Deep Fat Frying Characteristics of Malpoa: Kinetics, Heat, and Mass Transfer Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Kinetics of Various Parameters for Malpoa During Deep Fat Frying
2.2.1. Preparation of Malpoa Balls
2.2.2. Deep Fat Frying
2.2.3. Textural and Color Change Kinetics
Texture Parameters Evaluation
2.2.4. Color Parameters Evaluation
2.3. Heat and Mass Transfer Modeling of Malpoa During Deep Fat Frying
2.3.1. Moisture and Fat Content Measurements
2.3.2. Temperature Measurement
2.3.3. Heat Transfer Modeling
Model of Lumped Thermal Capacity
Transient Heat Conduction During Deep Fat Frying of Malpoa
2.3.4. Mass Transfer Modeling
Moisture Transfer Modeling
Fat Transfer Modeling
2.3.5. Statistical Analysis
3. Results
3.1. Frying Kinetics of Various Parameters for Malpoa During Deep Fat Frying
3.1.1. Textural Kinetics
3.1.2. Hardness Kinetics
3.1.3. Cohesiveness Kinetics
3.1.4. Springiness Kinetics
3.1.5. Color Kinetics
Lightness (L*) Kinetics
Hue Parameter (b*/a*) Kinetics
Total Color (ΔE) Kinetics
3.1.6. Malpoa Sphericity
3.2. Heat and Mass Transfer Modeling of Malpoa During Deep Fat Frying
3.2.1. Heat Transfer Modeling
3.2.2. Mass Transfer Modeling
3.3. Fat Kinetics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pichierri, M.; Peluso, A.M. Underscoring flavor or healthiness? The effectiveness of different communication appeals in promoting local food and the moderating role of individual construal. Psychol. Mark. 2023, 40, 1521–1538. [Google Scholar] [CrossRef]
- Muhammad, A.; Adilbekova, K. Culinary Diplomacy: Unveiling the Palate as a Pathway to Stronger International Relations. Ulus. Ve Uluslararası Sosyol. Ve Ekon. Derg. 2023, 5, 431–449. [Google Scholar]
- Basak, S.; Chakraborty, S.; Singhal, R.S. Revisiting Indian traditional foods-A critical review of the engineering properties and process operations. Food Control 2023, 143, 109286. [Google Scholar] [CrossRef]
- Sankhyan, S.; Zabinski, K.; O’Brien, R.E.; Coyan, S.; Patel, S.; Vance, M.E. Aerosol emissions and their volatility from heating different cooking oils at multiple temperatures. Environ. Sci. Atmos. 2022, 2, 1364–1375. [Google Scholar] [CrossRef]
- Ananthanarayan, L.; Dubey, K.K.; Muley, A.B.; Singhal, R.S. Indian traditional foods: Preparation, processing and nutrition. In Traditional Foods: History, Preparation, Processing and Safety; Springer: Berlin/Heidelberg, Germany, 2019; pp. 127–199. [Google Scholar]
- Asokapandian, S.; Swamy, G.J.; Hajjul, H. Deep fat frying of foods: A critical review on process and product parameters. Crit. Rev. Food Sci. Nutr. 2020, 60, 3400–3413. [Google Scholar] [CrossRef]
- Lee, C.C.; Taştemir, İ.A. Direct heat exchangers in the food industry. In Thermal Processing of Food Products by Steam and Hot Water; Woodhead Publishing: Sawston, UK, 2023; pp. 181–208. [Google Scholar]
- Bouchon, P.; Dueik, V. Frying of foods. In Fruit Preservation: Novel and Conventional Technologies; Springer: Berlin/Heidelberg, Germany, 2018; pp. 275–309. [Google Scholar]
- El-Naggar, E.A. The evaluation of deep-frying oil quality with the spectrophotometric method for the rapid assessment of total polar compounds. Zagazig J. Agric. Res. 2019, 46, 1489–1502. [Google Scholar] [CrossRef]
- Uma, S.; Kumar, S.P.; Keran, A.D. Production of high-value compounds and innovative future products from banana: Creation of robust circular economy. Int. J. Innov. Hortic. 2022, 11, 243–258. [Google Scholar] [CrossRef]
- Mondal, I.H.; Dash, K.K. Textural, color kinetics, and heat and mass transfer modeling during deep fat frying of Chhena Jhili. J. Food Process. Preserv. 2017, 41, e12828. [Google Scholar] [CrossRef]
- Salehi, F. Color changes kinetics during deep fat frying of carrot slice. Heat Mass Transf. 2018, 54, 3421–3426. [Google Scholar] [CrossRef]
- Hindra, F.; Baik, O.D. Kinetics of quality changes during food frying. Crit. Rev. Food Sci. Nutr. 2006, 46, 239–258. [Google Scholar] [CrossRef]
- Thakur, A.; Dalbhagat, C.G. Fundamentals, Methodologies, and Developments in Food Frying. In Frying Technology; CRC Press: Boca Raton, FL, USA, 2023; pp. 57–90. [Google Scholar]
- Franklin, M.E.E.; Pushpadass, H.A.; Ravindra Menon, R.; Rao, K.J.; Nath, B.S. Modeling the heat and mass transfer during frying of gulab jamun. J. Food Process. Preserv. 2014, 38, 1939–1947. [Google Scholar] [CrossRef]
- Dash, K.K.; Sharma, M.; Tiwari, A. Heat and mass transfer modeling and quality changes during deep fat frying: A comprehensive review. J. Food Process Eng. 2022, 45, e13999. [Google Scholar] [CrossRef]
- Ran, X.; Lin, D.; Zheng, L.; Li, Y.; Yang, H. Kinetic modelling of the mass and heat transfer of a plant-based fishball alternative during deep-fat frying and air frying and the changes in physicochemical properties. J. Food Eng. 2023, 350, 111457. [Google Scholar] [CrossRef]
- Nourian, F.; Ramaswamy, H.S.; Kushalappa, A.C. Kinetics of quality change associated with potatoes stored at different temperatures. LWT-Food Sci. Technol. 2003, 36, 49–65. [Google Scholar] [CrossRef]
- Riar, H.; Goel, N.; Singh, P.K.; Kumar, S.S.; Mishra, S.K.; Chawla, R. Changes in instrumental color and proximate parameters in yoghurt fortified with vitamin a and d nanoemulsion during storage. Pharma Innov. J. 2021, 8, 378–381. [Google Scholar]
- Holman, J.P. Heat Transfer, 8th ed.; McGraw-Hill, Ed.; Southern Methodist University: Dallas, TX, USA, 1997. [Google Scholar]
- Naveh, D.; Kopelman, I.J. Effect of some processing parameters on the heat transfer coefficients in a rotating autoclave. J. Food Process. Preserv. 1980, 4, 67–77. [Google Scholar] [CrossRef]
- Franklin, E.M.E.; Pushpadass, H.A.; Neetu, K.C.; Sivaram, M.; Nath, B.S. Modeling the kinetics of physicochemical and textural qualities of pantoa (Indian Dairy Dessert) during deep-fat frying. J. Food Process. Preserv. 2017, 41, e12805. [Google Scholar] [CrossRef]
- Kumar, M.; Manjunatha, M. Analysis of physico-thermal characteristics of Gulabjamun balls during hypobaric frying. Pharma Innov. J. 2022, 11, 3043–3047. [Google Scholar]
- Patel, P.; Gupta, S.; Mondal, P. Electrocoagulation process for greywater treatment: Statistical modeling, optimization, cost analysis and sludge management. Sep. Purif. Technol. 2022, 296, 121327. [Google Scholar] [CrossRef]
- Kheti, B.; Kamilya, D.; Choudhury, J.; Parhi, J.; Debbarma, M.; Singh, S.T. Dietary microbial floc potentiates immune response, immune relevant gene expression and disease resistance in rohu, Labeo rohita (Hamilton, 1822) fingerlings. Aquaculture 2017, 468, 501–507. [Google Scholar] [CrossRef]
- Kumar, A.J.; Singh, R.R.B.; Patel, A.A.; Patil, G.R. Kinetics of colour and texture changes in Gulabjamun balls during deep-fat frying. LWT-Food Sci. Technol. 2006, 39, 827–833. [Google Scholar] [CrossRef]
- Okon, U.B.; Sobukola, O.P.; Adebowale, A.A.; Bakare, H.A.; Omidiran, A.T.; Akinlade, F.A. Effect of process variables on some quality attributes of instant ‘Akara iwe’—A cassava based fried snack from grits. Appl. Food Res. 2022, 2, 100115. [Google Scholar] [CrossRef]
- Alothman, O.Y.; Fouad, H.; Al-Zahrani, S.M.; Eshra, A.; Al Rez, M.F.; Ansari, S.G. Thermal, creep-recovery and viscoelastic behavior of high-density polyethylene/hydroxyapatite nano particles for bone substitutes: Effects of gamma radiation. Biomed. Eng. Online 2014, 13, 125. [Google Scholar] [CrossRef] [PubMed]
- Mathare, S.S.; Bakal, S.B.; Dissanayake, T.M.; Jain, S.K. Effects of coagulation temperature on the texture and yield of soy paneer (tofu). J. Natl. Sci. Found. Sri Lanka 2009, 37. [Google Scholar] [CrossRef]
- Carabasa-Giribet, M.; Ibarz-Ribas, A. Kinetics of colour development in aqueous fructose systems at high temperatures. J. Sci. Food Agric. 2000, 80, 2105–2113. [Google Scholar] [CrossRef]
- Vélez-Ruiz, J.F.; Sosa-Morales, M.E. Evaluation of physical properties of dough of donuts during deep-fat frying at different temperatures. Int. J. Food Prop. 2003, 6, 341–353. [Google Scholar] [CrossRef]
- Baik, O.D.; Mittal, G.S. Kinetics of tofu color changes during deep-fat frying. LWT-Food Sci. Technol. 2003, 36, 43–48. [Google Scholar] [CrossRef]
- Sahin, S.E.R.P.İ.L.; Sastry, S.K.; Bayindirli, L. The determination of convective heat transfer coefficient during frying. J. Food Eng. 1999, 39, 307–311. [Google Scholar] [CrossRef]
- Yıldız, A.; Palazoğlu, T.K.; Erdoğdu, F. Determination of heat and mass transfer parameters during frying of potato slices. J. Food Eng. 2007, 79, 11–17. [Google Scholar] [CrossRef]
- Pandey, M.C.; Jayathilakan, K.; Manral, M.; Radhakrishna, K.; Bawa, A.S. Heat and mass transfer kinetics of Catla catla fish during frying. J. Food Sci. Technol.-Mysore 2008, 45, 61–64. [Google Scholar]
- Moyano, P.C.; Berna, A.Z. Modeling water loss during frying of potato strips: Effect of solute impregnation. Dry. Technol. 2002, 20, 1303–1318. [Google Scholar] [CrossRef]
- Gamble, M.H.; Rice, P.; Selman, J.D. Relationship between oil uptake and moisture loss during frying of potato slices from cv Record UK tubers. Int. J. Food Sci. Technol. 1987, 22, 233–241. [Google Scholar] [CrossRef]
- Troncoso, E.; Pedreschi, F. Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT-Food Sci. Technol. 2009, 42, 1164–1173. [Google Scholar] [CrossRef]
- Villota, R.; Hawkes, J.G. Reaction kinetics in food systems. In Handbook of Food Engineering; CRC Press: Boca Raton, FL, USA, 2018; pp. 225–484. [Google Scholar]
Parameter | Order of Reaction | Activation Energy (kJ/mol) | R2 |
---|---|---|---|
Hardness | Zero | 85.82 ± 1.45 | 0.964 |
Cohesion | Zero | 54.78 ± 0.56 | 0.954 |
Springiness | Zero | NA | NA |
Parameter | Order of Reaction | Activation Energy (kJ/mol) | R2 |
---|---|---|---|
L* | Zero | 58.19 ± 0.76 | 0.992 |
b*/a* | First | 42.21 ± 1.38 | 0.954 |
ΔE | First | 64.34 ± 1.17 | 0.981 |
S. No | Frying Temperature (°C) | Thermal Conductivity | Thermal Diffusivity | Fourier Number | Heat Transfer Coefficient | Biot Number |
---|---|---|---|---|---|---|
1. | 170 | 0.4403 ± 0.018 | 1.424 × 10−5 ± 0.006 × 10−5 | 0.456 ± 0.005 | 135.587 ± 2.26 | 7.496 ± 0.51 |
2. | 175 | 0.4429 ± 0.029 | 1.439 × 10−5 ± 0.003 × 10−5 | 0.459 ± 0.013 | 124.653 ± 1.48 | 6.972 ± 1.28 |
3. | 180 | 0.4457 ± 0.022 | 1.466 × 10−5 ± 0.0026 × 10−5 | 0.279 ± 0.022 | 117.767 ± 0.72 | 6.403 ± 0.42 |
4. | 185 | 0.4483 ± 0.033 | 1.470 × 10−5 ± 0.0018 × 10−5 | 0.281 ± 0.006 | 107.961 ± 1.65 | 5.975 ± 0.28 |
5. | 190 | 0.4496 ± 0.028 | 1.481 × 10−5 ± 0.0014 × 10−5 | 0.288 ± 0.008 | 94.396 ± 2.6 | 5.634 ± 0.36 |
S. No | Frying Temperature (°C) | Moisture Diffusivity | Fourier Number | Moisture Transfer Coefficient | Biot Number |
---|---|---|---|---|---|
1. | 170 | 2.33 × 10−7 ± 0.02 × 10−7 | 0.683 ± 0.03 | 16.948 × 10−6 ± 0.38 × 10−6 | 6.899 ± 0.06 |
2. | 175 | 2.64 × 10−7 ± 0.008 × 10−7 | 0.745 ± 0.028 | 17.865 × 10−6 ± 0.16 × 10−6 | 6.617 ± 0.03 |
3. | 180 | 2.95 × 10−7 ± 0.005 × 10−7 | 0.781 ± 0.007 | 18.652 × 10−6 ± 0.26 × 10−6 | 6.542 ± 0.14 |
4. | 185 | 3.04 × 10−7 ± 0.017 × 10−7 | 0.822 ± 0.018 | 19.673 × 10−6 ± 0.13 × 10−6 | 6.248 ± 0.03 |
5. | 190 | 3.44 × 10−7 ± 0.004 × 10−7 | 0.869 ± 0.008 | 20.364 × 10−6 ± 0.2 × 10−6 | 6.112 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, P.; Mondal, I.H.; Dash, K.K.; Geetika; Suthar, T.; Ramzan, K.; Harsanyi, E.; Shaikh, A.M.; Béla, K. Deep Fat Frying Characteristics of Malpoa: Kinetics, Heat, and Mass Transfer Modeling. Processes 2024, 12, 2662. https://doi.org/10.3390/pr12122662
Gupta P, Mondal IH, Dash KK, Geetika, Suthar T, Ramzan K, Harsanyi E, Shaikh AM, Béla K. Deep Fat Frying Characteristics of Malpoa: Kinetics, Heat, and Mass Transfer Modeling. Processes. 2024; 12(12):2662. https://doi.org/10.3390/pr12122662
Chicago/Turabian StyleGupta, Puneeta, Imdadul Hoque Mondal, Kshirod Kumar Dash, Geetika, Tejas Suthar, Khadija Ramzan, Endre Harsanyi, Ayaz Mukarram Shaikh, and Kovács Béla. 2024. "Deep Fat Frying Characteristics of Malpoa: Kinetics, Heat, and Mass Transfer Modeling" Processes 12, no. 12: 2662. https://doi.org/10.3390/pr12122662
APA StyleGupta, P., Mondal, I. H., Dash, K. K., Geetika, Suthar, T., Ramzan, K., Harsanyi, E., Shaikh, A. M., & Béla, K. (2024). Deep Fat Frying Characteristics of Malpoa: Kinetics, Heat, and Mass Transfer Modeling. Processes, 12(12), 2662. https://doi.org/10.3390/pr12122662