Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = orthotropic deck

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 16673 KiB  
Article
Investigation of the Effect on Fatigue Life Enhancement of Rib-to-Deck Welded Joints of Orthotropic Steel Deck by Extended Peening Treatment Utilization
by Yuki Banno, Niamatullah Ahmadzai and Koji Kinoshita
Metals 2025, 15(7), 753; https://doi.org/10.3390/met15070753 - 4 Jul 2025
Viewed by 184
Abstract
This study aimed to investigate the effect of the fatigue life enhancement of the rib-to-deck welded joints of orthotropic steel decks (OSDs) by extended peening treatment utilization. First, hammer peening was conducted around the weld bead of the test specimens of OSDs. It [...] Read more.
This study aimed to investigate the effect of the fatigue life enhancement of the rib-to-deck welded joints of orthotropic steel decks (OSDs) by extended peening treatment utilization. First, hammer peening was conducted around the weld bead of the test specimens of OSDs. It was found that the treatment on both the weld toes of the deck and the U-rib plates caused a deformation of the U-rib plate, i.e., peen forming. Then, fatigue tests were performed under R = 0.0, using an out-of-plane bending fatigue test machine by applying several magnitudes of pre-loadings, and the results showed that the specimens with peen forming had one JSSC class higher than the deck plate only. Finally, numerical simulations of peening treatment and peen forming were performed to reveal the reason for higher fatigue life enhancement by peen forming. Simulation results showed that peen forming would introduce about three times higher compressive residual stress at the weld root of the deck plate side than the peening treatment on the deck plate only, and induced compressive residual stresses around the weld root by peen forming were kept even after applying the pre-loadings. Therefore, it can be concluded that peen forming, as an extended peening treatment utilization, is highly effective in enhancing the fatigue life of OSDs. Full article
Show Figures

Figure 1

25 pages, 150744 KiB  
Article
Permanent Deformation Mechanism of Steel Bridge Deck Pavement Using Three-Dimensional Discrete–Continuous Coupling Method on the Mesoscopic Scale
by Xingchen Min and Yun Liu
Appl. Sci. 2025, 15(11), 6187; https://doi.org/10.3390/app15116187 - 30 May 2025
Viewed by 346
Abstract
Unlike conventional asphalt pavements, steel bridge deck pavement (SBDP) is directly constructed on orthotropic steel deck plates characterized by relatively low flexural stiffness, rendering it more susceptible to rutting deformation under elevated temperatures and repeated loading. To investigate the mesoscopic mechanism underlying rutting [...] Read more.
Unlike conventional asphalt pavements, steel bridge deck pavement (SBDP) is directly constructed on orthotropic steel deck plates characterized by relatively low flexural stiffness, rendering it more susceptible to rutting deformation under elevated temperatures and repeated loading. To investigate the mesoscopic mechanism underlying rutting formation in SBDP, a three-dimensional (3D) discrete–continuous coupled model of a steel–asphalt composite structural specimen (SACSS) was developed and employed to conduct virtual rutting simulations, which were subsequently validated against laboratory test results. The impact of surface cracking on rutting progression was then explored. In addition, the spatial motion and contact interactions of particles during the rutting process were monitored and analyzed. The influence of steel plate stiffness on the rutting resistance of SBDP was also evaluated. The numerical analyses yielded the following key findings: (1) Under three steel–asphalt interface bonding (SAIB) failure conditions (0%, 17%, and 100%), the virtual simulation results exhibited strong agreement with experimental trends in rutting depth over time, thereby confirming the validity and reliability of the coupled modeling approach. (2) At 30 °C, the presence of surface cracks is found to increase the rutting depth by 35.77%, whereas this effect is mitigated at 45 °C. (3) The meso-mechanical mechanisms governing rutting deformation in SBDP are further elucidated under different temperature conditions. (4) Moreover, at elevated temperatures, the use of a steel plate with an elastic modulus of 206 MPa effectively inhibit rutting development. This study offers mesoscopic-level insights into the effects of temperature, SAIB conditions, steel plate stiffness, and surface cracking on the macroscopic rutting behavior of SBDP, thereby providing a theoretical foundation for the design and optimization of long-lasting SBDPs. Full article
Show Figures

Figure 1

19 pages, 7082 KiB  
Article
The Fatigue Life Prediction of Welded Joints in Orthotropic Steel Bridge Decks Considering Weld-Induced Residual Stress and Its Relaxation Under Vehicle Loads
by Wen Zhong, Youliang Ding, Yongsheng Song, Sumei Liu, Mengyao Xu and Xin Wang
Buildings 2025, 15(10), 1644; https://doi.org/10.3390/buildings15101644 - 14 May 2025
Viewed by 499
Abstract
The welded joints in steel bridges have a complicated structure, and their fatigue life is mainly determined by the real stress under the coupling effect of vehicle load stress, as well as weld-induced residual stress and its relaxation. Traditional fatigue analysis methods are [...] Read more.
The welded joints in steel bridges have a complicated structure, and their fatigue life is mainly determined by the real stress under the coupling effect of vehicle load stress, as well as weld-induced residual stress and its relaxation. Traditional fatigue analysis methods are inadequate for effectively accounting for weld-induced residual stress and its relaxation, resulting in a significant discrepancy between the predicted fatigue life and the actual fatigue cracking time. A fatigue damage assessment model of welded joints was developed in this study, considering weld-induced residual stress and its relaxation under vehicle load stress. A multi-scale finite element model (FEM) for vehicle-induced coupled analysis was established to investigate the weld-induced initial residual stress and its relaxation effect associated with cyclic bend fatigue due to vehicles. The fatigue damage assessment, considering the welding residual stress and its relaxation, was performed based on the S–N curve model from metal fatigue theory and Miner’s linear damage theory. Based on this, the impact of variations in traffic load on fatigue life was forecasted. The results show that (1) the state of tension or compression in vehicle load stress notably impacts the residual stress relaxation effect observed in welded joints, of which the relaxation magnitude of the von Mises stress amounts to 81.2% of the average vehicle load stress value under tensile stress working conditions; (2) the predicted life of deck-to-rib welded joints is 28.26 years, based on traffic data from Jiangyin Bridge, which is closer to the monitored fatigue cracking life when compared with the Eurocode 3 and AASHTO LRFD standards; and (3) when vehicle weight and traffic volume increase by 30%, the fatigue life significantly drops to just 9.25 and 12.13 years, receptively. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 8649 KiB  
Article
Crack Identification for Bridge Condition Monitoring Combining Graph Attention Networks and Convolutional Neural Networks
by Feiyu Chen, Tong Tong, Jiadong Hua and Chun Cui
Appl. Sci. 2025, 15(10), 5452; https://doi.org/10.3390/app15105452 - 13 May 2025
Viewed by 466
Abstract
Orthotropic steel box girders and steel bridge decks are commonly applied to bridges. Because of the coupling of original defects and alternating forces, fatigue cracks are likely to appear in the structures. In order to ensure the life span of bridges, methods for [...] Read more.
Orthotropic steel box girders and steel bridge decks are commonly applied to bridges. Because of the coupling of original defects and alternating forces, fatigue cracks are likely to appear in the structures. In order to ensure the life span of bridges, methods for automatic crack identification are needed. In this paper, we present a novel approach for crack detection and bridge condition monitoring by integrating convolutional neural networks (CNNs) with graph attention networks (GATs). At first, the original large-sized images are divided into small-sized patches, and these patches are input into a CNN architecture to extract features by decreasing dimensions. Then, the output features of the CNN model are considered as nodes of the graph. Considering the spatial relationship among the patches in the original image, the node from the central patch is connected to the nodes from its neighboring patches to constitute a graph structure, which can be input into a GAT model to learn the relationship among the nodes and update the features. Finally, the output features of GAT can judge whether the central patch contains cracks. Forty original large-sized images are cropped into abundant patches for the training of the CNN-GAT model. With the use of a sliding window technique, the trained CNN-GAT model is capable of finding the patches containing cracks in the test images with large sizes. From the test results, the location and the size of the cracks are exhibited, which indicates that the proposed approach is effective for crack identification in bridge structures. Full article
(This article belongs to the Special Issue Machine Learning in Vibration and Acoustics 2.0)
Show Figures

Figure 1

32 pages, 15795 KiB  
Article
Flexural Behavior of Orthotropic Steel–LUHPC Composite Bridge Decks: Experimental and Numerical Study
by Zebene Worku, Muyu Liu, Xin Wang and Guangzu Sheng
Materials 2025, 18(9), 2106; https://doi.org/10.3390/ma18092106 - 3 May 2025
Viewed by 724
Abstract
Orthotropic Steel Bridge Decks (OSBDs) are often used in long-span bridges due to their high performance and ease of installation. However, issues such as fatigue cracking and the deterioration of asphalt overlays due to their local stiffness inefficiency necessitate innovative solutions. Orthotropic Steel–Ultra-High-Performance [...] Read more.
Orthotropic Steel Bridge Decks (OSBDs) are often used in long-span bridges due to their high performance and ease of installation. However, issues such as fatigue cracking and the deterioration of asphalt overlays due to their local stiffness inefficiency necessitate innovative solutions. Orthotropic Steel–Ultra-High-Performance Concrete Composite Bridge Decks (OS-UHPC-CBDs) have enhanced OSBD performance; however, they have disadvantages such as a heavier weight and high initial cost requirements. In this study, an Orthotropic Steel–Lightweight Ultra-High-Performance Concrete Composite Bridge Deck (OS-LUHPC-CBD) is proposed as a solution that integrates a novel Lightweight Ultra-High-Performance Concrete (LUHPC) with a high-strength Q425 steel deck and trapezoidal ribs. A comprehensive experimental investigation, including full-scale four-point bending tests, was undertaken to evaluate the flexural behavior of the proposed OS-LUHPC-CBD compared to the OS-UHPC-CBD. The experimental results show that the proposed OS-LUHPC-CBD has equivalent flexural capacity and improved ductility compared to the OS-UHPC-CBD. This study found the proposed OS-LUHPC-CBD to be a promising solution for application in long-span bridges with an 8.4% lighter weight and a 6.8% lower cost, and with the same ease of construction as OS-UHPC-CBDs. A finite element model with a strong correlation was developed and validated through the experimental results. Based on this, a parametric study was undertaken on the effect of the key geometric design parameters on the flexural capacity of the OS-LUHPC-CBD. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

17 pages, 13938 KiB  
Article
Study on the Impact of Diaphragm Deformation on Fatigue Performance and Maintenance Strategies in Steel Bridge Decks
by Chuanxi Li, Yue Yao, Zhendong Li and Bohai Ji
Appl. Sci. 2025, 15(8), 4245; https://doi.org/10.3390/app15084245 - 11 Apr 2025
Viewed by 449
Abstract
Localized diaphragm (transversal plate) deformation and buckling were identified at the arc notch region during structural inspections of an operational steel bridge. To evaluate the potential structural consequences, alterations in the fatigue performance and stress characteristics induced by this deformation were systematically investigated [...] Read more.
Localized diaphragm (transversal plate) deformation and buckling were identified at the arc notch region during structural inspections of an operational steel bridge. To evaluate the potential structural consequences, alterations in the fatigue performance and stress characteristics induced by this deformation were systematically investigated through in situ monitoring combined with numerical simulation. It was demonstrated that the global load-transfer mechanism of the orthotropic steel deck (OSD) system remained minimally compromised. While within the localized deformation zone, the stress magnitudes at the diaphragm-to-U-rib (DU) welds were observed to be significantly amplified, and the stress concentration zones were found to be relocated to geometrically depressed regions. Based on the deformation-stage mechanical responses, the strategic employment of residual compressive stress generated through controlled hammer peening was proposed for counteracting stress escalation at DU welds recently caused by diaphragm buckling, whereas steel plate reinforcement strategies were recommended for mitigating progressive deformation development. Full article
Show Figures

Figure 1

23 pages, 6036 KiB  
Article
Fatigue Assessment of Rib–Deck Welded Joints in Orthotropic Steel Bridge Decks Under Traffic Loading
by Bruno Villoria, Sudath C. Siriwardane and Jasna Bogunovic Jakobsen
CivilEng 2025, 6(1), 7; https://doi.org/10.3390/civileng6010007 - 2 Feb 2025
Viewed by 1462
Abstract
Rib–deck (RD) welded joints in orthotropic steel bridge decks are prone to different fatigue crack mechanisms. Standard fatigue design methods are inadequate for some of these mechanisms under multiaxial non-proportional loading conditions. This study presents a framework to assess fatigue damage at RD [...] Read more.
Rib–deck (RD) welded joints in orthotropic steel bridge decks are prone to different fatigue crack mechanisms. Standard fatigue design methods are inadequate for some of these mechanisms under multiaxial non-proportional loading conditions. This study presents a framework to assess fatigue damage at RD welded joints, considering the different crack mechanisms based on the equivalent structural stress method and its extension to multiaxial non-proportional fatigue, which is the path-dependent maximum stress range (PDMR) cycle counting algorithm. The method is validated for uniaxial loading by using experimental data from the literature. Additionally, non-proportional fatigue damage at RD welded joints of a suspension bridge girder is investigated under simulated random traffic loading. The analyses reveal the limitations of the nominal stress approach to account for complex stress field variations. The PDMR method, more suited to capture the stress path dependency of non-proportional fatigue damage than the hot spot and critical plane-based methods, predicts higher fatigue damage. A comprehensive fatigue test campaign of full-scale RD welded joints is necessary to better understand their fatigue behaviour under multiaxial loading. Until more experimental data are available, the PDMR method is recommended for fatigue verifications of welded RD joints as it yields safer predictions. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

16 pages, 11589 KiB  
Article
Experimental and Numerical Investigation of Welding Residual Stress of U-Rib Joints in Orthotropic Steel Bridge Decks
by Zhiqiang Huang, Wenxue Su, Jun Shi, Tao Li and Hongyou Cao
Buildings 2025, 15(2), 262; https://doi.org/10.3390/buildings15020262 - 17 Jan 2025
Viewed by 753
Abstract
The residual stresses at U-rib joints have a significant adverse impact on the structure. Therefore, it is necessary to conduct research and analysis on their residual stresses. Based on experimental testing and thermal elastic-plastic finite element analysis (FEA), this study investigates the residual [...] Read more.
The residual stresses at U-rib joints have a significant adverse impact on the structure. Therefore, it is necessary to conduct research and analysis on their residual stresses. Based on experimental testing and thermal elastic-plastic finite element analysis (FEA), this study investigates the residual stress (RS) of a U-rib joint using gas metal arc welding in an orthotropic steel bridge deck (OSBD). X-ray diffraction (XRD) was adopted to measure the RS of the U-rib welds, and the measurement results were utilized to verify the FEA. The effects of the weld root gap, weld penetration, and weld groove angle on the RS of U-rib welds were investigated by using FEA. The weld root gap had minor effect on the RS of the U-rib welds. With an increase in weld penetration, the peak values of the transverse tensile RS at both the deck plate and the U-rib weld toes increased. Additionally, an enlargement of the groove angle also resulted in a notable increase in the transverse tensile RS peak at the deck plate weld toe. Full article
Show Figures

Figure 1

24 pages, 11032 KiB  
Article
Systematic Rehabilitation Techniques and Dynamic Analysis of Bridge Deck System with Concrete-Filled Steel Tube Arches
by Jie Cai, Zikang Zou and Zhipeng Wang
Buildings 2024, 14(12), 3891; https://doi.org/10.3390/buildings14123891 - 5 Dec 2024
Viewed by 1084
Abstract
Due to prolonged heavy traffic, the Wuhan Changfeng Bridge has experienced extensive cracking in its main girder structure. Of the bridge’s 60 crossbeams, 51 (85%) have developed cracks, while the deck pavement over the steel beams has accumulated a total of 648.8 m [...] Read more.
Due to prolonged heavy traffic, the Wuhan Changfeng Bridge has experienced extensive cracking in its main girder structure. Of the bridge’s 60 crossbeams, 51 (85%) have developed cracks, while the deck pavement over the steel beams has accumulated a total of 648.8 m of transverse cracks. Additionally, two T-beams exhibit structural vertical cracks of 0.3 mm at the mid-span, exceeding the maximum allowable width of 0.2 mm. This recurrent pavement damage not only compromises driving safety and comfort but also increases maintenance costs. To address these issues, this paper proposes a systematic upgrade plan for the bridge deck system. The plan involves welding additional high transverse beams onto the existing steel transverse beams, removing the original deck slab and replacing it entirely with an orthotropic steel deck. Additionally, two new steel longitudinal beams will be installed. The original simply supported concrete longitudinal beams in the deck will be transformed into an integrally connected continuous steel structure deck system. Using Midas/Civil finite element software, 3D models of Changfeng Bridge, pre and post renovation, were created to analyze the overall dynamic characteristics under five loading scenarios. The ambient vibration test and vehicle field test were conducted to measure the bridge’s natural frequency and impact factor, verifying the dynamic performance and driving comfort of the bridge after the upgrade. The results indicate that the retrofitted bridge experienced a 19.9% increase in overall stiffness. The dynamic performance of the bridge structure was significantly enhanced, and the most notable improvement was observed in dynamic stress, which decreased by 19.4% to 76.9%. Additionally, the steel deck reduced the bridge’s dead load, and the driving comfort on the bridge deck improved. Full article
(This article belongs to the Special Issue Inspection, Maintenance and Retrofitting of Existing Buildings)
Show Figures

Figure 1

21 pages, 4863 KiB  
Article
Mechanical Response of Hot-Mixed Epoxy Asphalt Concrete Steel Deck Pavement Under Thermal and Load
by Xuan Xu, Hui Zhang, Lei Cui, Ruilin Luo, Guoqing Li, Min Li and Peiwei Gao
Buildings 2024, 14(11), 3482; https://doi.org/10.3390/buildings14113482 - 31 Oct 2024
Viewed by 705
Abstract
In recent years, fatigue cracking in orthotropic steel bridge deck pavements has become a significant concern, so the investigation of the mechanical response of the pavement layer has become a central focus in pavement structure design. This experiment subjected a full-scale specimen to [...] Read more.
In recent years, fatigue cracking in orthotropic steel bridge deck pavements has become a significant concern, so the investigation of the mechanical response of the pavement layer has become a central focus in pavement structure design. This experiment subjected a full-scale specimen to a constant amplitude dynamic load of 60 kN to 300 kN over 2 million cycles. Throughout the testing, a circulating water bath elevated the temperature of the pavement layer from 15 °C to 50 °C. Key locations were monitored for strain and deflection data, facilitating an investigation into the mechanical response of the epoxy asphalt pavement system under the effects of temperature and load. The results indicate that the maximum transverse strain at the bottom of the steel deck occurs at the U-rib weld aligned with the load center, reaching 190% of the initial loading strain. Meanwhile, the maximum transverse strain on the pavement surface is observed at the U-rib weld adjacent to the loaded area, measuring 167% of the initial strain. The maximum longitudinal strain is lower than the maximum transverse strain. In the load zone, the longitudinal strain between the U-ribs exceeds that at the U-rib weld. Both transverse strain and relative deflection increase as the load intensifies. The relationship between transverse strain and applied load is characterized by an exponential function, while deflection exhibits a cubic relationship with the applied load. Elevated temperatures also contribute to increased transverse strains at both the bottom of the steel deck and the pavement surface, following an exponential trend. Relative deflection is primarily influenced by the applied load and remains relatively unaffected by temperature variations. When accounting for the coupling of load and temperature, the maximum transverse strains at both the bottom of the steel deck and the pavement surface can be modeled as an exponential function of the independent variables: load and temperature. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 19918 KiB  
Article
Experimental and Numerical Simulation Study on Residual Stress of Single-Sided Full-Penetration Welded Rib-to-Deck Joint of Orthotropic Steel Bridge Deck
by Jiangning Pei, Xinzhi Wang, Songlin Qin, Guangpeng Xu, Fulin Su, Shengbao Wang and Zhonglong Li
Buildings 2024, 14(9), 2641; https://doi.org/10.3390/buildings14092641 - 26 Aug 2024
Cited by 4 | Viewed by 1115
Abstract
Orthotropic steel bridge decks (OSDs) play a key role in long-span bridges, and full-penetration welding technology is crucial to improve their structural performance. This study proposes an innovative single-sided full-penetration welding rib-to-deck (RTD) joint technology. The accuracy of the numerical simulation in predicting [...] Read more.
Orthotropic steel bridge decks (OSDs) play a key role in long-span bridges, and full-penetration welding technology is crucial to improve their structural performance. This study proposes an innovative single-sided full-penetration welding rib-to-deck (RTD) joint technology. The accuracy of the numerical simulation in predicting the temperature field and stress field was verified by the combination of an experimental and numerical simulation, and the welding residual stress (WRS) of single-sided full-penetration welded RTD joints was analyzed. In addition, the effects of different welding parameters and RTD joint geometry on the WRS are discussed. The results show that the experimental results are consistent with the simulation results, indicating that the single-sided full-penetration welding technology without a groove is feasible. The WRS shows a peak tensile stress near the weld, which gradually decreases and transforms into compressive stress as the distance increases. In addition, the WRS of the roof surface and the U-rib surface increases slightly with the increase in the roof thickness and the welding speed. The research results are of great significance to optimize the welding process, improve the fatigue performance, and prolong the service life of steel bridge decks, providing a new technical method for bridge engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 3249 KiB  
Article
Bending Fatigue Properties of Ultra-High Toughness Cementitious Composite (UHTCC)
by Pengju Wang, Kaijian Huang, Gong Shen, Yixin Miao and Jiansheng Wu
Materials 2024, 17(13), 3128; https://doi.org/10.3390/ma17133128 - 26 Jun 2024
Cited by 1 | Viewed by 1377
Abstract
Ultra-High Toughness Cementitious Composite (UHTCC) represents a composite material meticulously engineered on the foundation of micromechanical principles. The multi-crack cracking and strain-hardening characteristics of UHTCC enable it to be applied to orthotropic steel decks to control the crack width. Different from most studies [...] Read more.
Ultra-High Toughness Cementitious Composite (UHTCC) represents a composite material meticulously engineered on the foundation of micromechanical principles. The multi-crack cracking and strain-hardening characteristics of UHTCC enable it to be applied to orthotropic steel decks to control the crack width. Different from most studies which only focus on hybrid fiber or fatigue characteristics, this paper studies the influence of hybrid fiber content on static mechanical properties, flexural toughness, and flexural fatigue characteristics of UHTCC under different stress levels. The compressive and flexural strength, bending toughness, and fatigue damage of UHTCC under different fiber ratios were compared, and the fatigue properties of hybrid fiber UHTCC were verified. The results reveal that hybrid fiber exerts a more pronounced effect on toughness, augmenting the maximum folding ratio by 23.7%. Single-doped steel fiber UHTCC exhibits a characteristic strain-softening phenomenon attributable to inadequate fiber content, whereas the bending toughness index of hybrid fiber UHTCC surpasses that of SF1.5P0 by 18.6%. Under low-stress conditions, UHTCC demonstrates a nearly threefold increase in bending fatigue life with a mere 1% steel fiber content, while the influence of polyvinyl alcohol (PVA) fiber on fatigue life is more significant: with an increase of only 1/5 volume content, the fatigue life increased by 29.8%, reaching a maximum increase of 43.2% at 1/4 volume content. Furthermore, the fatigue damage accumulation curve of UHTCC follows a three-stage inverted S-shaped trajectory. The inclusion of PVA fiber facilitates early initiation of stable cracking during the fatigue failure process, thereby advancing the entire strain stability development stage and mitigating external load forces through the proliferation of micro-cracks. Consequently, compared to SF1P0, the ε0 of SF1P5 experiences a significant increase, reaching 143.43%. Full article
(This article belongs to the Special Issue Sustainable Recycling Techniques of Pavement Materials II)
Show Figures

Figure 1

14 pages, 6637 KiB  
Article
Monitoring Fatigue Damage of Orthotropic Steel Decks Using Nonlinear Ultrasonic Waves
by Jiahe Liu, Fangtong Zheng, Wei Shen and Dongsheng Li
Materials 2024, 17(12), 2792; https://doi.org/10.3390/ma17122792 - 7 Jun 2024
Cited by 1 | Viewed by 1323
Abstract
Orthotropic steel decks (OSDs) are commonly used in the construction of bridges due to their load-bearing capabilities. However, they are prone to fatigue damage over time due to the cyclic loads from vehicles. Therefore, the early structural health monitoring of fatigue damage in [...] Read more.
Orthotropic steel decks (OSDs) are commonly used in the construction of bridges due to their load-bearing capabilities. However, they are prone to fatigue damage over time due to the cyclic loads from vehicles. Therefore, the early structural health monitoring of fatigue damage in OSDs is crucial for ensuring bridge safety. Moreover, Lamb waves, as elastic waves propagating in OSD plate-like structures, are characterized by their long propagation distances and minimal attenuation. This paper introduces a method of emitting high-energy ultrasonic waves onto the OSD surface to capture the nonlinear Lamb waves formed, thereby calculating the nonlinear parameters. These parameters are then correlated with the fatigue damage endured, forming a damage index (DI) for monitoring the fatigue life of OSDs. Experimental results indicate that as fatigue damage increases, the nonlinear parameters exhibit a significant initial increase followed by a decrease. The behavior is distinct from the characteristic parameters of linear ultrasound (velocity and energy), which also exhibit changes but to a relatively smaller extent. The proposed DI and fatigue life based on nonlinear parameters can be fitted with a Gaussian curve, with the R-squared value of the fitting curve being close to 1. Additionally, this paper discusses the influence of rib welds within the OSDs on the DI, whereby as fatigue damage increases, it enlarges the value of the nonlinear parameters without altering their trend. The proposed method provides a more effective approach for monitoring early fatigue damage in OSDs. Full article
Show Figures

Figure 1

17 pages, 12063 KiB  
Article
Experimental and Numerical Analyses of Timber–Steel Footbridges
by Jozef Gocál, Josef Vičan, Jaroslav Odrobiňák, Richard Hlinka, František Bahleda and Agnieszka Wdowiak-Postulak
Appl. Sci. 2024, 14(7), 3070; https://doi.org/10.3390/app14073070 - 5 Apr 2024
Cited by 2 | Viewed by 1529
Abstract
In addition to traditional building materials, such as steel and concrete, wood has been gaining increasing prominence in recent years. In the past, the use of wood was limited due to its susceptibility to damage by fungi, insects, and temperature. These shortcomings were [...] Read more.
In addition to traditional building materials, such as steel and concrete, wood has been gaining increasing prominence in recent years. In the past, the use of wood was limited due to its susceptibility to damage by fungi, insects, and temperature. These shortcomings were gradually eliminated as the quality of wood processing increased and thanks to modern high-quality insulating and protective materials. The return to the utilisation of this natural building material was also supported by the development of new wood-based materials, such as glued laminated wood, and new types of mechanical fasteners, as well as by the introduction of new design methods provided in the Eurocodes. Within this context, this paper focuses on using wood in transport infrastructure, especially as the basic material for footbridges and small road bridges. Combined timber–steel bridges emerge as a very effective type of superstructure in contemporary road bridges and footbridges, especially in areas with natural exposure. Usually, wood is used for the main bridge girders, while steel is preferred for bridge deck elements—stringers and cross-girders. The results of this parametric study offer optimal structural solutions for footbridges with spans of 12.0–24.0 m, reflecting satisfactory static and dynamic footbridge behaviour. Particular attention is paid to a problematic structural detail—the connection between the steel cross-girder and the timber main girder. Firstly, this connection’s characteristics were measured experimentally using nine laboratory samples made of two glued laminated timber blocks, simulating main girders connected with a hot-rolled steel cross-girder. The connection was prepared in three variants, with different heights of the end plates and different numbers of bolts. Subsequently, these characteristics were computed using two numerical FEM models. The first model was created using SCIA Engineer software with a combination of shell and beam finite elements. The second, more sophisticated model was created in the ANSYS software environment using 3D finite elements, allowing us to better take into account the plasticity and orthotropic properties of wood and the points of contact between the individual members. Finally, the experimental results produced by sample testing in the laboratory were compared to the outputs of FEM numerical studies. Full article
Show Figures

Figure 1

19 pages, 4663 KiB  
Article
Methods to Increase Fatigue Life at Rib to Deck Connection in Orthotropic Steel Bridge Decks
by Diwakar KC, Bhim Kumar Dahal and Harish Dangi
CivilEng 2024, 5(1), 288-306; https://doi.org/10.3390/civileng5010015 - 20 Mar 2024
Viewed by 2951
Abstract
Orthotropic steel bridge decks (OSDs) are very popular all over the world because of the low dead load, high stiffness in the longitudinal direction, high strength ratio to weight, and can be used in various types of bridges. The life of these bridges [...] Read more.
Orthotropic steel bridge decks (OSDs) are very popular all over the world because of the low dead load, high stiffness in the longitudinal direction, high strength ratio to weight, and can be used in various types of bridges. The life of these bridges is affected by fatigue cracks in different portions. One of major areas where the fatigue cracks appear in these bridges is rib-to-deck connection. In this research finite element analysis is carried out by using ABAQUS/CAE 2022 software to determine the ways to increase the fatigue life at rib to deck connection in OSDs. In the first part, smaller models are simulated; stress concentration is analyzed and hot spot stress (HSS) is calculated according to International Institute of Welding (IIW) and Det Norske Veritas (DNV) recommendations. In the second part, a parametric analysis is carried out to analyze the effect of weld penetration, thickness of deck, thickness of rib and rib to deck connection type. In the third part, simulation of models similar to the real field is carried out to determine whether the double welded connections are better than single welded connections. Different models are analyzed for different load cases like single wheel load, double wheel load and also the position of the wheels is changed. The boundary conditions are changed to analyze whether the boundary condition has any significant effect on the result obtained. It is found that thicker decks, thinner ribs, and low penetrated welded connections reduce the stress concentrations at rib to deck connections which ultimately increase fatigue life. Among the parameters examined, deck thickness is the most important parameter. It is found that the percentage of stress increase with percentage decrease in deck thickness follows a power relation. The overall fatigue life of double welded connection is excepted to be lower since the stress concentration is maximum at the weld toe at deck on the outer side of the closed stiffener; however, if the cracks initiate on the inner side of closed stiffener, the cracks at the weld root of single welded connection can propagate much rapidly than the cracks initiating on the inner side of the closed stiffener at the weld toe, thereby reducing the fatigue life of the single-welded specimen significantly. Full article
(This article belongs to the Special Issue Feature Papers in CivilEng)
Show Figures

Figure 1

Back to TopTop