Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = overall mass transfer coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3724 KiB  
Article
Computational Fluid Dynamics–Discrete Element Method Numerical Simulation of Hydrothermal Liquefaction of Sewage Sludge in a Tube Reactor as a Linear Fresnel Solar Collector
by Artur Wodołażski
Solar 2025, 5(2), 16; https://doi.org/10.3390/solar5020016 - 28 Apr 2025
Viewed by 1550
Abstract
This paper discusses the thermal and exergy efficiency analysis of the hydrothermal liquefaction (HTL) process, which converts sewage sludge into biocrude oil in a continuous plug–flow reactor using a linear Fresnel solar collector. The investigation focuses on the influence of key operational parameters, [...] Read more.
This paper discusses the thermal and exergy efficiency analysis of the hydrothermal liquefaction (HTL) process, which converts sewage sludge into biocrude oil in a continuous plug–flow reactor using a linear Fresnel solar collector. The investigation focuses on the influence of key operational parameters, including slurry flow rate, temperature, pressure, residence time, and the external heat transfer coefficient, on the overall efficiency of biocrude oil production. A detailed thermodynamic evaluation was conducted using process simulation principles and a kinetic model to assess mass and energy balances within the HTL reaction, considering heat and mass momentum exchange in a multiphase system using UDF. The reactor’s receiver, a copper absorber tube, has a total length of 20 m and is designed in a coiled configuration from the base to enhance heat absorption efficiency. To optimize the thermal performance of biomass conversion in the HTL process, a Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) coupling numerical method approach was employed to investigate improved thermal performance by obtaining a heat source solely through solar energy. This numerical modeling approach allows for an in-depth assessment of heat transfer mechanisms and fluid-particle interactions, ensuring efficient energy utilization and sustainable process development. The findings contribute to advancing solar-driven HTL technologies by maximizing thermal efficiency and minimizing external energy requirements. Full article
Show Figures

Graphical abstract

23 pages, 4405 KiB  
Article
Performance Assessment and Heat Transfer Coefficient of Antifreeze Fluids in Low-Temperature Solar Collectors
by Alejandro Zacarías, José M. Cruz, Jorge E. De León-Ruiz, Geydy Gutiérrez-Urueta, Jorge Bedolla, Orlando Guarneros, Guerlin Romage, Ricardo Balcázar, Rubén Mil-Martínez and Simón E. Carranco
Appl. Sci. 2025, 15(8), 4323; https://doi.org/10.3390/app15084323 - 14 Apr 2025
Viewed by 507
Abstract
This study conducts a comparative performance analysis of three different low-temperature solar collector systems: flat plate solar collectors (FPCs), heat pipe evacuated tube solar collectors (HPETCs), and heat pipe flat plate solar collectors (HPFPCs). Key performance parameters, such as heat transfer coefficients, useful [...] Read more.
This study conducts a comparative performance analysis of three different low-temperature solar collector systems: flat plate solar collectors (FPCs), heat pipe evacuated tube solar collectors (HPETCs), and heat pipe flat plate solar collectors (HPFPCs). Key performance parameters, such as heat transfer coefficients, useful heat, and thermal efficiency, are analyzed under varying mass flow rate, fluid temperature, and antifreeze concentration. The objective is to evaluate the thermal performance of these systems using different heat transfer fluids, specifically water, and mixtures of 30% and 50% ethylene glycol and propylene glycol. The performance data indicate that the heat transfer coefficient in the HPFPC diminishes by 28% and 41% when antifreeze is employed at concentrations of 30% and 50%, respectively. Furthermore, the integration of heat pipes with water in a flat plate solar collector results in efficiency enhancements, with respect to FPCs, of up to 13% at a fluid temperature of 30 °C, and up to 21% at 80 °C. At the elevated fluid temperature of 80 °C, an efficiency increase of 13% is observed with a 30% ethylene glycol concentration. The incorporation of heat pipes leads to an efficiency improvement of up to 6.5% in comparison to traditional flat plate solar collectors. This study highlights the significant impact of fluid properties, affecting the convective heat transfer coefficient, on the overall efficiency of solar collectors, emphasizing the importance of optimizing fluid composition and operating conditions for enhanced thermal performance. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

27 pages, 25794 KiB  
Article
Numerical Investigation of the Influence of Temperature on Fluidization Behavior: Importance of Particle Collision Parameters and Inter-Particle Forces
by Milan Mihajlović, Juan G. Ramírez, Ildefonso Campos Velarde, Martin Van Sint Annaland and Ivo Roghair
Fluids 2025, 10(3), 60; https://doi.org/10.3390/fluids10030060 - 27 Feb 2025
Viewed by 635
Abstract
Fluidized bed reactors (FBRs) are integral to various industries due to their exceptional capability in facilitating efficient gas–solid interactions, resulting in superior mixing and heat and mass transfer. This research delves into the impact of temperature on fluidization dynamics, particularly focusing on the [...] Read more.
Fluidized bed reactors (FBRs) are integral to various industries due to their exceptional capability in facilitating efficient gas–solid interactions, resulting in superior mixing and heat and mass transfer. This research delves into the impact of temperature on fluidization dynamics, particularly focusing on the collisional properties of particles within the bed. The investigation builds upon foundational research, notably Geldart’s classification of fluidization regimes and recent advancements in high-temperature experimental techniques, such as High-Temperature Endoscopic-Laser particle image velocimetry/digital image analysis. To explore these temperature effects, a coupled Discrete Element Method and Computational Fluid Dynamics (cfd–dem) model was employed. This approach enables a detailed examination of gas–particle and particle–particle interactions under varying temperature conditions. The simulations in this study explore the friction coefficient, as well as changes in both tangential and normal restitution coefficients, which affect the fluidization behavior. These changes were systematically analyzed to determine their influence on minimum fluidization velocity and bubble formation. The numerical results are compared with experimental data from high-temperature fluidization studies, highlighting the necessity of incorporating inter-particle forces to fully capture the observed phenomena. The findings underscore the critical role of particle collisional properties in high-temperature fluidization and suggest the potential increasing role of inter-particle forces. Overall, this paper provides new insights into the complex dynamics of fluidized beds at elevated temperatures, emphasizing the need for further experimental–numerical research to enhance the reliability and understanding of these systems in industrial applications. Full article
Show Figures

Figure 1

19 pages, 10628 KiB  
Article
Numerical Analysis of Aerodynamic and Thermal Performance of Streamline Heat Pipe Heat Exchanger Assisted by Fins
by Weicheng Qi, Yuanwei Lyu, Honggang Zeng, Jingyang Zhang and Fenming Wang
Aerospace 2025, 12(3), 163; https://doi.org/10.3390/aerospace12030163 - 20 Feb 2025
Viewed by 771
Abstract
This study numerically explores the feasibility of a streamlined heat pipe heat exchanger in precooling technology in supersonic vehicles. Emphasis has been placed on the role of fins installed in the condensation section in affecting the aerodynamic and thermal characteristics of the streamline [...] Read more.
This study numerically explores the feasibility of a streamlined heat pipe heat exchanger in precooling technology in supersonic vehicles. Emphasis has been placed on the role of fins installed in the condensation section in affecting the aerodynamic and thermal characteristics of the streamline heat pipe heat exchanger. The results show that the installation of fins in the condensation section effectively improved the overall heat transfer capacity of the streamline heat pipe heat exchanger. The temperature drop with fins is up to 685 K, which is 20 K larger than the case without fins. Simultaneously, fins resulted in 6.4% and 25.4% increases in the pressure loss coefficient in the evaporation and condensation section compared to the case without fins. The aerodynamic and thermal characteristics are closely related to the mass flow rate of intake air and kerosene (RP-3). The pressure drop and temperature drop are positively related to the mass flow rate of RP-3. In contrast, as the qa increases, the heat exchange per qa decreases, and the temperature of the air outlet of the evaporation section increases correspondingly. In the evaporation section, as the qRP-3 increases, the temperature drop in the condensation section first increases and then remains unchanged, and its pressure loss coefficient decreases. The temperature drop in the intake air is positive and related to the qRP-3. The results obtained in this study are significant because they can provide technical support in the high performance of heat exchangers. Full article
(This article belongs to the Special Issue Innovations in Hypersonic Propulsion Systems)
Show Figures

Figure 1

13 pages, 3252 KiB  
Article
Scaling up Trickle Bed Reactor for Gas Fermentation Technology: The Effect of Temperature and Reactor Characteristics on Mass Transfer
by Sambit Dutta, Hariklia N. Gavala and Ioannis V. Skiadas
Fermentation 2024, 10(12), 623; https://doi.org/10.3390/fermentation10120623 - 6 Dec 2024
Cited by 3 | Viewed by 1871
Abstract
The increasing demand for efficient and sustainable industrial processes has accelerated research into green alternatives. Gas fermentation in a trickle bed reactor is a promising technology; however, optimal scaling up is still challenging. A mass transfer model is crucial for identifying bottlenecks and [...] Read more.
The increasing demand for efficient and sustainable industrial processes has accelerated research into green alternatives. Gas fermentation in a trickle bed reactor is a promising technology; however, optimal scaling up is still challenging. A mass transfer model is crucial for identifying bottlenecks and suggesting design improvements to optimize the scale-up of TBR for gas fermentation. This study explores the effects of temperature, reactor dimensions, and packing material size on the volumetric mass transfer coefficient (kLa) in a commercial-scale trickle bed reactor (TBR). Using dynamic mass transfer modeling, the research results highlight that thermophilic conditions (60 °C) significantly enhance kLa and mass transfer rates for H2, CO, and CO2, despite reduced gas solubility at higher temperatures. Additionally, packing material of smaller particles improves kLa by increasing the surface for gas–liquid interaction, while reactor dimensions, particularly volume and diameter, are shown to critically influence kLa. This study provides valuable insights into optimizing TBR design and scale-up, emphasizing the importance of thermophilic conditions, proper packing material selection, and reactor geometry for efficient gas–liquid mass transfer in syngas (a mixture of H2, CO, and CO2) biological conversion. Overall, the findings offer practical guidelines for enhancing the performance of industrial-scale TBR systems. Full article
(This article belongs to the Special Issue Microbial Fixation of CO2 to Fuels and Chemicals)
Show Figures

Figure 1

26 pages, 8854 KiB  
Article
Deep Fat Frying Characteristics of Malpoa: Kinetics, Heat, and Mass Transfer Modeling
by Puneeta Gupta, Imdadul Hoque Mondal, Kshirod Kumar Dash, Geetika, Tejas Suthar, Khadija Ramzan, Endre Harsanyi, Ayaz Mukarram Shaikh and Kovács Béla
Processes 2024, 12(12), 2662; https://doi.org/10.3390/pr12122662 - 26 Nov 2024
Viewed by 1221
Abstract
This article investigated deep-frying characteristics of malpoa for varied frying time (2–10 min) and temperature (170–190 °C). The evaluation encompassed a comprehensive analysis of textural and color kinetics and heat and mass transfer modeling during deep fat frying of malpoa balls. Such investigations [...] Read more.
This article investigated deep-frying characteristics of malpoa for varied frying time (2–10 min) and temperature (170–190 °C). The evaluation encompassed a comprehensive analysis of textural and color kinetics and heat and mass transfer modeling during deep fat frying of malpoa balls. Such investigations confirmed an enhancement in fat content from 10.2 to 41.65%. On the other hand, textural properties such as hardness, cohesiveness, and springiness varied from 3.14 to 22.59 N/mm, 0.22 to 0.76, and 15.5 to 49.56, respectively. Similarly, color parameters such as b*/a* and ΔE varied from 3.31 to 1.55 and 55.36 to 75.48. For the textural and color kinetics, the activation energies ranged between 58.65 and 85.82 kJ/mol and 31.34 and 64.34 kJ/mol. Similarly, for a variation in frying time from 2 to 10 min, responses (hardness, cohesiveness, springiness, and overall color) varied across the following ranges: 3.15–13.57 N, 0.22–0.66, 15.5–35.5, and 55.63–63.50 and 5.60–20.60 N, 0.30–0.77, 22.35–49.56, and 62.26–75.65 for temperatures of 170 and 190 degrees, respectively. On the other hand, heat and mass transfer analysis indicated a Biot number and heat transfer coefficient within the range of 0.31–0.65 and 25.58–34.64 for 170–190 °C. Thus, this investigation provides a deeper insight of the deep fat frying characteristics of malpoa. This provides a guideline for the food processing sector for such products. Full article
Show Figures

Figure 1

13 pages, 2308 KiB  
Article
Influence of Absorbent Composition and Operating Parameters on CO2 Removal Efficiency Using Aqueous Blends of 1-Dimethylamino-2-propanol in Tray Column
by Dong Fu, Jianjun Chen, Xueli Wang and Lemeng Wang
Processes 2024, 12(10), 2251; https://doi.org/10.3390/pr12102251 - 15 Oct 2024
Viewed by 1252
Abstract
The CO2 absorption performance in aqueous blends of monoethanolamine (MEA)—1-dimethylamino-2-propanol (DMA2P) and piperazine (PZ)—DMA2P was investigated using a bench-scale tray column under atmospheric pressure. The removal efficiency of CO2 (ηCO2) and the overall volumetric mass transfer coefficient ( [...] Read more.
The CO2 absorption performance in aqueous blends of monoethanolamine (MEA)—1-dimethylamino-2-propanol (DMA2P) and piperazine (PZ)—DMA2P was investigated using a bench-scale tray column under atmospheric pressure. The removal efficiency of CO2 (ηCO2) and the overall volumetric mass transfer coefficient (KGav) in DMA2P-MEA and DMA2P-PZ solutions were determined at 313.2 K. The simulated flue gas was composed of 15% (mole fraction) CO2 and 85% N2. The effects of inlet gas flow rate (G), absorbent composition (w), inlet liquid flow rate (L), and plate number (NP) on ηCO2 and KGav were demonstrated. Our results showed that the absorption of CO2 in DMA2P aqueous solution can be accelerated by the addition of MEA/PZ in a tray column, and both ηCO2 and KGav can be significantly improved. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

21 pages, 8586 KiB  
Article
Solute Transport in a Multi-Channel Karst System with Immobile Zones: An Example of Downtown Salado Spring Complex, Salado, Texas
by Toluwaleke Ajayi, Joe C. Yelderman and Stephen M. Powers
Water 2024, 16(20), 2928; https://doi.org/10.3390/w16202928 - 15 Oct 2024
Viewed by 1112
Abstract
To investigate the influence of flow rate increment on the solute transport parameter of immobile zones in a karst system, a dye tracer test was conducted in the Downtown Salado Spring Complex (DSSC) comprising three springs: Big Boiling, Anderson, and Doc Benedict springs. [...] Read more.
To investigate the influence of flow rate increment on the solute transport parameter of immobile zones in a karst system, a dye tracer test was conducted in the Downtown Salado Spring Complex (DSSC) comprising three springs: Big Boiling, Anderson, and Doc Benedict springs. The Multiflow two-region nonequilibrium model (2RNE) was used to simulate the breakthrough curve (BTC) of the springs, and changes in the solute transport parameters in response to flow rate increment were observed. The simulation result showed that the 2RNE model was capable of reproducing the BTC of all the DSSC springs, with an R-squared value greater than 0.9 in all flow rate increment scenarios. The research demonstrates that a positive correlation will exist between the flow rate and solute transport parameter of the immobile zones if the tracer transport to the spring is truly influenced by immobile zones. In contrast, a negative correlation will exist between the flow rate and mass transfer coefficient if the immobile zone has less influence. Overall, the research provides insights into contaminant movement in karst by documenting how tracers are retained in the immobile fluid zone. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 2295 KiB  
Article
Piperazine-Based Mixed Solvents for CO2 Capture in Bubble-Column Scrubbers and Regeneration Heat
by Pao-Chi Chen, Jyun-Hong Jhuang and Zhong-Yi Lin
Processes 2024, 12(10), 2178; https://doi.org/10.3390/pr12102178 - 7 Oct 2024
Cited by 1 | Viewed by 2119
Abstract
This work used piperazine (PZ) as a base solvent, blended individually with five amines, which were monoethanolamine (MEA), secondary amines (DIPAs), tertiary amines (TEAs), stereo amines (AMPs), and diethylenetriamine (DETA), to prepare mixed solvents at the desired concentrations as the test solvents. A [...] Read more.
This work used piperazine (PZ) as a base solvent, blended individually with five amines, which were monoethanolamine (MEA), secondary amines (DIPAs), tertiary amines (TEAs), stereo amines (AMPs), and diethylenetriamine (DETA), to prepare mixed solvents at the desired concentrations as the test solvents. A continuous bubble-column scrubber with one stage (1 s) was first used for the test. Six parameters were selected, including the type of mixed solvent (A), the ratio of mixed solvents (B), the solvent feed rate (C), the gas flow rate (D), the concentration of the mixed solvents (E), and the liquid temperature (F), each one having five levels. Using the Taguchi experimental design, only 25 runs were required. The outcome data, such as the absorption efficiency (EF), the absorption rate (RA), the overall mass-transfer coefficient (KGa), and the absorption factor (φ), could be determined under steady-state conditions. The optimal mixed solvents were found to be A1 (PZ + MEA) and A2 (PZ + DIPA). The parameter importance and optimal conditions for EF, RA, KGa, and ϕ were determined separately; the verification of all optimal conditions was successful. This analysis found that the importance of the parameters was D > C > A > E > B > F, and the gas flow rate (D) was the most important factor. Subsequently, multiple-stage scrubbers were used to capture CO2. Comparing 1 s and 3 s (three-stage scrubber), EF, RA, KGa, and φ increased by 33%, 29%, 22%, and 38%, respectively. The desorption tests for the four optimal scrubbed solutions, including multiple stages, showed that the heat of regeneration for the three scrubbers was 3.57–8.93 GJ/t, in the temperature range of 110–130 °C, while A2 was the best solvent. Finally, the heat regeneration mechanism was also discussed in this work. Full article
Show Figures

Figure 1

11 pages, 1997 KiB  
Article
Determination of Cannabinoids in Meat Products and Animal Feeds in Singapore Using Liquid Chromatography–Tandem Mass Spectrometry
by Jia En Valerie Sin, Ping Shen, Lifei Huang, Yuansheng Wu and Sheot Harn Chan
Foods 2024, 13(16), 2581; https://doi.org/10.3390/foods13162581 - 18 Aug 2024
Cited by 1 | Viewed by 1428
Abstract
There has been a growing interest in the use of hemp as an animal feed ingredient considering its economic value and nutritional properties. However, there is a paucity of research regarding the safety of hemp-based animal feed currently. Thus, this raises safety concerns [...] Read more.
There has been a growing interest in the use of hemp as an animal feed ingredient considering its economic value and nutritional properties. However, there is a paucity of research regarding the safety of hemp-based animal feed currently. Thus, this raises safety concerns on the potential transfer of cannabinoids from hemp-based animal feed to animal products intended for human consumption and its health effects. As such, the detection and quantification of cannabinoids in meat and animal feeds would be desirable for monitoring purposes. In this study, a simple, rapid and sensitive method for the simultaneous quantification of four major cannabinoids (delta-9-tetrahydrocannabinol, cannabidiol, cannabinol and tetrahydrocannabinolic acid) in meat and animal feeds by liquid chromatography–tandem mass spectrometry (LC-MS/MS) was successfully developed and validated. The method was selective and sensitive, achieving limits of detection and quantification for the four cannabinoids from 5 to 7 µg/kg and 15 to 21 µg/kg, respectively. The overall recovery with matrix-matched calibration curves for the cannabinoids ranged from 87–115%. The coefficients of variation were between 2.17–13.38% for intraday precision and 3.67–12.14% for inter-day precision. The method was subsequently applied to monitor cannabinoids in 120 meat and 24 animal feed samples. No cannabinoid was detected, suggesting no imminent food safety concerns arising from the potential incorporation of hemp and by-products in animal feed and nutrition under the promotion of sustainable agricultural practices. Full article
Show Figures

Figure 1

25 pages, 9487 KiB  
Article
Effects of Varying Spiral-Ring Pitches on CO2 Absorption by Amine Solution in Concentric Circular Membrane Contactors
by Chii-Dong Ho, Jui-Wei Ke and Jun-Wei Lim
Membranes 2024, 14(7), 147; https://doi.org/10.3390/membranes14070147 - 27 Jun 2024
Viewed by 1326
Abstract
The CO2 absorption flux while using monoethanolamide (MEA) solution in a spiral-wired channel was significantly enhanced by optimizing both the descending and ascending spiral ring pitch configurations within the filled channel. In this study, two distinct spiral ring pitch configurations were integrated [...] Read more.
The CO2 absorption flux while using monoethanolamide (MEA) solution in a spiral-wired channel was significantly enhanced by optimizing both the descending and ascending spiral ring pitch configurations within the filled channel. In this study, two distinct spiral ring pitch configurations were integrated into concentric circular membrane contactors to augment CO2 absorption flux. Spiral rods were strategically inserted to mitigate concentration polarization effects, thereby reducing mass transfer boundary layers and increasing turbulence intensity. A theoretical one-dimensional model was developed to predict absorption flux and concentration distributions across varying MEA absorbent flow rates, CO2 feed flow rates, and inlet CO2 concentrations in the gas feed. Theoretical predictions of absorption flux improvement were validated against experimental results, demonstrating favorable agreement for both ascending and descending spiral ring pitch operations. Interestingly, the results indicated that descending spiral ring pitch operations achieved higher turbulent intensity compared to ascending configurations, thereby alleviating concentration polarization resistance and enhancing CO2 absorption flux with reduced polarization effects. Specifically, under conditions of a 40% inlet CO2 concentration and 5 cm3/s MEA feed flow rate, a notable 83.69% enhancement in absorption flux was achieved compared to using an empty channel configuration. Moreover, a generalized expression for the Sherwood number was derived to predict the mass transfer coefficient for CO2 absorption in concentric circular membrane contactors, providing a practical tool for performance estimation. The economic feasibility of the spiral-wired module was also assessed by evaluating both absorption flux improvement and incremental power consumption. Overall, these findings underscore the effectiveness of optimizing spiral ring pitch configurations in enhancing CO2 absorption flux, offering insights into improving the efficiency and economic viability of CO2 capture technologies. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

31 pages, 10941 KiB  
Article
Experimental Performance Comparison of High-Glide Hydrocarbon and Synthetic Refrigerant Mixtures in a High-Temperature Heat Pump
by Leon P. M. Brendel, Silvan N. Bernal, Cordin Arpagaus, Dennis Roskosch, André Bardow and Stefan S. Bertsch
Energies 2024, 17(8), 1981; https://doi.org/10.3390/en17081981 - 22 Apr 2024
Cited by 3 | Viewed by 2026
Abstract
Several theoretical studies have predicted that refrigerant mixtures with glides of more than 20 K can yield COP improvements in heat pumps for operating conditions where the temperature difference between the heat source and heat sink is large, but experimental validations and quantifications [...] Read more.
Several theoretical studies have predicted that refrigerant mixtures with glides of more than 20 K can yield COP improvements in heat pumps for operating conditions where the temperature difference between the heat source and heat sink is large, but experimental validations and quantifications are scarce. The application of high-glide mixtures (>20 K) in industrial heat pumps in the field is, therefore, still hampered by concerns about the behavior and handling of the mixtures. This study experimentally investigates hydrocarbon (HC) mixtures R-290/600 (propane/butane) and R-290/601 (propane/pentane) and compares them to previously tested mixtures of synthetic refrigerants. Comprehensive evaluations are presented regarding COP, compressor performance, pressure drop, heat transfer, and the possibility of inline composition determination. The mixtures were tested over a range of compositions at a source inlet temperature of 60 °C and a sink outlet temperature of 100 °C, with the heat sink and heat source temperature differences controlled to 35 K. R-290/601 at a mass composition of 70%/30% was found as the best mixture with a COP improvement of 19% over R-600 as the best pure fluid. The overall isentropic compressor efficiency was similar for HC and synthetic refrigerants, given equal suction and discharge pressures. Pressure drops in heat exchangers and connecting lines were equal for synthetic and HC mixtures at equal mass flow rates. This allows higher heating capacities of HC mixtures at a given pressure drop (mass flow rate) due to their wider vapor dome. A previously developed evaporator heat transfer correlation for synthetic refrigerant mixtures was applicable to the HC mixtures. A condenser heat transfer correlation previously fitted for synthetic refrigerants performed significantly worse for HC mixtures. Composition determination during operation and without sampling was possible with a deviation of at most 0.05 mass fraction using simple temperature and pressure measurements and REFPROP for thermodynamic property calculations. Overall, high-glide HC mixtures, just like mixtures of synthetic refrigerants, showed significant COP improvements for specific operating conditions despite a decreased heat transfer coefficient. Potential problems like composition shift or poor compressor performance were not encountered. As a next step, testing high-glide mixtures in pilot-plant installations is recommended. Full article
(This article belongs to the Topic Heat Exchanger Design and Heat Pump Efficiency)
Show Figures

Figure 1

21 pages, 5993 KiB  
Article
Unlocking the Thermal Efficiency of Irregular Open-Cell Metal Foams: A Computational Exploration of Flow Dynamics and Heat Transfer Phenomena
by Qian Xu, Yunbing Wu, Ye Chen and Zhengwei Nie
Energies 2024, 17(6), 1305; https://doi.org/10.3390/en17061305 - 8 Mar 2024
Cited by 5 | Viewed by 1852
Abstract
An open-cell metal foam has excellent characteristics such as low density, high porosity, high specific surface area, high thermal conductivity, and low mass due to its unique internal three-dimensional network structure. It has gradually become a new material for enhanced heat transfer in [...] Read more.
An open-cell metal foam has excellent characteristics such as low density, high porosity, high specific surface area, high thermal conductivity, and low mass due to its unique internal three-dimensional network structure. It has gradually become a new material for enhanced heat transfer in industrial equipment, new compact heat exchangers, microelectronic device cooling, etc. This research established a comprehensive three-dimensional structural model of open-cell metal foams utilizing Laguerre–Voronoi tessellations and employed computational fluid dynamics to investigate its flow dynamics and coupled heat transfer performance. By exploring the impact of foam microstructure on flow resistance and heat transfer characteristics, the study provided insights into the overall convective heat transfer performance across a range of foam configurations with varying pore densities and porosities. The findings revealed a direct correlation between convective heat transfer coefficient (h) and pressure drop (ΔP) with increasing Reynolds number (Re), accompanied by notable changes in fluid turbulence kinetic energy (e) and temperature (T), ultimately influencing heat transfer efficiency. Furthermore, the analysis demonstrated that alterations in porosity (ε) and pore density significantly affected unit pressure drop (ΔP/L) and convective heat transfer coefficient (h). This study identified an optimal configuration, highlighting a metal foam with a pore density of 20 PPI and a porosity of 95% as exhibiting superior overall convective heat transfer performance. Full article
(This article belongs to the Special Issue Modeling and Analysis of Fluid Flow and Heat Transfer)
Show Figures

Figure 1

14 pages, 2651 KiB  
Article
Extraction Kinetics of Pyridine, Quinoline, and Indole from the Organic Phase with Natural Deep Eutectic Solvents and Separation Study Using a Centrifugal Extractor
by Dmitriy V. Lobovich, Inna V. Zinov’eva, Nikita A. Milevskii, Artak E. Kostanyan, Yulia A. Zakhodyaeva and Andrey A. Voshkin
Processes 2024, 12(3), 488; https://doi.org/10.3390/pr12030488 - 28 Feb 2024
Cited by 6 | Viewed by 1874
Abstract
In this study, the kinetics of extracting pyridine, quinoline, and indole from model fuels using natural deep eutectic solvents (NaDES) composed of carboxylic acids, xylitol, and water were investigated under static conditions. This research marks the first examination of extraction kinetics in this [...] Read more.
In this study, the kinetics of extracting pyridine, quinoline, and indole from model fuels using natural deep eutectic solvents (NaDES) composed of carboxylic acids, xylitol, and water were investigated under static conditions. This research marks the first examination of extraction kinetics in this context. The key kinetic parameters of the extraction process were identified. Notably, it was observed that the mass transfer coefficient for indole was in the range of 3.4 × 10−6 to 1.2 × 10−6, depending on NaDES. That is significantly lower, by an order of magnitude, than for pyridine and quinoline under identical experimental conditions. The study revealed that, under specific conditions, where thermodynamic equilibrium for indole cannot be reached, it becomes possible to achieve kinetic separation of the components. The presented experimental data obtained on a centrifugal extractor showed a decrease in the degree of indole extraction with increasing flow: Extraction efficiency decreased from 63% at a flow rate of 0.05 L/h to 18% at 0.8 L/h. Moreover, the research indicated that, during indole extraction, the mass transfer coefficient in a centrifugal extractor was 1.3 × 10−4, which is two orders of magnitude higher than under static conditions. The study underscores the potential utility of the proposed extraction systems based on environmentally friendly NaDES, comprised of carboxylic acids and xylitol, for the kinetic separation of various classes of heterocyclic compounds. Overall, the research provides valuable insights into the kinetics of extraction and the potential applications of ‘green’ NaDES in the separation of heterocyclic compounds from organic liquids. Full article
Show Figures

Figure 1

21 pages, 4384 KiB  
Article
Modeling Method for Overheated Zone and Two-Phase Zone of Dry Shell-and-Tube Evaporator in Ship Air Conditioning
by Zhibin He, Qi Zhang, Zhenghao Wei, Xingzhe Liao, Xiaoyu Wu, Jundong Zhang and Yanghui Tan
Processes 2024, 12(2), 379; https://doi.org/10.3390/pr12020379 - 13 Feb 2024
Viewed by 1365
Abstract
This paper researches the heat transfer equation and thermal balance equation of a shell-and-tube evaporator; constructs an accurate mathematical model for the evaporator; and derives equations including detailed and accurate calculation methods for all heat transfer coefficients, such as the refrigerant side heat [...] Read more.
This paper researches the heat transfer equation and thermal balance equation of a shell-and-tube evaporator; constructs an accurate mathematical model for the evaporator; and derives equations including detailed and accurate calculation methods for all heat transfer coefficients, such as the refrigerant side heat transfer coefficient, water side heat transfer coefficient, refrigerant kinematic viscosity, density, and specific enthalpy. Adopting this approach involves fitting the relationships between the density, thermal conductivity, kinematic viscosity, and enthalpy of R134a refrigerants in saturated vapor and liquid states. The relationships between superheated gas enthalpy, density, and temperature were also assessed, and heat transfer coefficients were obtained through calculation methods and microelement heat transfer relationships in both the single-phase and two-phase zones, matching empirical formulas concerning the relationship between superheated enthalpy and temperature. Notably, the research utilizes the Simulink approach without relying on M files and S functions to establish the evaporator’s two-phase and superheated zones, as well as an overall simulation model which provides intuitive internal coupling relationships and the coefficient calculation process in the formulas and uses the function “Algebraic Constraint” instead of “memory” or “1/z” to solve algebraic loops, thereby avoiding computation deviations introduced by delays and iterations. Finally, simulation calculations were conducted, and an experimental platform was designed and built for experimental verification which can validate the derived mathematical models. The simulation results, including the evaporator pressure, and chilled water outlet temperature with variation in chilled water mass flow rate, closely matched the experimental outcomes. The simulation model is concise and intuitive. Modifying parameters such as the thermal conductivity of the model material is straightforward, thereby alleviating the workload for researchers. It also facilitates an understanding of model principles for beginners. Moreover, the database generated from the model allows for fault analysis, diagnosis, and decision evaluation. Full article
Show Figures

Figure 1

Back to TopTop