Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = oscillating wear

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3758 KB  
Article
A Comparative Study of the Microstructure and Properties of Al2CrFe2Ni4Ti1.5 Coatings Fabricated by Oscillating Laser Cladding Under Pulsed and Continuous Modes
by Wei Liu, Dongqing Li, Jian Gu, Guojun Xiao, Yundong Zhao, Zeyang Wang, Hanguang Fu and Kaiming Wang
Coatings 2026, 16(1), 1; https://doi.org/10.3390/coatings16010001 - 19 Dec 2025
Abstract
As high-end equipment manufacturing advances, demand for improved surface performance in critical components has increased. Laser cladding is an advanced surface strengthening technique that affords effective surface modification. During the laser cladding process, obtaining a fine grain microstructure usually helps to enhance the [...] Read more.
As high-end equipment manufacturing advances, demand for improved surface performance in critical components has increased. Laser cladding is an advanced surface strengthening technique that affords effective surface modification. During the laser cladding process, obtaining a fine grain microstructure usually helps to enhance the microhardness, wear resistance, and corrosion resistance of the cladding layer. However, conventional laser cladding often yields coarse columnar grains that limit further performance improvements, so process optimization to achieve grain refinement is necessary. In this study, oscillating laser cladding was combined with a pulsed-wave (PW) laser mode to deposit a fine-grained Al2CrFe2Ni4Ti1.5 high-entropy alloy cladding on Q550 steel substrates. Compared with continuous-wave (CW) laser cladding, the PW mode produced markedly refined grains and concomitant improvements in microhardness, wear resistance, and corrosion resistance. Specifically, the microhardness of the PW cladding layer reached approximately 673.34 HV0.5, the wear volume was approximately 0.06 mm3, the wear rate was approximately 0.21 × 10−4 mm3/N·m, and the corrosion current density decreased to approximately 1.212 × 10−5 A·cm−2. This work presents a novel approach for producing high-performance, wear-resistant, and corrosion-resistant high-entropy alloy cladding layers, and offers both theoretical insight and potential engineering applications. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

31 pages, 7350 KB  
Article
Broadband Wave Energy Harvesting with a Nonlinear 3DOF Magnetic Spring-Based PTO: Design, Testing and Sustainable Design Considerations
by Raju Ahamed, Ian Howard and Kristoffer McKee
Sustainability 2025, 17(23), 10870; https://doi.org/10.3390/su172310870 - 4 Dec 2025
Viewed by 199
Abstract
Ocean waves constitute a vast renewable resource, yet most linear generator-based wave energy converters (WECs) rely on single-degree-of-freedom (SDOF) linear oscillators that exhibit narrow resonance bandwidths and utilise sliding components prone to wear. To address these limitations, this paper presents a nonlinear three-degree-of-freedom [...] Read more.
Ocean waves constitute a vast renewable resource, yet most linear generator-based wave energy converters (WECs) rely on single-degree-of-freedom (SDOF) linear oscillators that exhibit narrow resonance bandwidths and utilise sliding components prone to wear. To address these limitations, this paper presents a nonlinear three-degree-of-freedom (3DOF) magnetic spring power-take-off (PTO) system for broadband wave energy harvesting. The device comprises three axially levitated NdFeB permanent magnets, each coupled to an independent copper coil, forming a compact, friction-free generator column. A coupled electromechanical state-space model was developed and experimentally validated on a laboratory-scale test rig. The 3DOF PTO exhibited three distinct resonance modes at approximately 35, 48, and 69 rad s−1, enabling multi-mode energy capture across a broad frequency range. Under identical excitation (6.5 N amplitude and 3.13 Hz excitation force), the 3DOF configuration achieved a 114.5% increase in RMS voltage compared with the SDOF design and a 44.10% improvement over the 2DOF benchmark, confirming the effectiveness of the coupled resonance mechanism. The levitated magnetic architecture eliminates mechanical contact and lubrication, reducing wear and maintenance while improving long-term reliability in marine environments. A preliminary life-cycle assessment estimated a cradle-to-gate carbon intensity of 40–80 g CO2-eq kWh−1, significantly lower than that of conventional hydraulic PTOs, owing to reduced steel use and recyclable magnet assemblies. The proposed 3DOF magnetic spring PTO thus offers a sustainable, low-maintenance, and high-efficiency solution for next-generation ocean-energy converters. Full article
Show Figures

Figure 1

19 pages, 4823 KB  
Article
Design and Realization of a Mass Damper for a Die Cutting Machine
by Luca Burattini, Massimiliano Palmieri and Luca Landi
Machines 2025, 13(12), 1088; https://doi.org/10.3390/machines13121088 - 26 Nov 2025
Viewed by 241
Abstract
Torsional vibrations in rotating machinery cause mechanical wear, electronic malfunctions, and a reduction in service life, particularly in high-speed industrial systems such as rotors. This study presents the development and integration of a Tuned Mass Damper (TMD) designed to mitigate damage to a [...] Read more.
Torsional vibrations in rotating machinery cause mechanical wear, electronic malfunctions, and a reduction in service life, particularly in high-speed industrial systems such as rotors. This study presents the development and integration of a Tuned Mass Damper (TMD) designed to mitigate damage to a die-cutting system. A theoretical model is formulated, demonstrating how an auxiliary mass coupled to a rotor absorbs energy at a designated frequency. Frequency response function analysis identifies torsional resonances, which are validated through a multibody model providing modal shapes and overall dynamic behavior. The design is carried out in strict compliance with the constraints and limitations of a real packaging machine. The TMD employs anti-vibration mounts, selected and tuned to deliver a required torsional stiffness based on finite element analysis used to determine their optimal radial placement. Experimental testing confirms theoretical predictions: the added inertia significantly reduced the first resonance peak and attenuated rotary torque oscillations, thereby improving the system’s dynamic response. These findings highlight passive torsional damping as a robust and effective approach to improving the rotor’s dynamic response and reducing alternating stresses, which predictively contributes to enhanced operational reliability and reduced machine downtime. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

27 pages, 9610 KB  
Article
Wear Performance of a Physical Vapour Deposition-Coated, Spark Plasma Sintered TiB2/Ti Composite Lubricated with Externally Introduced hBN at Temperatures up to 900 °C
by Remigiusz Michalczewski, Maciej Łuszcz, Marek Kalbarczyk, Zbigniew Słomka, Edyta Osuch-Słomka, Jarosław Molenda, Le Liu, Maksim Antonov, Irina Hussainova and Manel Rodríguez Ripoll
Materials 2025, 18(23), 5274; https://doi.org/10.3390/ma18235274 - 21 Nov 2025
Viewed by 505
Abstract
In this paper, the achieved state-of-the-art understanding regarding the wear behaviour of various PVD (physical vapour deposition) coatings deposited on TiB2/Ti composites produced by SPS (spark plasma sintering) is presented. The objective of this paper is to investigate the wear behaviour [...] Read more.
In this paper, the achieved state-of-the-art understanding regarding the wear behaviour of various PVD (physical vapour deposition) coatings deposited on TiB2/Ti composites produced by SPS (spark plasma sintering) is presented. The objective of this paper is to investigate the wear behaviour of various PVD coatings deposited on TiB2/Ti composites manufactured by SPS, when lubricated with hexagonal boron nitride (hBN) as an external solid lubricant in the range from room temperature up to 900 °C in friction contacts under extreme pressure and with oscillation relative motion. Four multicomponent and multilayer coatings were investigated based on AlCrN and TiCrN coatings with TiCrN-AlCrN/AlCrTiN/Si3N4 interlayers and various external layers (AlCrN, Si3N4, AlCrTiSiN, and AlCrTiSiN gradient with increasing oxygen gradient replacing nitrogen). The wear tests were performed by means of a ball-on-disc SRV friction and wear tester using reciprocating motion of the Si3N4 ball sliding against a coated disc from room temperature up to 900 °C. The best protection against wear and oxidation at higher temperatures (even up to 900 °C) was achieved for coatings with AlCrN and AlTiCrN external layers, and hBN lubricant was used simultaneously. Full article
Show Figures

Figure 1

26 pages, 5435 KB  
Article
Integrative Evaluation of Bead Morphology in Plasma Transferred Arc Cladding Through Orthogonal Arrays and Morphology Index Analysis
by Lihe Jiang, Jinwei Long, Yanhong Wei, Qian Jiang and Fangxuan Wang
Materials 2025, 18(22), 5155; https://doi.org/10.3390/ma18225155 - 13 Nov 2025
Viewed by 285
Abstract
Plasma Transferred Arc (PTA) cladding is a versatile hardfacing technique that produces dense, metallurgically bonded overlays with excellent wear and corrosion resistance. However, optimizing bead shape is challenging due to complex multi-parameter interactions, an issue not fully addressed in existing studies. The bead [...] Read more.
Plasma Transferred Arc (PTA) cladding is a versatile hardfacing technique that produces dense, metallurgically bonded overlays with excellent wear and corrosion resistance. However, optimizing bead shape is challenging due to complex multi-parameter interactions, an issue not fully addressed in existing studies. The bead morphology, defined by height, width, and penetration depth, remains highly sensitive to process parameters, directly affecting dilution and overall coating quality. In this work, single-pass powder PTA cladding was systematically studied using an orthogonal experimental design to assess the effects of arc current, powder feed rate, welding speed, oscillation width, and oscillation speed. A morphology index was proposed to integrate geometric attributes into a single metric for quality evaluation. Regression analysis and finite element simulations based on a Goldak double-ellipsoid heat source revealed that arc current is the dominant factor, where low-to-moderate values (100–115 A) promote wide–shallow pools and higher morphology index values, while higher currents induce excessive penetration and reduced stability. Multi-parameter coupling further indicated that optimal bead morphology is achieved under low-to-moderate current, a high welding speed, relatively high powder feed rate, wide oscillation width, and moderate oscillation speed. A representative optimal condition (100 A, 105 mm·min−1, 35 g·min−1, 10 mm, 2600 mm·min−1) ensured minimal dilution and stable deposition. This integrative framework of orthogonal design, morphology index evaluation, and thermo-fluid simulation provides practical guidelines for parameter optimization and represents a novel combined approach for PTA bead optimization. Full article
Show Figures

Figure 1

25 pages, 8154 KB  
Article
Dynamic Behavior of a Modernized Passenger Coach for Multimodal Transport: Effect of Wheel Wear and Clearance Optimization
by Almas Alizhan, Baitak Apshikur, Murat Alimkulov, Anatoly Goltsev, Valeriy Chernavin and Kunanbayev Almas
Future Transp. 2025, 5(4), 168; https://doi.org/10.3390/futuretransp5040168 - 7 Nov 2025
Viewed by 317
Abstract
This study examines the modernization of the 61-4179 TVZ passenger coach for transporting light automobiles up to 3 tons, addressing the efficiency of multifunctional rail use. The objective was to assess how additional mass–dimensional loading influences strength, load distribution, and the dynamic stability [...] Read more.
This study examines the modernization of the 61-4179 TVZ passenger coach for transporting light automobiles up to 3 tons, addressing the efficiency of multifunctional rail use. The objective was to assess how additional mass–dimensional loading influences strength, load distribution, and the dynamic stability of the vehicle–track system. Finite element simulations in ANSYS Workbench 2021 R2 determined stress distribution, deformations, and safety margins, while multibody dynamics modeling in Universal Mechanism evaluated wheel–rail contact forces, carbody accelerations, and stability coefficients. Field tests on curves with radii of 350 m and 300 m at 60 km/h validated the models. Carbody accelerations were 0.65–0.68 m/s2, below the 0.7 m/s2 regulatory limit; wheelset attack angles remained under 0.01 rad; and derailment safety coefficients were 1.6–1.8, all meeting international standards. Uniform load distribution maintained stability and suppressed oscillations. However, critical scenarios (wheel wear, extreme flange clearance, higher speeds) produced parameters approaching threshold values. To mitigate risks, clearance adjustment per δ0 standards, a 1:20 guard-rail inclination, and optimized crossing profiles are proposed. These measures reduced lateral dynamic forces by 12–15% and raised the strength coefficient by 1.2–1.3. The results confirm technical feasibility, operational safety, and extended service life, supporting sustainable multimodal transport development. Full article
Show Figures

Figure 1

13 pages, 5364 KB  
Article
Improved Machinability of Pockets in a Liquid-Silicon-Infiltrated Silicon Carbide Composite Using Ultrasonic Assistance
by Achim Rösiger, Patricia León-Pérez, Joshua Macken and Ralf Goller
J. Manuf. Mater. Process. 2025, 9(11), 346; https://doi.org/10.3390/jmmp9110346 - 22 Oct 2025
Viewed by 564
Abstract
Surface finishing processes are required to produce the final shape of components made of the silicon-infiltrated silicon carbide composite Cesic® from ECM (Engineered Ceramic Materials GmbH, 85452 Moosinning, Germany). Electrical discharge machining (EDM) is still the most effective method for manufacturing pockets [...] Read more.
Surface finishing processes are required to produce the final shape of components made of the silicon-infiltrated silicon carbide composite Cesic® from ECM (Engineered Ceramic Materials GmbH, 85452 Moosinning, Germany). Electrical discharge machining (EDM) is still the most effective method for manufacturing pockets and mounts in 3D-shaped ceramic satellite components for space applications. NC-grinding is not used, because it results in high grinding loads and rapid tool wear when applied to Cesic®. In contrast to planar machining, tool wear during NC-grinding with small tools is particularly critical, as it alters the tool geometry and consequently causes deviations in the workpiece geometry. Ultrasonic-assisted grinding offers a promising alternative to overcome the low material removal rates and long processing times associated with EDM while simultaneously enhancing tool life, thus enabling more economical and reliable production. In this experimental study, both conventional grinding (CG) and ultrasonic-assisted grinding (UAG) processes are compared and used to machine Cesic®. In order to verify the effect of the ultrasonic vibration, analyses of amplitude and frequency are performed. During machining experiments, the grinding loads are measured. The influence of different machining conditions on surface quality is evaluated concerning the roughness of the machined specimens. Compared to CG, UAG shows lower tool wear, owing to the self-cleaning effects caused by the ultrasonic oscillation of the tool. Consequently, the stability of the NC-grinding process is significantly improved. Full article
Show Figures

Figure 1

25 pages, 5983 KB  
Article
Theoretical Modeling of Light-Fueled Self-Harvesting in Piezoelectric Beams Actuated by Liquid Crystal Elastomer Fibers
by Lin Zhou, Haiming Chen, Wu Bao, Xuehui Chen, Ting Gao and Dali Ge
Mathematics 2025, 13(19), 3226; https://doi.org/10.3390/math13193226 - 8 Oct 2025
Viewed by 438
Abstract
Traditional energy harvesting systems, such as photovoltaics and wind power, often rely on external environmental conditions and are typically associated with contact-based vibration wear and bulky structures. This study introduces light-fueled self-vibration to propose a self-harvesting system, consisting of liquid crystal elastomer fibers, [...] Read more.
Traditional energy harvesting systems, such as photovoltaics and wind power, often rely on external environmental conditions and are typically associated with contact-based vibration wear and bulky structures. This study introduces light-fueled self-vibration to propose a self-harvesting system, consisting of liquid crystal elastomer fibers, two resistors, and two piezoelectric cantilever beams arranged symmetrically. Based on the photothermal temperature evolution, we derive the governing equations of the liquid crystal elastomer fiber–piezoelectric beam system. Two distinct states, namely a self-harvesting state and a static state, are revealed through numerical simulations. The self-oscillation results from light-induced cyclic contraction of the liquid crystal elastomer fibers, driving beam bending, stress generation in the piezoelectric layer, and voltage output. Additionally, the effects of various system parameters on amplitude, frequency, voltage, and power are analyzed in detail. Unlike traditional vibration energy harvesters, this light-fueled self-harvesting system features a compact structure, flexible installation, and ensures continuous and stable energy output. Furthermore, by coupling the light-responsive LCE fibers with piezoelectric transduction, the system provides a non-contact actuation mechanism that enhances durability and broadens potential application scenarios. Full article
(This article belongs to the Special Issue Mathematical Models in Mechanics and Engineering)
Show Figures

Figure 1

17 pages, 8385 KB  
Article
Flow Field Simulation and Experimental Study of Electrode-Assisted Oscillating Electrical Discharge Machining in the Cf-ZrB2-SiC Micro-Blind Hole
by Chuanyang Ge, Sirui Gong, Junbo He, Kewen Wang, Jiahao Xiu and Zhenlong Wang
Materials 2025, 18(17), 3944; https://doi.org/10.3390/ma18173944 - 22 Aug 2025
Viewed by 650
Abstract
In the micro-EDM blind-hole machining of Cf-ZrB2-SiC ceramics, defects such as bottom surface protrusion and machining fillets are often encountered. The implementation of an electrode-assisted oscillating device has proven effective in improving machining outcomes. To unravel the fundamental reasons [...] Read more.
In the micro-EDM blind-hole machining of Cf-ZrB2-SiC ceramics, defects such as bottom surface protrusion and machining fillets are often encountered. The implementation of an electrode-assisted oscillating device has proven effective in improving machining outcomes. To unravel the fundamental reasons behind the optimization enabled by this auxiliary oscillating device, this paper presents fluid simulation research, providing a quantitative comparison of the differences in machining gap flow field characteristics and debris motion behaviors under conditions with and without the assistance of the oscillating device. Firstly, this paper briefly describes the characteristics of Cf-ZrB2-SiC discharge products and flow field deficiencies during conventional machining and introduces the working principle of electrode-assisted oscillation devices to establish the background and objectives of the simulation study. Subsequently, this research established simulation models for both conventional machining and oscillating machining based on actual processing conditions. CFD numerical simulations were conducted to compare flow field differences between conditions with and without auxiliary machining devices. The results demonstrate that, compared to conventional machining, electrode oscillation not only increases the maximum velocity of the working fluid by nearly 32% but also provides a larger debris accommodation space, effectively preventing secondary discharge. Regarding debris agglomeration, oscillating machining resolves the low-velocity zone issues present in conventional modes, increasing debris velocity from 0 mm/s to 7.5 mm/s and ensuring continuous debris motion. Furthermore, the DPM was used to analyze particle distribution and motion velocities, confirming that vortex effects form within the hole under oscillating conditions. These vortices effectively draw bottom debris outward, preventing local accumulation. Finally, from the perspective of debris distribution, the formation mechanisms of micro-hole morphology and the tool electrode wear patterns were explained. Full article
Show Figures

Graphical abstract

11 pages, 1887 KB  
Proceeding Paper
Experimental Evaluation of Coefficient of Friction for Fretting Regimes
by Shumaila Fatima, Shahid Mehmood, Muhammad Awais Hamza, Atta Ur Rahman, Hafiz Samama Sumair, Soban Ullah, Muhammad Ammar Nasir, Muhammad Ehtisham and Husnain Zulfiqar Ali
Mater. Proc. 2025, 23(1), 9; https://doi.org/10.3390/materproc2025023009 - 31 Jul 2025
Viewed by 921
Abstract
This study investigates the coefficient of friction (COF) and wear behavior in fretting regimes—stick, stick–slip, and gross sliding—under dry and oil-lubricated conditions. Fretting tests were conducted by increasing oscillation amplitude from a few micrometers to 48 µm. In dry conditions, displacement amplitude initially [...] Read more.
This study investigates the coefficient of friction (COF) and wear behavior in fretting regimes—stick, stick–slip, and gross sliding—under dry and oil-lubricated conditions. Fretting tests were conducted by increasing oscillation amplitude from a few micrometers to 48 µm. In dry conditions, displacement amplitude initially rose rapidly, stabilizing after about 5 million load cycles, indicating steady-state behavior. The friction ratio (FR) surged early, peaking between 0.7 and 1.0, before declining to stable values, suggesting a shift from adhesive to stable frictional interaction. The minimal slip amplitude confirmed the predominance of the stick regime. Conversely, in oil-lubricated conditions, displacement amplitude stabilized after an initial increase, achieving higher amplitudes than in dry tests. The FR started below 0.2, gradually increasing to a peak around 10,000 load cycles for higher oscillation amplitudes (e.g., 15 µm), reflecting the lubricant’s role in reducing metal-to-metal contact. COF curves in lubricated tests showed smoother transitions and lower peak values compared to dry tests. These findings highlight the lubricant’s effectiveness in minimizing adhesion and enhancing sliding efficiency, offering insights for optimizing material performance in engineering applications. Full article
Show Figures

Figure 1

15 pages, 5642 KB  
Article
Effect of Partial Fibre Laser Processing on the Wear Resistance of NiCrMoFeCSiB Coatings
by Olegas Černašėjus, Jelena Škamat, Łukasz Gierz, Olga Zharkevich and Alexandra Berg
Coatings 2025, 15(3), 323; https://doi.org/10.3390/coatings15030323 - 11 Mar 2025
Viewed by 1050
Abstract
Surface laser processing of metallic materials is known to be effective in improving wear resistance due to microstructure refinement and the associated hardening effect. However, the formation of cracks, which frequently accompanies such processing, remains a challenge. This work focusses on partial laser [...] Read more.
Surface laser processing of metallic materials is known to be effective in improving wear resistance due to microstructure refinement and the associated hardening effect. However, the formation of cracks, which frequently accompanies such processing, remains a challenge. This work focusses on partial laser processing of Ni-based protective coatings as a method that could potentially reduce the risk of crack formation due to lower overall heat input and retaining softer material portions that facilitate stress redistribution. A fibre-optic laser with a wavelength of λ = 976 nm and beam oscillation capability was used. After laser processing at 175 W power, a 250 mm/min processing rate, and a 2 mm oscillation amplitude, coating hardness increased by ~1.49 times reaching 713 ± 19 HV0.2 value. Preheating the samples to 400 °C inhibited crack formation but partially reduced the quenching effect, providing a ~30% increase in coating hardness (631 ± 16NV0.2). The resistance to dry sliding wear was increased by ~2 times and to abrasive wear—by ~2.9 times. Partial laser treatment of 25%, 50%, and 75% of the surface area enhanced the coating’s wear resistance by 1.29, 2.13, and 2.81 time, respectively, indicating that when the processed surface area reaches 50% or more, wear resistance is primarily determined by the hardened regions and to a greater extent than what is expected based on the proportion of the treated area. Full article
Show Figures

Figure 1

23 pages, 1441 KB  
Article
Stability Analysis and Mitigation of Thermo-Hydraulic Oscillations in Multi-Supplier District Heating Systems
by Pascal Friedrich, Kirill Kuroptev, Thanh Huynh and Stefan Niessen
Energies 2025, 18(5), 1126; https://doi.org/10.3390/en18051126 - 25 Feb 2025
Cited by 2 | Viewed by 858
Abstract
In fourth-generation district heating systems (DHSs), the supply temperature of modern heat sources such as heat pumps and waste heat can potentially be reduced by mixing in hot water from combustion-based producers, thereby increasing efficiency and facilitating integration into networks with unrenovated buildings. [...] Read more.
In fourth-generation district heating systems (DHSs), the supply temperature of modern heat sources such as heat pumps and waste heat can potentially be reduced by mixing in hot water from combustion-based producers, thereby increasing efficiency and facilitating integration into networks with unrenovated buildings. However, this approach introduces the risk of thermo-hydraulic oscillations driven by mixing dynamics, transport delays, and mass flow adjustments by consumers. These oscillations can increase wear and cost and may potentially lead to system failure. This study addresses the asymptotic stability of multi-supplier DHSs by combining theoretical analysis and practical validation. Through linearization and Laplace transformation, we derive the transfer function of a system with two suppliers. Using pole-zero analysis, we show that transport delay can cause instability. We identify a new control law, demonstrating that persisting oscillations depend on network temperatures and low thermal inertia and enabling stabilization through careful temperature selection, thorough choice of the slack supplier, or installation of buffer tanks. We validate our findings using dynamic simulations of a nonlinear delayed system in Modelica, highlighting the applicability of such systems to real-world DHSs. These results provide actionable insights for designing robust DHSs and mitigating challenges in multi-supplier configurations by relying on thoughtful system design rather than complex control strategies. Full article
(This article belongs to the Topic District Heating and Cooling Systems)
Show Figures

Figure 1

14 pages, 3330 KB  
Article
Scaling Torsional Drilling Vibrations: A Simulation-Based Comparison of Downscale and Upscale Drill Strings Under Varying Torque Conditions
by Chinedu Ejike, Khizar Abid and Catalin Teodoriu
Appl. Sci. 2025, 15(5), 2399; https://doi.org/10.3390/app15052399 - 24 Feb 2025
Cited by 3 | Viewed by 1620
Abstract
Torsional vibrations pose a serious challenge in drilling operations and can lead to effects such as stick-slip phenomena, tool wear, and reduced drilling efficiency. While previous research has been conducted on torsional vibrations, there is a notable gap in comparative studies that assess [...] Read more.
Torsional vibrations pose a serious challenge in drilling operations and can lead to effects such as stick-slip phenomena, tool wear, and reduced drilling efficiency. While previous research has been conducted on torsional vibrations, there is a notable gap in comparative studies that assess the scalability of downscale models to real-world drilling conditions. This study fills this gap by systematically comparing torsional vibrations in downscale and upscale drill strings under different torque conditions at three different depths, shedding light on scaling effects in drilling vibrations. Numerical simulation was carried out taking into account non-linear interactions, damping effects, and torque variations. The laboratory set-up was for a well length of 15 m and was geometrically scaled to represent an upscale well of 450 m. Certain operational parameters such as rotation speed, torque, density, and friction coefficients were modified to keep realistic dynamic behavior, and all models were run at an identical speed of rotation to enforce consistency. The results show that both the upscale and downscale models exhibited stick-slip behavior, but differences in vibration intensity and stabilization trends point out how scaling affects torsional dynamics. Notably, the upscale bit first faced higher torsional oscillation than the set rotation speed after overcoming stick-slip before stabilizing, whereas the downscale bit went through prolonged stick-slip instability before synchronization. This study enhances the understanding of scaling effects in torsional drilling vibrations, offering a foundation for optimizing experimental setups and improving predictive modeling in drilling operations. Full article
Show Figures

Figure 1

25 pages, 12592 KB  
Article
Effect of the Outer Pipe on Reducing Direct Coupling of the Thin Borehole Radar Probe in Thick Water-Filled Borehole
by Satoshi Ebihara, Raiki Masui, Koki Koyama, Yuki Tsujikawa and Yuto Nishida
Remote Sens. 2025, 17(1), 100; https://doi.org/10.3390/rs17010100 - 30 Dec 2024
Cited by 3 | Viewed by 1203
Abstract
We propose an outer pipe to reduce a direct wave in a thin single-hole borehole radar probe in a thick water-filled borehole. The outer pipe replaces the medium, such as water inside the borehole, with low-permittivity materials, such as air and plastics. According [...] Read more.
We propose an outer pipe to reduce a direct wave in a thin single-hole borehole radar probe in a thick water-filled borehole. The outer pipe replaces the medium, such as water inside the borehole, with low-permittivity materials, such as air and plastics. According to numerical calculations, the cylindrical water layer makes the direct wave from the transmitting loop antenna to the receiving one have significant power and narrow frequency bandwidth. This is caused by the low attenuation of the TE01 surface wave when there is a cylindrical water layer. The MoM analysis showed that wearing the outer pipe on the radar probe decreased the direct wave’s power more than the reflected wave from the subsurface objects, improving the detection of that reflected wave. We realized the radar system with the outer pipe by attaching the two acrylic pipes with different diameters. With this outer pie, we conducted field experiments to estimate the position of metal ore near the borehole in skarn with the loop antenna array type borehole radar. The direct wave having oscillation prevented the detection of the reflected wave from the sphalerite vein in the time domain without the outer pipe. However, attaching the outer pipe highlighted that reflected wave. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Graphical abstract

24 pages, 7920 KB  
Article
Investigation of the Tribological Effects of Nano-Sized Transition Metal Oxides on a Base Oil Containing Pour Point Depressant and Viscosity Modifier
by Ádám István Szabó, Kevin Szabó and Hajnalka Hargitai
ChemEngineering 2025, 9(1), 1; https://doi.org/10.3390/chemengineering9010001 - 27 Dec 2024
Viewed by 1385
Abstract
This study investigates the tribological effects of nano-sized metal oxides (ZrO2, CuO, Y2O3 and TiO2) in Group III type base oil containing 0.3% pour point depressant (PPD) and 5% viscosity modifier (VM) to enhance friction and [...] Read more.
This study investigates the tribological effects of nano-sized metal oxides (ZrO2, CuO, Y2O3 and TiO2) in Group III type base oil containing 0.3% pour point depressant (PPD) and 5% viscosity modifier (VM) to enhance friction and wear performance. The homogenized lubricant samples with varying concentrations of oxide nanoparticles (0.1–0.5 wt%) on a linear oscillating tribometer performed static and dynamic frictional tests. Optical and confocal microscopy surface analysis evaluated the wear of the specimen, and SEM and EDX analyses characterized the wear tracks, nanoparticle distributions, and quantification. The cooperation between PPD and nanoparticles significantly improved friction and wear values; however, the worn surface suffered extensively from fatigue wear. The collaboration between VM and nanoparticles resulted in a nanoparticle-rich tribofilm on the contact surface, providing excellent wear resistance that protects the component while also favorably impacting friction reduction. This study found CuO reduced wear volume by 85% with PPD and 43% with VM at 0.5 wt%, while ZrO2 achieved 80% and 63% reductions, respectively. Y2O3 reduced wear volume by 82% with PPD, and TiO2 reduced friction by 20% with VM. These nanoparticles enhanced tribological performance at optimal concentrations, but high concentrations caused tribofilm instability, highlighting the need for precise optimization. Full article
Show Figures

Figure 1

Back to TopTop