such pepper G6PDH isozymes, in vitro analyses of green pepper fruit samples in the presence of different compounds including NO donors (S-nitrosoglutathione and nitrosocysteine), peroxynitrite (ONOO), a hydrogen sulfide (H2S) donor (NaHS, sodium hydrosulfide), and reducing agents such as reduced glutathione (GSH) and L-cysteine (L-Cys) were assayed. While peroxynitrite and the reducing compounds provoked a partial inhibition of one or both isoenzymes, NaHS exerted 100% inhibition of the two CaG6PDHs. Taken together these data provide the first data on the modulation of CaG6PDHs at gene and activity levels which occur in pepper fruit during ripening and after NO post-harvest treatment. As a consequence, this phenomenon may influence the NADPH availability for the redox homeostasis of the fruit and balance its active nitro-oxidative metabolism throughout the ripening process. Full article
(This article belongs to the Special Issue Nitric Oxide in Plant Stress and Physiology)
Show Figures

Figure 1

Back to TopTop