Solute Transport in a Multi-Channel Karst System with Immobile Zones: An Example of Downtown Salado Spring Complex, Salado, Texas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting of the Study Area
2.2. Methodology
2.2.1. Dye Tracer Test
2.2.2. Modeling Approach (Analysis of Breakthrough Curves)
2.2.3. Defining the Input Variables of the Transport Model
3. Results and Discussion
3.1. Qualitative Interpretation of Breakthrough Curves at the DSSC Springs
3.2. Quantitative Interpretation of Breakthrough Curves at the DSSC Springs
3.3. Modeling Results
3.3.1. Flow Rate Variation for Doc Benedict Spring and Anderson Spring
3.3.2. Flow Rate Variation for Big Boiling Spring
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiraly, L. Karstification and groundwater flow. In Evolution of Karst: From Prekarst to Cessation; Založba ZRC: Postojna, Slovenia; Ljubljana, Slovenia, 2002; pp. 155–190. [Google Scholar]
- Morales, T.; Fdez, I.; Valderrama, D.; Uriarte, J.A.; Antiguedad, I.; Olazar, M. Predicting travel times and transport characterization in karst conduits by analyzing tracer-breakthrough curves. J. Hydrol. 2007, 334, 183–198. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; Wiley: Chichester, UK, 2007. [Google Scholar]
- Smart, C.C. Artificial tracer techniques for the determination of the structure of conduit aquifers. Groundwater 1988, 26, 445–453. [Google Scholar] [CrossRef]
- White, W.B. Geomorphology and Hydrology of Karst Terrains; Oxford University Press: New York, NY, USA, 1988; p. 464. [Google Scholar]
- Birk, S.; Geyer, T.; Liedl, R.; Sauter, M. Process-based interpretation of tracer tests in carbonate aquifers. Groundwater 2005, 43, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Shuster, E.T.; White, W.B. Seasonal fluctuations in the chemistry of lime-stone springs: A possible means for characterizing carbonate aquifers. J. Hydrol. 1971, 14, 93–128. [Google Scholar] [CrossRef]
- Bakalowicz, M. Karst groundwater: A challenge for new resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Yang, M.; Yaquian, J.A.; Annable, M.D.; Jawitz, J.W. Karst conduit contribution to spring discharge and aquifer cross-sectional area. J. Hydrol. 2009, 578, 124037. [Google Scholar] [CrossRef]
- Goldscheider, N.; Drew, D. Methods in Karst Hydrogeology; Taylor and Francis Group: London, UK, 2007; ISBN 13 978-0-415-42873-6/978-0-20393462-3. [Google Scholar]
- Worthington, S.R.H.; Ford, D.C. Self-organized permeability in carbonate aquifers. Groundwater 2009, 47, 326–336. [Google Scholar] [CrossRef]
- Kresic, N. Water in Karst: Management, Vulnerability, and Restoration; McGraw-Hill: New York, NY, USA, 2012; 708p, ISBN 978-0-07-175333-3. [Google Scholar]
- Ronayne, M.J. Influence of conduit network geometry on solute transport in karst aquifers with a permeable matrix. Adv. Water Resour. 2013, 56, 27–34. [Google Scholar] [CrossRef]
- Stephenson, J.B.; Zhou, W.F.; Beck, B.F.; Green, T.S. Highway stormwater runoff in karst areas—Preliminary results of baseline monitoring and design of a treatment system for a sinkhole in Knoxville, Tennessee. Eng. Geol. 1999, 52, 51–59. [Google Scholar] [CrossRef]
- Katz, B.G. A multitracer approach for assessing the susceptibility of groundwater contamination in the Woodville Karst Plain, Northern Florida. In U.S. Geological Survey Karst Interest Group Proceedings: Water-Resources Investigations Report; Kuniansky, E.L., Spangler, L.E., Eds.; Geological Survey (U.S.): Reston, VA, USA, 2001; pp. 167–176. [Google Scholar]
- Zhou, W.; Beck, B.F. Management and mitigation of sinkholes on karst lands: An overview of practical applications. Environ. Geol. 2008, 55, 837–851. [Google Scholar] [CrossRef]
- Shokri, M.; Ashjari, J.; Karami, G. Surface and subsurface karstification of aquifers in arid regions: The case study of Cheshme-Ali Spring, NE Iran. J. Cave Karst Stud. 2016, 78, 25–35. [Google Scholar]
- Katz, B.G. Nitrate contamination in karst groundwater. In Encyclopedia of Caves; Culver, D., White, W., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2019; pp. 756–760. [Google Scholar]
- Massei, N.; Wang, H.Q.; Field, M.S.; Dupont, J.P.; Bakalowicz, M.; Rodet, J. Interpreting tracer breakthrough tailing in a conduit-dominated karstic aquifer. Hydrogeol. J. 2006, 14, 849–858. [Google Scholar] [CrossRef]
- Zhao, X.; Chang, Y.; Wu, J.; Xue, X. Effects of flow rate variation on solute transport in a karst conduit with a pool. Environ. Earth Sci. 2009, 78, 237. [Google Scholar] [CrossRef]
- Cen, X.; Xu, M.; Qi, J.; Zhang, Q.; Shi, H. Characterization of karst conduits by tracer tests for an artificial recharge scheme. Hydrogeol. J. 2021, 29, 2381–2396. [Google Scholar] [CrossRef]
- Chu, X.; Ding, H.; Zhang, X. Simulation of solute transport behaviors in saturated karst aquifer system. Sci. Rep. 2021, 11, 15614. [Google Scholar] [CrossRef]
- Schiperski, F.; Zirlewagen, J.; Stange, C.; Tiehm, A.; Licha, T.; Scheyt, T. Transport-based source tracking of contaminants in a karst aquifer: Model implementation, proof of concept, and application to event-based field data. Water Res. 2022, 213, 118145. [Google Scholar] [CrossRef]
- Rinaldo, A.; Benettin, P.; Harman, C.J.; Hrachowitz, M.; McGuire, K.J.; Van Der Velde, Y.; Enrico Bertuzzo, E.; Botter, G. Storage selection functions: A coherent framework for quantifying how catchments store and release water and solutes. Water Resour. Res. 2015, 51, 4840–4847. [Google Scholar] [CrossRef]
- Harvey, J.; Gooseff, M. River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resour. Res. 2015, 51, 6893–6922. [Google Scholar] [CrossRef]
- Field, M.S.; Pinsky, P.F. A two-region nonequilibrium model for solute transport in solution conduits in karstic aquifers. J. Contam. Hydrol. 2000, 44, 329–351. [Google Scholar] [CrossRef]
- Dewaide, L.; Bonniver, I.; Rochez, G.; Hallet, V. Solute transport in heterogeneous karst systems: Dimensioning and estimation of the transport parameters via multi-sampling tracer-tests modeling using the OTIS (One-dimensional Transport with Inflow and Storage) program. J. Hydrol. 2016, 534, 567–578. [Google Scholar] [CrossRef]
- Goeppert, N.; Goldscheider, N.; Berkowitz, B. Experimental and modeling evidence of kilometer-scale anomalous tracer transport in an alpine karst aquifer. Water Res. 2020, 178, 115755. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chang, Y.; Wu, J.C.; Peng, F. Laboratory investigation and simulation of breakthrough curves in karst conduits with pools. Hydrogeol. J. 2017, 25, 2235–2250. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Gharaat, M.J.; Field, M. The effect of hydraulic gradient and pattern of conduit systems on tracing tests: Bench scale modeling. Groundwater 2019, 57, 110–125. [Google Scholar] [CrossRef] [PubMed]
- Goldscheider, N. A new quantitative interpretation of the long-tail and plateau-like breakthrough curves from tracer tests in the artesian karst aquifer of Stuttgart, Germany. Hydrogeol. J. 2008, 16, 1311–1317. [Google Scholar] [CrossRef]
- Toride, N.; Leij, F.J.; van Genuchten, M.T. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments, Version 2.1; Research Report No. 137; U. S. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture: Riverside, CA, USA, 1993.
- Geyer, T.; Birk, S.; Licha, T.; Liedl, R.; Sauter, M. Multitracer test approach to characterize reactive transport in karst aquifers. Groundwater 2007, 45, 36–45. [Google Scholar] [CrossRef]
- Aydin, H.; Ekmekci, M.; Soylu, M.E. Effects of sinuosity factor on hydrodynamic parameters estimation in karst systems: A dye tracer experiment from the Beyyayla sinkhole (Eskişehir, Turkey). Environ. Earth Sci. 2014, 71, 3921–3933. [Google Scholar] [CrossRef]
- Bodin, J. MFIT 1.0.0: Multi-Flow Inversion of Tracer breakthrough curves in fractured and karst aquifers. Geosci. Model Dev. 2020, 13, 2905–2924. [Google Scholar] [CrossRef]
- Bodin, J.; Porel, G.; Nauleau, B.; Paquet, D. Delineation of discrete conduit networks in karst aquifers via combined analysis of tracer tests and geophysical data. Hydrol. Earth Syst. Sci. 2022, 26, 1713–1726. [Google Scholar] [CrossRef]
- Yin, M.; Ma, R.; Zhang, Y.; Chen, K.; Guo, Z.; Zheng, C. A Dual heterogeneous domain model for upscaling anomalous transport with multi-peaks in heterogeneous aquifers. Water Resour. Res. 2022, 58, e2021WR031128. [Google Scholar] [CrossRef]
- Hartmann, A.; Kralik, M.; Humer, F.; Lange, J.; Weiler, M. Hydrological modeling of an alpine dolomite karst system. In Advances in Research in Karst Media; Andreo, B., Carrasco, F., Durán, J.J., LaMoreaux, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 223–229. [Google Scholar]
- Young, K.; Grunig, D.; Jordan, M.A.; Parker, D.F.; Williams, B. Guidebook to the Geology of Travis County; The Student Geological Society, The University of Texas: Austin, TX, USA, 1977. [Google Scholar]
- Brune, G.; Duffin, G.L. Occurrence, Availability, and Quality of Groundwater in Travis County, Texas; Report; Texas Department of Water Resources: Austin, TX, USA, 1983; Volume 276, p. 219.
- Duffin, G.; Musick, S.P. Evaluation of Water Resources in Bell, Burnet, Travis, Williamson, and Parts of Adjacent Counties, Texas; Report 326; Texas Water Development Board: Austin, TX, USA, 1991.
- Jones, I.C. The Northern Segment of the Edwards (Balcones Fault Zone) Aquifer. In The Edwards Aquifer: The Past, Present, and Future of a Vital Water Resource; Sharp, J.M., Jr., Green, R.T., Schindel, G.M., Eds.; Geological Society of America Memoir; Geological Society of America: Boulder, CO, USA, 2019; Volume 215, pp. 119–130. [Google Scholar]
- Jones, I.C. Conceptual Model: Northern Segment of the Edwards (Balcones Fault Zone) and Associated Trinity Aquifers of Texas; Draft; Texas Water Development Board: Austin, TX, USA, 2020.
- Schwartz, F.W.; Zhang, H. Fundamentals of Groundwater; J. Wiley: Chichester, UK, 2003. [Google Scholar]
- Dahl, S.L. Hydrogeology and Stream Interactions of the Edwards Aquifer in the Salado Creek Basin, Bell and Williamson Counties, Central Texas. Unpublished. Master’s Thesis, Baylor University, Waco, TX, USA, 1990. [Google Scholar]
- Wong, S.; Yelderman, J.C., Jr. An Investigation into the Recharge Pathways and Mechanisms in the Northern Segment of the Edwards Aquifer, Bell County, Texas (Phase I, Phase II, Phase III); Research Report Prepared for Clearwater Underground Water Conservation District; Baylor University, Department of Geology: Waco, TX, USA, 2015. [Google Scholar]
- Mahler, B.J.; Bennett, P.C.; Zimmerman, M. Lanthanide-labeled clay: A new method for tracing sediment transport in karst. Groundwater 1998, 36, 835–843. [Google Scholar] [CrossRef]
- Field, M.S. The QTRACER2 Program for Tracer-Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other Hydrologic Systems; US Environmental Protection Agency: Washington, DC, USA, 2002.
- Benischke, R.; Goldscheider, N.; Smart, C. Tracer techniques. In Methods in Karst Hydrogeology; Goldscheider, N., Drew, D., Eds.; Taylor and Francis: London, UK, 2007; pp. 147–170. [Google Scholar]
- Doherty, J. PEST Model Independent Parameter Estimation; User Manual; Watermark Numerical Computing: Brisbane, Australia, 2009. [Google Scholar]
- Maloszewski, P.; Harum, T.; Benischke, R. Mathematical modelling of tracer experiments in the karst of Lurbach system. Steirische Beitraege Hydrogeol. 1992, 43, 116–136. [Google Scholar]
- Coats, K.H.; Smith, B.D. Dead end pore volume and dispersion in porous media. Soc. Pet. Eng. J. 1964, 23, 73–84. [Google Scholar] [CrossRef]
- Mull, D.S.; Liebermann, T.D.; Smoot, J.L.; Woosley, L.H. Application of Dye-Tracing Techniques for Determining Solute-transport Characteristics of Ground Water in Karst Terranes (No. PB-92-231356/XAB; EPA-904/6-88/001); Environmental Protection Agency: Atlanta, GA, USA, 1988.
- Atkinson, T.C.; Smith, D.I.; Lavis, J.J.; Witaker, R.J. Experiments in tracing underground waters in limestones. J. Hydrol. 1973, 19, 323–349. [Google Scholar] [CrossRef]
- Gaspar, E. Modern Trends in Tracer Hydrology; CRC Press: Boca Raton, FL, USA, 1987; Volume II, 137p. [Google Scholar]
- Ford, D.C.; Williams, P.W. Karst Geomorphology and Hydrology; Unwin Hayman: London, UK, 1989. [Google Scholar]
- Milanovic, P.T. Karst Hydrogeology; Water Resources: MI, USA, 1981. [Google Scholar]
- Zhang, C.; Shu, L.; Appiah-Adjei, E.K.; Lobeyo, A.G.A.; Tang, R.; Fan, J. Laboratory simulation of groundwater hydraulic head in a karst aquifer system with conduit and fracture domains. Carbonates Evaporites 2017, 31, 329–337. [Google Scholar] [CrossRef]
- Fetter, C.W. Contaminant Hydrogeology; Prentice Hall: London, UK, 1992. [Google Scholar]
Input Parameter for the 2RNE Model | Description of the Parameter |
---|---|
Q | Total flow rate of the system in /h |
Mass of the dye detected at the spring in grams | |
Mean transit time in hours | |
Peclet number (unitless) | |
Length of the flow channel in meters | |
Fraction of water volume that is mobile (partition coefficient, unitless) | |
Mass transfer coefficient in |
Output Parameter | Q = 72 m3/h | Q = 77 m3/h | Q = 82 m3/h | Q = 87 m3/h | Q = 92 m3/h |
---|---|---|---|---|---|
5.19 | 5.19 | 5.19 | 5.19 | 5.19 | |
2.31 | 2.31 | 2.31 | 2.31 | 2.31 | |
2.53 | 2.46 | 2.48 | 2.29 | 2.31 | |
9.95 | 9.71 | 9.75 | 9.70 | 9.75 | |
43.19 | 41.37 | 39.37 | 38.15 | 37.25 | |
4.15 | 4.07 | 3.93 | 3.79 | 3.57 | |
0.81 | 0.82 | 0.83 | 0.85 | 0.87 | |
0.58 | 0.62 | 0.64 | 0.67 | 0.68 | |
0.0021 | 0.0033 | 0.0037 | 0.0049 | 0.0055 | |
0.0012 | 0.0018 | 0.0020 | 0.0031 | 0.0036 | |
306 | 306 | 306 | 306 | 306 | |
306 | 306 | 306 | 306 | 306 | |
0.99 | 0.99 | 0.99 | 0.98 | 0.97 |
Output Parameters | Q = 136 m3/h | Q = 141 m3/h | Q = 146 m3/h | Q = 151 m3/h |
---|---|---|---|---|
4.78 | 4.78 | 4.78 | 4.78 | |
8.62 | 8.62 | 8.62 | 8.62 | |
3.54 | 3.77 | 3.75 | 3.63 | |
2.53 | 2.48 | 2.47 | 2.39 | |
22.43 | 19.23 | 15.86 | 12.47 | |
49.36 | 42.71 | 36.64 | 34.82 | |
0.31 | 0.35 | 0.38 | 0.42 | |
0.64 | 0.704 | 0.73 | 0.74 | |
0.0011 | 0.0016 | 0.0019 | 0.0024 | |
0.0012 | 0.0022 | 0.0026 | 0.0031 | |
383 | 383 | 383 | 383 | |
383 | 383 | 383 | 383 | |
0.99 | 0.98 | 0.98 | 0.97 |
Output Parameters | Q = 1069 m3/h | Q = 1074 m3/h | Q = 1079 m3/h | Q = 1084 m3/h |
---|---|---|---|---|
39.6 | 39.6 | 39.6 | 39.6 | |
42.8 | 42.8 | 42.8 | 42.8 | |
43.6 | 43.6 | 43.6 | 43.6 | |
1.86 | 1.88 | 1.86 | 1.87 | |
1.24 | 1.20 | 1.20 | 1.20 | |
1.06 | 1.08 | 1.09 | 1.06 | |
30.72 | 27.31 | 22.25 | 17.59 | |
100.08 | 90.77 | 81.44 | 73.51 | |
173.81 | 168.22 | 157.11 | 148.29 | |
0.86 | 0.88 | 0.89 | 0.92 | |
0.37 | 0.38 | 0.43 | 0.46 | |
0.53 | 0.55 | 0.57 | 0.58 | |
0.0016 | 0.0011 | 0.00099 | 0.00096 | |
0.00049 | 0.00031 | 0.00028 | 0.00024 | |
0.0011 | 0.00096 | 0.00093 | 0.00090 | |
228 | 228 | 228 | 228 | |
228 | 228 | 228 | 228 | |
228 | 228 | 228 | 228 | |
0.99 | 0.99 | 0.99 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajayi, T.; Yelderman, J.C.; Powers, S.M. Solute Transport in a Multi-Channel Karst System with Immobile Zones: An Example of Downtown Salado Spring Complex, Salado, Texas. Water 2024, 16, 2928. https://doi.org/10.3390/w16202928
Ajayi T, Yelderman JC, Powers SM. Solute Transport in a Multi-Channel Karst System with Immobile Zones: An Example of Downtown Salado Spring Complex, Salado, Texas. Water. 2024; 16(20):2928. https://doi.org/10.3390/w16202928
Chicago/Turabian StyleAjayi, Toluwaleke, Joe C. Yelderman, and Stephen M. Powers. 2024. "Solute Transport in a Multi-Channel Karst System with Immobile Zones: An Example of Downtown Salado Spring Complex, Salado, Texas" Water 16, no. 20: 2928. https://doi.org/10.3390/w16202928
APA StyleAjayi, T., Yelderman, J. C., & Powers, S. M. (2024). Solute Transport in a Multi-Channel Karst System with Immobile Zones: An Example of Downtown Salado Spring Complex, Salado, Texas. Water, 16(20), 2928. https://doi.org/10.3390/w16202928