Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = osteogenic media

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2438 KiB  
Article
Histologic and Histomorphometric Evaluation of Bone Regeneration Using Human Allogeneic Bone Graft with or Without Mesenchymal Stem Cell–Conditioned Media in a Rabbit Calvarial Defect Model
by Hyung-Gyun Kim, Yong-Suk Moon and Dong-Seok Sohn
J. Funct. Biomater. 2025, 16(7), 251; https://doi.org/10.3390/jfb16070251 - 7 Jul 2025
Viewed by 582
Abstract
Alveolar bone loss due to trauma, extraction, or periodontal disease often requires bone grafting prior to implant placement. Although human allograft bone is widely used as an alternative to autograft, it has limited osteoinductive potential and a prolonged healing time. Mesenchymal stem cell–conditioned [...] Read more.
Alveolar bone loss due to trauma, extraction, or periodontal disease often requires bone grafting prior to implant placement. Although human allograft bone is widely used as an alternative to autograft, it has limited osteoinductive potential and a prolonged healing time. Mesenchymal stem cell–conditioned media (MSC-CM), rich in paracrine factors, has emerged as a promising adjunct to enhance bone regeneration. This study evaluated the regenerative effect of MSC-CM combined with human allograft bone in a rabbit calvarial defect model. Bilateral 8 mm defects were created in eight rabbits. Each animal received a human allograft alone (HB group) on one side and an allograft mixed with MSC-CM (HB+GF group) on the other. Histological and histomorphometric analyses were performed at 2 and 8 weeks postoperatively. Both groups showed new bone formation, but the HB+GF group demonstrated significantly greater bone regeneration at both time points (p < 0.05). New bone extended into the defect center in the HB+GF group. Additionally, greater graft resorption and marrow formation were observed in this group at 8 weeks. These findings suggest that MSC-CM enhances the osteogenic performance of human allograft bone and may serve as a biologically active adjunct for bone regeneration. Full article
Show Figures

Figure 1

18 pages, 8336 KiB  
Article
Metformin-Enhanced Secretome from Periodontal Ligament Stem Cells Promotes Functional Recovery in an Inflamed Periodontal Model: In Vitro Study
by Han Na Suh, Ju Young Ji and Jung Sun Heo
J. Funct. Biomater. 2025, 16(5), 177; https://doi.org/10.3390/jfb16050177 - 13 May 2025
Viewed by 976
Abstract
Objective: Secretory factors, termed the secretome, in the conditioned medium (CM) from dental mesenchymal stem cells (MSCs) have shown anti-inflammatory, anti-apoptotic, and tissue regenerative potential. This cell-free product could be further developed by preconditioning cells with various biochemical agents, which lead to a [...] Read more.
Objective: Secretory factors, termed the secretome, in the conditioned medium (CM) from dental mesenchymal stem cells (MSCs) have shown anti-inflammatory, anti-apoptotic, and tissue regenerative potential. This cell-free product could be further developed by preconditioning cells with various biochemical agents, which lead to a change in secretome and CM profiles. Among the favorable candidates for CM production, metformin as an anti-diabetic medication is currently considered a potential agent for dental hard tissue and periodontal regeneration. Here, we aimed to assess the composition of CM from periodontal ligament stem cells (PDLSCs) grown in metformin-preconditioned media (Met-CM) compared to normal PDLSC-CM and assess the ability of Met-CM to recover the function of inflamed PDLSCs. Methods: Met-CM and normal CM were collected from PDLSCs grown with or without 50 µM metformin, respectively, under healthy culture conditions. Mass spectrometry and liquid chromatography–tandem mass spectrometry (LC–MS/MS) were performed to comparatively evaluate the proteomic profiles in PDLSC-CM versus Met-CM. We then treated the PDLSC cultures with lipopolysaccharide (LPS) from Porphyromonas gingivalis to induce inflammation and evaluated the osteogenic/cementogenic differentiation in the presence of Met-CM or normal PDLSC-CM by assessing alkaline phosphatase activity, intracellular calcium levels, and mRNA expression of osteogenic and cementogenic factors, including RUNX2, OCN, OSX, and CEMP-1. Subsequently, we performed RNA sequencing to identify transcriptomic changes in the treated cells. Results: We identified 202 differentially expressed proteins, 175 of which were significant, in Met-CM versus normal PDLSC-CM. Among the analyzed groups, the top three protein classes were protein-binding activity modulator, cytoskeletal protein, and extracellular matrix (ECM) protein. Treatment of PDLSCs with LPS significantly attenuated ALP activity, [Ca2+]i, and the mRNA expression levels of RUNX2, OCN, OSX, and CEMP-1, whereas treatment with Met-CM alone markedly enhanced PDLSC differentiation activity compared with the control. Moreover, osteogenic/cementogenic differentiation of the LPS-treated PDLSCs was recovered through incubation in Met-CM. Transcriptomic analysis identified 511 and 3591 differentially expressed genes in the control versus Met-CM and LPS versus LPS + Met-CM groups, respectively. The enrichment of biological processes includes positive regulation of DNA-templated transcription and skeletal system morphogenesis in the control versus Met-CM comparison, as well as positive regulation of transcription from the RNA polymerase II promoter and negative regulation of the apoptotic process in the LPS versus LPS + Met-CM comparison. Molecular function analysis demonstrated the enrichment of protein-binding terms among the DEGs from each comparison. Conclusions: Metformin preconditioning enhanced the recovery effect of PDLSC-CM on LPS-induced inflamed PDLSCs. These findings suggest that metformin preconditioning could represent a practical formula for PDLSC-secretome, which may contribute to the development of future cell-free periodontal regenerative strategies. Full article
(This article belongs to the Special Issue Natural Biomaterials for Biomedical Applications)
Show Figures

Figure 1

14 pages, 2116 KiB  
Article
In Vitro Characterization of 3D-Printed PLA/CPO Oxygen Releasing Scaffolds: Mechanical and Biological Properties for Bone Tissue Engineering
by Abdullah Mohammed, Alice Tirnoveanu, William Richard Webb, Ammar A. Melaibari, Adnan Memić, Mohammad Aslam, Amr Elshaer, Hany Hassanin and Khamis Essa
J. Manuf. Mater. Process. 2025, 9(5), 149; https://doi.org/10.3390/jmmp9050149 - 2 May 2025
Viewed by 738
Abstract
The addition of oxygen-releasing biomaterials into 3D-printed scaffolds presents a novel approach to enhancing bone scaffolds, yet no in vitro studies have demonstrated the effect of oxygen-generating filaments on scaffold biological and mechanical properties. This study introduces a polylactic acid (PLA)/calcium peroxide (CPO) [...] Read more.
The addition of oxygen-releasing biomaterials into 3D-printed scaffolds presents a novel approach to enhancing bone scaffolds, yet no in vitro studies have demonstrated the effect of oxygen-generating filaments on scaffold biological and mechanical properties. This study introduces a polylactic acid (PLA)/calcium peroxide (CPO) composite filament, designed for oxygen release, which is a key factor for early-stage bone regeneration. The PLA/CPO composite filament was fabricated via wet-mixing, solvent evaporation, and hot-melt extrusion, followed by fused deposition modeling (FDM) with optimized parameters to achieve high structural fidelity (25% porosity, 0.60mm pore size). In vitro characterization, including mechanical, morphological, and biological assessments, demonstrated that, post-cell culturing, mechanical strength improved, which indicates improved scaffold resilience. The scaffold exhibited gradual oxygen release over a 3-day period, and gene expression analysis confirmed notable upregulation of osteogenic markers RUNX2, SPP1, and SP7 in vitamin D-supplemented conditions. The mechanical strength improved from approximately 2.8 MPa in the control group to 5.0 MPa in scaffolds cultured with osteogenic media. This study provides the first in vitro evidence that oxygen-releasing 3D-printed filaments can improve both mechanical properties and biological response in scaffolds, demonstrating the functional integration of sustained oxygen delivery, enhanced mechanical properties, and increased osteogenic activity in a single 3D-printed scaffold. Full article
Show Figures

Figure 1

14 pages, 4095 KiB  
Article
Alkali-Treated, Nanostructured-Micro-Porous Titanium Surfaces Enhance Osteogenic Differentiation of Adipose Derived Stem Cells
by Aniruddha Vijay Savargaonkar, Emma Holloway and Ketul C. Popat
Appl. Sci. 2025, 15(9), 5061; https://doi.org/10.3390/app15095061 - 2 May 2025
Viewed by 507
Abstract
Ensuring effective integration between the material of an implant and bone is critical to orthopedic implants’ success in the long term. A major issue with dense materials is the mechanical mismatch between them and the bone, which leads to improper osseointegration. Porous implants [...] Read more.
Ensuring effective integration between the material of an implant and bone is critical to orthopedic implants’ success in the long term. A major issue with dense materials is the mechanical mismatch between them and the bone, which leads to improper osseointegration. Porous implants have presented a solution to this issue as they are able to retain material properties in addition to decreasing mismatches. In order to make implants more biomimetic and to match the micro-/nano hierarchy of bone, several surface modifications have been explored in the literature. Hydrothermal treatment in an alkali media on dense titanium has demonstrated higher differentiation of adipose-derived stem cells to osteogenic lineages. In this study, we fabricated nanostructures using hydrothermal treatment in an alkali medium on micro-porous titanium surfaces and evaluated the adhesion, proliferation, and differentiation of adipose derived stem cells to osteoblasts. The nanostructured-micro-porous titanium surfaces displayed enhanced osteogenic differentiation of adipose derived stem cells. Therefore, they have the potential to be used as surfaces for the fabrication of orthopedic implants. Full article
(This article belongs to the Special Issue Titanium and Its Compounds: Properties and Innovative Applications)
Show Figures

Figure 1

22 pages, 3030 KiB  
Article
Effect of Octacalcium Phosphate on Osteogenic Differentiation of Induced Pluripotent Stem Cells in a 3D Hybrid Spheroid Culture
by Yuki Sugai, Ryo Hamai, Yukari Shiwaku, Takahisa Anada, Kaori Tsuchiya, Tai Kimura, Manami Tadano, Kensuke Yamauchi, Tetsu Takahashi, Hiroshi Egusa and Osamu Suzuki
Biomimetics 2025, 10(4), 205; https://doi.org/10.3390/biomimetics10040205 - 26 Mar 2025
Cited by 1 | Viewed by 849
Abstract
Octacalcium phosphate (OCP) has been shown to exhibit an osteogenic property and, therefore, has been utilized recently as a bone substitute, clinically. However, the stimulatory capacity for induced pluripotent stem (iPS) cells is not known. This study investigated whether OCP enhances osteoblastic differentiation [...] Read more.
Octacalcium phosphate (OCP) has been shown to exhibit an osteogenic property and, therefore, has been utilized recently as a bone substitute, clinically. However, the stimulatory capacity for induced pluripotent stem (iPS) cells is not known. This study investigated whether OCP enhances osteoblastic differentiation of three-dimensionally cultured spheroids of iPS cells compared to hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP). Mouse iPS cells were mixed with smaller (less than 53 μm) or larger (300–500 μm) sizes of calcium phosphate (CaP) granules and cultured in a laboratory-developed oxygen-permeable culture chip under minimizing hypoxia for up to 21 days. Osteoblastic differentiation was estimated by the cellular alkaline phosphatase (ALP) activities. The degree of supersaturation (DS) with respect to CaP phases was determined from the media chemical compositions. Incubated CaP materials were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The culture promoted well the formation of hybrid spheroids of CaP materials and iPS cells regardless of the type of materials and their granule sizes. The ALP activity of OCP was about 1.5 times higher than that of β-TCP and HA in smaller granule sizes. FTIR, XRD, and DS analyses showed that larger OCP granules tended to hydrolyze to HA slightly faster than smaller granules with time while HA and β-TCP materials tended to remain unchanged. In conclusion, the results suggest that OCP enhances the osteogenic differentiation of iPS cells more than HA and β-TCP through a mechanism of hydrolyzing to HA. This inherent material property of OCP is essential for enhancing the osteoblastic differentiation of iPS cells. Full article
Show Figures

Figure 1

7 pages, 1672 KiB  
Proceeding Paper
Bioengineering of Mesenchymal-Stromal-Cell-Based 3D Constructs with Different Cell Organizations
by Natalia Trufanova, Oleh Trufanov, Galyna Bozhok, Ruslana Oberemok, Olena Revenko and Oleksandr Petrenko
Eng. Proc. 2024, 81(1), 8; https://doi.org/10.3390/engproc2024081008 - 17 Feb 2025
Viewed by 517
Abstract
Standard 2D cultures inadequately mimic the natural microenvironment of mesenchymal stromal cells (MSCs), compromising their properties. This study investigated the impact of 3D cultures in spheroids, alginate microspheres (AMSs), and blood plasma scaffolds on human-adipose-derived MSC behavior. The cell morphology, viability/apoptosis (6-CFDA/Annexin-Cy3.18), actin [...] Read more.
Standard 2D cultures inadequately mimic the natural microenvironment of mesenchymal stromal cells (MSCs), compromising their properties. This study investigated the impact of 3D cultures in spheroids, alginate microspheres (AMSs), and blood plasma scaffolds on human-adipose-derived MSC behavior. The cell morphology, viability/apoptosis (6-CFDA/Annexin-Cy3.18), actin filament development (phalloidin-FITC), and metabolic activity (Alamar Blue) were assessed on the 3rd day of the generated 3D construct cultures. The abilities for adipogenic and osteogenic differentiation were evaluated after 21 days of culture in media with inducers by Nile Red and Alizarin Red staining, respectively. The 3D culture supported closer-to-physiological cell interactions and morphology and resulted in F-actin reduction compared with the 2D culture. While the metabolic activity was elevated in the scaffolds, it was significantly reduced in the spheroids and AMSs, which reflected natural-like quiescence. The differentiation was maintained across all the 3D constructs. These findings highlight the essential influence of 3D construct design on MSC function, underscoring its potential for advancing both in vitro models and cell-based therapies. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Bioengineering)
Show Figures

Figure 1

12 pages, 1551 KiB  
Article
Dexamethasone-Functionalized PLLA Membranes: Effects of Layer-by-Layer Coating and Electrospinning on Osteogenesis
by Flavia Gonçalves, Roberta Molisani Letomai, Marjory Muraro Gomes, Maria dos Remédios Aguiar Araújo, Yasmin Silva Muniz, Maria Stella Moreira and Leticia Cidreira Boaro
Bioengineering 2025, 12(2), 130; https://doi.org/10.3390/bioengineering12020130 - 30 Jan 2025
Viewed by 1044
Abstract
The addition of dexamethasone in membranes for guided bone regeneration is promising due to its dual effect: (1) anti-inflammatory action and (2) induction of osteogenesis in host stem cells. Electrospun fiber coating with dexamethasone using the layer-by-layer (LBL) technique offers an interesting alternative [...] Read more.
The addition of dexamethasone in membranes for guided bone regeneration is promising due to its dual effect: (1) anti-inflammatory action and (2) induction of osteogenesis in host stem cells. Electrospun fiber coating with dexamethasone using the layer-by-layer (LBL) technique offers an interesting alternative for the gradual release of the drug, aiming for enhanced osteodifferentiation activity. This study aimed to develop synthetic poly-L-lactide (PLLA) membranes with dexamethasone incorporated into the fibers or coated on their surface, and to evaluate the drug release rate, as well as the material’s ability to promote proliferation, osteoconduction, and osteodifferentiation of human periodontal ligament stem cells (hPDLSCs). PLLA membranes were produced by electrospinning. Dexamethasone was incorporated using three techniques: (A) electrospinning of a co-solution of PLLA with 2.5 w/w% dexamethasone; (B) deposition of four layers on the PLLA membrane using alternating solutions of chitosan and heparin/dexamethasone; (C) deposition of 10 layers on the PLLA membrane using the same solutions. hPDLSC proliferation was measured via CCK-8 at 1, 7, 14, and 21 days. Cellular differentiation was assessed by alkaline phosphatase activity (7 days) and alizarin red staining (21 days) in clonogenic and osteogenic media (ODM). Data were analyzed using one or two-way ANOVA and Tukey test. Electrospun membranes with dexamethasone and those with 4 layers showed immediate drug release within 24 h, whereas 10 layers exhibited gradual release over 14 days. Cumulative drug release was higher for electrospun membranes at 1 and 7 days, similar to 10 layers at 14 and 21 days. The 4 LBL membrane promoted lower hPDLSC proliferation compared to the 10 LBL and electrospun membranes at 21 days but showed increased extracellular matrix mineralization in osteogenic media. No significant differences in alkaline phosphatase expression were observed between materials. Therefore, the addition of dexamethasone in 10 layers, combined with heparin, enables gradual drug release. However, lower drug release in the first 24 h by four LBL membranes improved the material’s osteogenesis properties. None of the materials improved the osteodifferentiation in the clonogenic medium. Full article
Show Figures

Figure 1

23 pages, 2942 KiB  
Article
Bone Marrow Stromal Cells Generate a Pro-Healing Inflammasome When Cultured on Titanium–Aluminum–Vanadium Surfaces with Microscale/Nanoscale Structural Features
by David J. Cohen, Christine M. Van Duyn, Jingyao Deng, Musaddiq K. Lodi, Michelle B. Gallagher, James T. Sugar, Jeremy J. Rawlinson, Preetam Ghosh, Barbara D. Boyan and Zvi Schwartz
Biomimetics 2025, 10(1), 66; https://doi.org/10.3390/biomimetics10010066 - 19 Jan 2025
Viewed by 1459
Abstract
The surface topography and chemistry of titanium–aluminum–vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the [...] Read more.
The surface topography and chemistry of titanium–aluminum–vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the effects of MN-modified, anodized, and smooth Ti6Al4V surfaces on MSC response, and for the first time, directly contrasted MN-induced osteoblast differentiation with culture on tissue culture polystyrene (TCPS) in osteogenic medium (OM). Surface characterization revealed distinct differences in microroughness, composition, and topography among the Ti6Al4V substrates. MSCs on MN surfaces exhibited enhanced osteoblastic differentiation, evidenced by increased expression of RUNX2, SP7, BGLAP, BMP2, and BMPR1A (fold increases: 3.2, 1.8, 1.4, 1.3, and 1.2). The MN surface also induced a pro-healing inflammasome with upregulation of anti-inflammatory mediators (170–200% increase) and downregulation of pro-inflammatory factors (40–82% reduction). Integrin expression shifted towards osteoblast-associated integrins on MN surfaces. RNA-seq analysis revealed distinct gene expression profiles between MSCs on MN surfaces and those in OM, with only 199 shared genes out of over 1000 differentially expressed genes. Pathway analysis showed that MN surfaces promoted bone formation, maturation, and remodeling through non-canonical Wnt signaling, while OM stimulated endochondral bone development and mineralization via canonical Wnt3a signaling. These findings highlight the importance of Ti6Al4V surface properties in directing MSC differentiation and indicate that MN-modified surfaces act via signaling pathways that differ from OM culture methods, more accurately mimicking peri-implant osteogenesis in vivo. Full article
Show Figures

Figure 1

14 pages, 3714 KiB  
Article
Experimental Validation of Antiobesogenic and Osteoprotective Efficacy of Ginsenoside CK via Targeting Lipid and Atherosclerosis Pathways
by Md. Niaj Morshed, Reshmi Akter, Imran Mahmud, Ah-Yeong Gwon, Jin Woo Jeang, Yeong-Geun Lee, Dae Won Park, Deok Chun Yang, Yeon Ju Kim and Se-Chan Kang
Life 2025, 15(1), 41; https://doi.org/10.3390/life15010041 - 31 Dec 2024
Viewed by 1151
Abstract
The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic [...] Read more.
The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic and osteogenic media with varying concentrations of CK. We assessed the differentiation of adipocytes and osteoblasts in these cell lines by applying the most effective doses of CK that we initially selected. Using 3T3-L1 adipocytes in vitro assessments, CK could effectively decrease intracellular lipid accumulation, inhibit α-glucosidase enzyme, increase 2-NBDG glucose uptake, reduce inflammation-associated cytokines (TNFα, and IL-6), adipogenic regulatory genes (PPARγ, FAS, C/EBPα), lipogenic gene LPL, and increase the expression of thermogenic gene UCP1. Additionally, CK treatment induced osteoblast development in MC3T3-E1 cells as shown by increased mineralization and calcium distribution, collagen content, alkaline phosphatase activity, and decreased inflammatory cytokines TNFα, and IL-6 and increased the regulated expressions of osteogenic genes including Runx2, ALP, BGLAP, OCN, and Col1a1. Significantly, as a major inhibitory regulator, the TP53 gene was down-regulated in both 3T3-L1 and MC3T3E1 cells after the treatment of CK. These encouraging results demonstrate the possible use of CK as an innovative treatment for controlling obesity and osteoporosis, targeting the underlying mechanisms of obesogenic and bone loss. Further studies are necessary to explore the clinical implications of these results and the potential of CK in future treatment strategies. This research highlights the promise of CK in addressing significant health issues. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

22 pages, 6103 KiB  
Article
Gla Rich Protein (GRP) Mediates Vascular Smooth Muscle Cell (VSMC) Osteogenic Differentiation, Extracellular Vesicle (EV) Calcification Propensity, and Immunomodulatory Properties
by Carla Viegas, Joana Carreira, Teresa M. Maia, Anjos L. Macedo, António P. Matos, José Neves and Dina Simes
Int. J. Mol. Sci. 2024, 25(22), 12406; https://doi.org/10.3390/ijms252212406 - 19 Nov 2024
Cited by 1 | Viewed by 1479
Abstract
Vascular calcification (VC) is a complex process involving vascular smooth muscle cell (VSMC) osteogenic differentiation, inflammation, and extracellular vesicle (EV) calcification and communication networks. Gla rich protein (GRP) is a calcification inhibitor involved in most of these processes. However, the molecular mechanism of [...] Read more.
Vascular calcification (VC) is a complex process involving vascular smooth muscle cell (VSMC) osteogenic differentiation, inflammation, and extracellular vesicle (EV) calcification and communication networks. Gla rich protein (GRP) is a calcification inhibitor involved in most of these processes. However, the molecular mechanism of GRP in VC and the specific characteristics, cargo, and functionality of calcifying EVs require further elucidation. Here, we use a combination of human ex vivo aortic fragments and primary vascular smooth muscle cell (VSMC) models to obtain new information on GRP function in VC and EVs released by VSMCs. We demonstrate that GRP inhibits VSMC osteogenic differentiation through downregulation of bone-related proteins and upregulation of mineralization inhibitors, with decreased mineral crystallinity in EVs deposited into the tissue extracellular matrix (ECM). EVs isolated by ultracentrifugation at 30K and 100K from the cell media (CM) and deposited in the ECM from control (CTR) and mineralizing (MM) VSMCs were biochemically, physically, and proteomically characterized. Four different EV populations were identified with shared markers commonly present in all EVs but with unique protein cargo and specific molecular profiles. Comparative proteomics identified several regulated proteins specifically loaded into MM EV populations associated with multiple processes involved in VC. Functional analysis demonstrated that 30K and 100K ECM-MM EVs with higher calcium and lower GRP levels induced macrophage inflammation. Our findings reinforce the functional relevance of GRP in multiple VC processes and suggest that ECM EVs released under calcification stress function as a new signaling axis on the calcification–inflammation cycle. Full article
Show Figures

Figure 1

13 pages, 1952 KiB  
Article
7-Ketocholesterol Effects on Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells
by Beatriz Araújo Oliveira, Débora Levy, Jessica Liliane Paz, Fabio Alessandro de Freitas, Cadiele Oliana Reichert, Alessandro Rodrigues and Sérgio Paulo Bydlowski
Int. J. Mol. Sci. 2024, 25(21), 11380; https://doi.org/10.3390/ijms252111380 - 23 Oct 2024
Cited by 2 | Viewed by 1411
Abstract
Some oxysterols were shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs). Little is known about the effects of 7-ketocholesterol (7-KC) in this process. We describe its impact on human adipose tissue-derived MSC (ATMSC) osteogenic differentiation. ATMSCs were incubated with 7-KC in [...] Read more.
Some oxysterols were shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs). Little is known about the effects of 7-ketocholesterol (7-KC) in this process. We describe its impact on human adipose tissue-derived MSC (ATMSC) osteogenic differentiation. ATMSCs were incubated with 7-KC in osteogenic or adipogenic media. Osteogenic and adipogenic differentiation was evaluated by Alizarin red and Oil Red O staining, respectively. Osteogenic (ALPL, RUNX2, BGLAP) and adipogenic markers (PPARƔ, C/EBPα) were determined by RT-PCR. Differentiation signaling pathways (SHh, Smo, Gli-3, β-catenin) were determined by indirect immunofluorescence. ATMSCs treated with 7-KC in osteogenic media stained positively for Alizarin Red. 7-KC in adipogenic media decreased the number of adipocytes. 7-KC increased ALPL and RUNX2 but not BGLAP expressions. 7-KC decreased expression of PPARƔ and C/EBPα, did not change SHh, Smo, and Gli-3 expression, and increased the expression of β-catenin. In conclusion, 7-KC favors osteogenic differentiation of ATMSCs through the expression of early osteogenic genes (matrix maturation phase) by activating the Wnt/β-catenin signaling pathway, while inhibiting adipogenic differentiation. This knowledge can be potentially useful in regenerative medicine, in treatments for bone diseases. Full article
(This article belongs to the Special Issue Molecular Insights into Cholesterol Metabolism)
Show Figures

Figure 1

19 pages, 4508 KiB  
Article
Limited Adipogenic Differentiation Potential of Human Dental Pulp Stem Cells Compared to Human Bone Marrow Stem Cells
by Isaac Maximiliano Bugueno, Giuseppe Alastra, Anamaria Balic, Bernd Stadlinger and Thimios A. Mitsiadis
Int. J. Mol. Sci. 2024, 25(20), 11105; https://doi.org/10.3390/ijms252011105 - 16 Oct 2024
Cited by 3 | Viewed by 1781
Abstract
Bone marrow and teeth contain mesenchymal stem cells (MSCs) that could be used for cell-based regenerative therapies. MSCs from these two tissues represent heterogeneous cell populations with varying degrees of lineage commitment. Although human bone marrow stem cells (hBMSCs) and human dental pulp [...] Read more.
Bone marrow and teeth contain mesenchymal stem cells (MSCs) that could be used for cell-based regenerative therapies. MSCs from these two tissues represent heterogeneous cell populations with varying degrees of lineage commitment. Although human bone marrow stem cells (hBMSCs) and human dental pulp stem cells (hDPSCs) have been extensively studied, it is not yet fully defined if their adipogenic potential differs. Therefore, in this study, we compared the in vitro adipogenic differentiation potential of hDPSCs and hBMSCs. Both cell populations were cultured in adipogenic differentiation media, followed by specific lipid droplet staining to visualise cytodifferentiation. The in vitro differentiation assays were complemented with the expression of specific genes for adipogenesis and osteogenesis–dentinogenesis, as well as for genes involved in the Wnt and Notch signalling pathways. Our findings showed that hBMSCs formed adipocytes containing numerous and large lipid vesicles. In contrast to hBMSCs, hDPSCs did not acquire the typical adipocyte morphology and formed fewer lipid droplets of small size. Regarding the gene expression, cultured hBMSCs upregulated the expression of adipogenic-specific genes (e.g., PPARγ2, LPL, ADIPONECTIN). Furthermore, in these cells most Wnt pathway genes were downregulated, while the expression of NOTCH pathway genes (e.g., NOTCH1, NOTCH3, JAGGED1, HES5, HEY2) was upregulated. hDPSCs retained their osteogenic/dentinogenic molecular profile (e.g., RUNX2, ALP, COLIA1) and upregulated the WNT-specific genes but not the NOTCH pathway genes. Taken together, our in vitro findings demonstrate that hDPSCs are not entirely committed to the adipogenic fate, in contrast to the hBMSCs, which are more effective to fully differentiate into adipocytes. Full article
Show Figures

Graphical abstract

15 pages, 6667 KiB  
Article
Impact of Polydeoxyribonucleotides on the Morphology, Viability, and Osteogenic Differentiation of Gingiva-Derived Stem Cell Spheroids
by Heera Lee, Somyeong Hwa, Sunga Cho, Ju-Hwan Kim, Hye-Jung Song, Youngkyung Ko and Jun-Beom Park
Medicina 2024, 60(10), 1610; https://doi.org/10.3390/medicina60101610 - 1 Oct 2024
Cited by 4 | Viewed by 2607
Abstract
Background and Objectives: Polydeoxyribonucleotides (PDRN), composed of DNA fragments derived from salmon DNA, is widely recognized for its regenerative properties. It has been extensively used in medical applications, such as dermatology and wound healing, due to its ability to enhance cellular metabolic [...] Read more.
Background and Objectives: Polydeoxyribonucleotides (PDRN), composed of DNA fragments derived from salmon DNA, is widely recognized for its regenerative properties. It has been extensively used in medical applications, such as dermatology and wound healing, due to its ability to enhance cellular metabolic activity, stimulate angiogenesis, and promote tissue regeneration. In the field of dentistry, PDRN has shown potential in promoting periodontal healing and bone regeneration. This study aims to investigate the effects of PDRN on the morphology, survival, and osteogenic differentiation of gingiva-derived stem cell spheroids, with a focus on its potential applications in tissue engineering and regenerative dentistry. Materials and Methods: Gingiva-derived mesenchymal stem cells were cultured and formed into spheroids using microwells. The cells were treated with varying concentrations of PDRN (0, 25, 50, 75, and 100 μg/mL) and cultivated in osteogenic media. Cell morphology was observed over seven days using an inverted microscope, and viability was assessed with Live/Dead Kit assays and Cell Counting Kit-8. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity and calcium deposition. The expression levels of osteogenic markers RUNX2 and COL1A1 were quantified using real-time polymerase chain reaction. RNA sequencing was performed to assess the gene expression profiles related to osteogenesis. Results: The results demonstrated that PDRN treatment had no significant effect on spheroid diameter or cellular viability during the observation period. However, a PDRN concentration of 75 μg/mL significantly enhanced calcium deposition by Day 14, suggesting increased mineralization. RUNX2 and COL1A1 mRNA expression levels varied with PDRN concentration, with the highest RUNX2 expression observed at 25 μg/mL and the highest COL1A1 expression at 75 μg/mL. RNA sequencing further confirmed the upregulation of genes involved in osteogenic differentiation, with enhanced expression of RUNX2 and COL1A1 in PDRN-treated gingiva-derived stem cell spheroids. Conclusions: In summary, PDRN did not significantly affect the viability or morphology of gingiva-derived stem cell spheroids but influenced their osteogenic differentiation and mineralization in a concentration-dependent manner. These findings suggest that PDRN may play a role in promoting osteogenic processes in tissue engineering and regenerative dentistry applications, with specific effects observed at different concentrations. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

18 pages, 2910 KiB  
Article
Anti-Inflammatory and Anti-(Lymph)angiogenic Properties of an ABCB5+ Limbal Mesenchymal Stem Cell Population
by Berbang Meshko, Thomas L. A. Volatier, Johanna Mann, Mark A. Kluth, Christoph Ganss, Markus H. Frank, Natasha Y. Frank, Bruce R. Ksander, Claus Cursiefen and Maria Notara
Int. J. Mol. Sci. 2024, 25(17), 9702; https://doi.org/10.3390/ijms25179702 - 7 Sep 2024
Viewed by 2011
Abstract
Corneal transparency and avascularity are essential for vision. The avascular cornea transitions into the vascularized conjunctiva at the limbus. Here, we explore a limbal stromal cell sub-population that expresses ABCB5 and has mesenchymal stem cell characteristics. Human primary corneal stromal cells were enriched [...] Read more.
Corneal transparency and avascularity are essential for vision. The avascular cornea transitions into the vascularized conjunctiva at the limbus. Here, we explore a limbal stromal cell sub-population that expresses ABCB5 and has mesenchymal stem cell characteristics. Human primary corneal stromal cells were enriched for ABCB5 by using FACS sorting. ABCB5+ cells expressed the MSC markers CD90, CD73, and CD105. ABCB5+ but not ABCB5− cells from the same donor displayed evidence of pluripotency with a significantly higher colony-forming efficiency and the ability of trilineage differentiation (osteogenic, adipogenic, and chondrogenic). The ABCB5+ cell secretome demonstrated lower levels of the pro-inflammatory protein MIF (macrophage migration inhibitory factor) as well as of the pro-(lymph)angiogenic growth factors VEGFA and VEGFC, which correlated with reduced proliferation of Jurkat cells co-cultured with ABCB5+ cells and decreased proliferation of blood and lymphatic endothelial cells cultured in ABCB5+ cell-conditioned media. These data support the hypothesis that ABCB5+ limbal stromal cells are a putative MSC population with potential anti-inflammatory and anti-(lymph)angiogenic effects. The therapeutic modulation of ABCB5+ limbal stromal cells may prevent cornea neovascularization and inflammation and, if transplanted to other sites in the body, provide similar protective properties to other tissues. Full article
Show Figures

Figure 1

13 pages, 2542 KiB  
Article
Contribution of Osteoblast and Osteoclast Supernatants to Bone Formation: Determination Using a Novel Microfluidic Chip
by Sin Hyung Park, Hyun-Ju An, Haeri Kim, Insun Song and Soonchul Lee
Int. J. Mol. Sci. 2024, 25(12), 6605; https://doi.org/10.3390/ijms25126605 - 15 Jun 2024
Cited by 2 | Viewed by 1462
Abstract
We fabricated a microfluidic chip (osteoblast [OB]–osteoclast [OC] chip) that could regulate the mixture amounts of OB and OC supernatants to investigate the effect of different supernatant distributions on osteogenesis or osteoclastogenesis. Computer-aided design was used to produce an OB–OC chip from polydimethylsiloxane. [...] Read more.
We fabricated a microfluidic chip (osteoblast [OB]–osteoclast [OC] chip) that could regulate the mixture amounts of OB and OC supernatants to investigate the effect of different supernatant distributions on osteogenesis or osteoclastogenesis. Computer-aided design was used to produce an OB–OC chip from polydimethylsiloxane. A pressure controller was assembled and different blends of OB and OC supernatants were correctly determined. OB and OC supernatants were placed on the upper panels of the OB–OC chip after differentiation for an in vitro evaluation. We then tested the changes in osteogenesis using MC3T3-E1 cells in the middle chambers. We observed that a 75:25 distribution of OB and OC supernatants was the most potent in osteogenesis. We then primed the osteogenic differentiation of MC3T3-E1 cells using an OB–OC mixed supernatant or an OB supernatant alone (supernatant ratios of 75:25 or 100:0, respectively). These cells were placed on the calvarial defect sites of rats. Microcomputed tomography and histological analyses determined a significantly higher bone formation in the group exposed to the OB–OC supernatant at a ratio of 75:25. In this study, we demonstrate the applicability of an OB–OC chip to evaluate the effect of different supernatant distributions of OB and OC. We observed that the highest bone-forming potential was in MC3T3-E1 cells treated with conditioned media, specifically the OB–OC supernatant at a ratio of 75:25. Full article
(This article belongs to the Special Issue Molecular Studies of Bone Biology and Bone Tissue)
Show Figures

Figure 1

Back to TopTop