Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = orthosis design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3980 KiB  
Article
Simulation–Driven Design of Ankle–Foot Orthoses Using DoE Optimization and 4D Visualization
by Marta Carvalho and João Milho
Biomechanics 2025, 5(3), 55; https://doi.org/10.3390/biomechanics5030055 - 1 Aug 2025
Viewed by 84
Abstract
Background/Objectives: The simulation of human movement offers transformative potential for the design of medical devices, particularly in understanding the cause–effect dynamics in individuals with neurological or musculoskeletal impairments. This study presents a simulation-driven framework to determine the optimal ankle–foot orthosis (AFO) stiffness [...] Read more.
Background/Objectives: The simulation of human movement offers transformative potential for the design of medical devices, particularly in understanding the cause–effect dynamics in individuals with neurological or musculoskeletal impairments. This study presents a simulation-driven framework to determine the optimal ankle–foot orthosis (AFO) stiffness for mitigating the risk of ankle sprains due to excessive subtalar inversion during high-impact activities, such as landing from a free fall. Methods: We employed biomechanical simulations to assess the influence of translational stiffness on subtalar inversion control, given that inversion angles exceeding 25 degrees are strongly correlated with injury risk. Simulations were conducted using a musculoskeletal model with and without a passive AFO; the stiffness varied in three anatomical directions. A Design of Experiments (DoE) approach was utilized to capture nonlinear interactions among stiffness parameters. Results: The results indicated that increased translational stiffness significantly reduced inversion angles to safer levels, though direction–dependent effects were noted. Based on these insights, we developed a 4D visualization tool that integrates simulation data with an interactive color–coded interface to depict ”safe design” zones for various AFO stiffness configurations. This tool supports clinicians in selecting stiffness values that optimize both safety and functional performance. Conclusions: The proposed framework enhances clinical decision-making and engineering processes by enabling more accurate and individualized AFO designs. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

11 pages, 1713 KiB  
Article
Night-Time Bracing Can Reduce Pain in Adults with Scoliosis: Six-Month Results of a Retrospective Controlled Study
by Fabio Zaina, Martina Poggio, Sabrina Donzelli, René Castelein, Francesca Di Felice and Stefano Negrini
J. Clin. Med. 2025, 14(13), 4493; https://doi.org/10.3390/jcm14134493 - 25 Jun 2025
Viewed by 887
Abstract
Background: Severe scoliosis can lead to chronic low back pain (cLBP) and may progress in adulthood. While day-time bracing is commonly used to alleviate pain and improve function, the role of night-time bracing remains unclear. This study aimed to assess the six-month effectiveness [...] Read more.
Background: Severe scoliosis can lead to chronic low back pain (cLBP) and may progress in adulthood. While day-time bracing is commonly used to alleviate pain and improve function, the role of night-time bracing remains unclear. This study aimed to assess the six-month effectiveness of a custom-made night-time brace in reducing pain in adults with scoliosis, compared to a prefabricated brace worn for 2–4 h during the day. Methods: A retrospective cohort study was conducted at a tertiary outpatient clinic specializing in spinal deformities. Adults with scoliosis (≥30° Cobb) and cLBP were divided into two groups: the study group used a custom-made night-time thoracolumbosacral orthosis (TLSO), while the control group wore a prefabricated brace (Peak) for 2–4 h daily. Pain and functional outcomes were assessed at baseline and after six months. Results: The study group included 25 women (mean age, 62.3 ± 9.5 years; Cobb angle, 60.4 ± 17.7°) who wore the night-time brace for an average of 7.2 ± 2.2 h per night. The control group comprised 20 women (mean age, 67.8 ± 10.5 years; Cobb angle, 61.9 ± 12.6°). At six months, the worst pain significantly improved in the TLSO group compared to the Peak group (F = 6.32, p = 0.0158). However, no statistically significant differences were observed between groups for back pain, leg pain, Core Outcome Measures Index (COMI), or Oswestry Disability Index (ODI). Conclusions: Night-time bracing shows interesting results on pain at six months in adults with severe scoliosis and back pain. These preliminary results open a new perspective that needs further verification and will help design more robust studies to verify what we found and identify the population more responsive to this approach. Full article
(This article belongs to the Special Issue Clinical New Insights into Management of Scoliosis)
Show Figures

Figure 1

17 pages, 5666 KiB  
Article
Mechatronic and Robotic Systems Utilizing Pneumatic Artificial Muscles as Actuators
by Željko Šitum, Juraj Benić and Mihael Cipek
Inventions 2025, 10(4), 44; https://doi.org/10.3390/inventions10040044 - 23 Jun 2025
Viewed by 413
Abstract
This article presents a series of innovative systems developed through student laboratory projects, comprising two autonomous vehicles, a quadrupedal walking robot, an active ankle-foot orthosis, a ball-on-beam balancing mechanism, a ball-on-plate system, and a manipulator arm, all actuated by pneumatic artificial muscles (PAMs). [...] Read more.
This article presents a series of innovative systems developed through student laboratory projects, comprising two autonomous vehicles, a quadrupedal walking robot, an active ankle-foot orthosis, a ball-on-beam balancing mechanism, a ball-on-plate system, and a manipulator arm, all actuated by pneumatic artificial muscles (PAMs). Due to their flexibility, low weight, and compliance, fluidic muscles demonstrate substantial potential for integration into various mechatronic systems, robotic platforms, and manipulators. Their capacity to generate smooth and adaptive motion is particularly advantageous in applications requiring natural and human-like movements, such as rehabilitation technologies and assistive devices. Despite the inherent challenges associated with nonlinear behavior in PAM-actuated control systems, their biologically inspired design remains promising for a wide range of future applications. Potential domains include industrial automation, the automotive and aerospace sectors, as well as sports equipment, medical assistive devices, entertainment systems, and animatronics. The integration of self-constructed laboratory systems powered by PAMs into control systems education provides a comprehensive pedagogical framework that merges theoretical instruction with practical implementation. This methodology enhances the skillset of future engineers by deepening their understanding of core technical principles and equipping them to address emerging challenges in engineering practice. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

22 pages, 6009 KiB  
Article
Teaching Bioinspired Design for Assistive Technologies Using Additive Manufacturing: A Collaborative Experience
by Maria Elizete Kunkel, Alexander Sauer, Carlos Isaacs, Thabata Alcântara Ferreira Ganga, Leonardo Henrique Fazan and Eduardo Keller Rorato
Biomimetics 2025, 10(6), 391; https://doi.org/10.3390/biomimetics10060391 - 11 Jun 2025
Viewed by 578
Abstract
Integrating bioinspired design and additive manufacturing into engineering education fosters innovation to meet the growing demand for accessible, personalized assistive technologies. This paper presents the outcomes of an international course, “3D Prosthetics and Orthotics”, offered to undergraduate students in the Biomimetic program at [...] Read more.
Integrating bioinspired design and additive manufacturing into engineering education fosters innovation to meet the growing demand for accessible, personalized assistive technologies. This paper presents the outcomes of an international course, “3D Prosthetics and Orthotics”, offered to undergraduate students in the Biomimetic program at Westfälische Hochschule (Germany), in collaboration with the 3D Orthotics and Prosthetics Laboratory at the Federal University of São Paulo—UNIFESP (Brazil). The course combined theoretical and hands-on modules covering digital modeling (CAD), simulation (CAE), and fabrication (CAM), enabling students to develop bioinspired assistive devices through a Project-based learning approach. Working in interdisciplinary teams, students addressed real-world rehabilitation challenges by translating biological mechanisms into engineered solutions using additive manufacturing. Resulting prototypes included a hand prosthesis based on the Fin Ray effect, a modular finger prosthesis inspired by tendon–muscle antagonism, and a cervical orthosis designed based on stingray morphology. Each device was digitally modeled, mechanically analyzed, and physically fabricated using open-source and low-cost methods. This initiative illustrates how biomimetic mechanisms and design can be integrated into education to generate functional outcomes and socially impactful health technologies. Grounded in the Mao3D open-source methodology, this experience demonstrates the value of combining nature-inspired principles, digital fabrication, Design Thinking, and international collaboration to advance inclusive, low-cost innovations in assistive technology. Full article
Show Figures

Graphical abstract

21 pages, 3442 KiB  
Article
Material Selection for the Development of Orthoses Using Multicriteria Methods (MCDMs) and Simulation
by Rodger Benjamin Salazar Loor, Javier Martínez-Gómez and Josencka Sarmiento Anchundia
Processes 2025, 13(6), 1796; https://doi.org/10.3390/pr13061796 - 5 Jun 2025
Viewed by 609
Abstract
Low-energy bone fractures refer to injuries that occur from minimal trauma or impact. These fractures are often a result of activities, such as falls from standing height or minor accidents, where the force exerted on the bone is insufficient to cause a break [...] Read more.
Low-energy bone fractures refer to injuries that occur from minimal trauma or impact. These fractures are often a result of activities, such as falls from standing height or minor accidents, where the force exerted on the bone is insufficient to cause a break under normal conditions. To design an effective orthotic splint, it is critical to select the appropriate material that mimics the mechanical properties of traditional materials like plaster, which has long been used for immobilization purposes. In this case, Ansys CES Edupack 2025 software was utilized to evaluate and identify materials with mechanical characteristics similar to those of plaster. The software provided a list of six materials that met these criteria, but selecting the most suitable material involved more than just mechanical properties. Three different multicriteria decision-making methods were employed to ensure the best choice: TOPSIS, VIKOR, and COPRAS. These methods were applied to consider various factors, such as strength, flexibility, weight, cost, and ease of manufacturing. The results of the analyses revealed a strong consensus across all three methods. Each approach identified PLA (Polylactic Acid) as the most appropriate material for the orthotic design. Following the material selection process, simulations were conducted to assess the structural performance of the orthotic splint. The results determined that the minimum thickness required for the PLA orthosis was 4 mm, ensuring that it met all necessary criteria for acceptable stresses and deformations during the four primary movements exerted by the wrist. This thickness was sufficient to maintain the orthosis’s functionality without compromising comfort or effectiveness. Moreover, a significant improvement in the design was achieved through topological optimization, where the mass of the preliminary design was reduced by 9.58%, demonstrating an efficient use of material while maintaining structural integrity. Full article
(This article belongs to the Special Issue Multi-Criteria Decision Making in Chemical and Process Engineering)
Show Figures

Figure 1

25 pages, 3769 KiB  
Review
Finger Orthoses for Rehabilitation―Part I: Biomedical Insights and Additive Manufacturing Innovations
by Alireza Nouri, Lijing Wang, Hamed Bakhtiari, Yuncang Li and Cuie Wen
Prosthesis 2025, 7(3), 62; https://doi.org/10.3390/prosthesis7030062 - 3 Jun 2025
Cited by 1 | Viewed by 1441
Abstract
Background: Finger orthoses are essential for treating injuries, deformities, and disorders of the upper limbs by supporting, immobilizing, or correcting deformities. Recent advances in three-dimensional (3D) printing have significantly enhanced precision and customization compared to traditional fabrication methods such as thermoplastic molding, plaster [...] Read more.
Background: Finger orthoses are essential for treating injuries, deformities, and disorders of the upper limbs by supporting, immobilizing, or correcting deformities. Recent advances in three-dimensional (3D) printing have significantly enhanced precision and customization compared to traditional fabrication methods such as thermoplastic molding, plaster or fiberglass casting, and the use of prefabricated splints. Methods: The present review was conducted using PubMed, Scopus, and other databases with keywords such as “hand therapy”, “additive manufacturing”, “finger and thumb”, and “orthosis”. Only English-language publications were considered, with a primary focus on articles published between 2010 and 2025. Key themes were identified and categorized into conditions necessitating finger orthoses, types and classifications, ergonomic design considerations, and advancements in additive manufacturing. Results: Finger orthoses address musculoskeletal injuries, inflammatory diseases, and neuromuscular disorders. Three-dimensional printing provides enhanced customization, reduced material waste, rapid prototyping, and the ability to create complex geometries, improving patient comfort and functionality. Conclusions: Finger orthoses effectively treat various conditions by supporting and stabilizing fingers. A thorough understanding of anatomy, biomechanics, and fabrication methods is crucial for achieving functional and comfortable designs. Three-dimensional printing offers a transformative approach to producing lightweight, customizable, and cost-effective orthoses, enabling innovative and personalized solutions. By bridging clinical needs and design strategies, this review may guide future innovations in patient-specific orthotic development. Full article
Show Figures

Figure 1

15 pages, 1511 KiB  
Article
The Influence of Functional Rehabilitation Braces with Resistance on Joint Coordination and ACL Force in Martial Artists Following ACL Reconstruction
by Xiaoyan Wang and Haojie Li
Appl. Sci. 2025, 15(11), 6265; https://doi.org/10.3390/app15116265 - 3 Jun 2025
Viewed by 615
Abstract
Objective: The resistive knee orthosis, as a novel rehabilitation device, is designed to provide resistance to joint movement during continuous walking, thereby enhancing the postoperative recovery effect. This study aims to explore the impact of such orthoses on the joint coordination patterns of [...] Read more.
Objective: The resistive knee orthosis, as a novel rehabilitation device, is designed to provide resistance to joint movement during continuous walking, thereby enhancing the postoperative recovery effect. This study aims to explore the impact of such orthoses on the joint coordination patterns of martial artists after anterior cruciate ligament (ACL) reconstruction. Methods: A total of 44 martial artists who underwent ACL reconstruction were recruited and divided into an experimental group (EG, n = 22, using resistive braces) and a control group (CG, n = 22, using conventional braces). Assessments were conducted preoperatively (T0) and at 15 days (T1), 30 days (T2), and 60 days (T3) postoperatively. The changes in joint coordination patterns during the gait cycle were analyzed, and the ACL force was estimated using a musculoskeletal model. Results: At T2 and T3, compared with the CG, the EG exhibited a significantly larger peak knee flexion angle (p < 0.05). At T3, the EG showed higher hip–ankle in-phase coordination (p < 0.05), increased proximal hip–knee coordination (p < 0.05), and decreased knee–ankle anti-phase coordination (p < 0.05). In addition, the ACL force in the EG was significantly lower. Conclusions: The resistive knee orthosis can effectively improve the joint coordination of martial artists after ACL reconstruction and reduce the ACL force. Full article
Show Figures

Figure 1

17 pages, 4010 KiB  
Article
Simulation and Fitting of a PID Fuzzy Control in a Virtual Prototype of a Knee Orthosis
by Agustín Barrera Sánchez, Rafael Campos Amezcua, Héctor R. Azcaray Rivera, Arturo Martínez Mata, Andrés Blanco Ortega, Cuauhtémoc Mazón Valadez and César Humberto Guzmán Valdivia
Computation 2025, 13(5), 126; https://doi.org/10.3390/computation13050126 - 21 May 2025
Viewed by 422
Abstract
Nowadays, the use of biomechanical devices in medical processes and industrial applications allows us to perform tasks in a simpler and faster way. In the medical field, these devices are becoming more and more common, especially in therapeutic applications. In the design and [...] Read more.
Nowadays, the use of biomechanical devices in medical processes and industrial applications allows us to perform tasks in a simpler and faster way. In the medical field, these devices are becoming more and more common, especially in therapeutic applications. In the design and development of orthopedic devices, it is essential to consider the limbs’ kinematic, kinetic, and anthropometric conditions, as well as the implementation of control strategies (robust, PID, fuzzy, and impedance, among others). This work presents a virtual prototype of a knee orthosis and the implementation of a control system to follow a desired trajectory. Results are presented with the virtual prototype through a co-simulation between MSC Adams and MATLAB Simulink with fuzzy control, virtually replicating the gait cycle. Full article
Show Figures

Figure 1

11 pages, 28340 KiB  
Article
Self-Adapting Foot Orthosis Inlay Facilitates Handling and Reduces Plantar Pressure Compared to Vacuum-Based Technology
by Alexander Milstrey, Carolin Horst, Stella Gartung, Ann-Sophie Weigel, Richard Stange and Sabine Ochman
J. Clin. Med. 2025, 14(10), 3384; https://doi.org/10.3390/jcm14103384 - 13 May 2025
Viewed by 412
Abstract
Background/Objectives: Orthoses are commonly used in the treatment of various foot and ankle injuries and deformities. An effective technology in foot orthoses is a vacuum system to improve the fit and function of the orthosis. Recently, a new technology was designed to [...] Read more.
Background/Objectives: Orthoses are commonly used in the treatment of various foot and ankle injuries and deformities. An effective technology in foot orthoses is a vacuum system to improve the fit and function of the orthosis. Recently, a new technology was designed to facilitate the wearing of the foot orthoses while maintaining function without the need for vacuum suction. Methods: A plantar dynamic pressure distribution measurement was carried out in 25 healthy subjects (13 w/12 m, age 23–58 y) using capacitive measuring insoles in two differently designed inlays within the VACOpedes® orthosis (Group A: vacuum inlay vs. Group B: XELGO® inlay) and a regular off-the-shelf shoe (Group C, OTS). The peak plantar pressure, mean plantar pressure and maximum force were analyzed in the entire foot and in individual regions of the medial and lateral forefoot, the midfoot and the hindfoot. Finally, the wearing comfort was compared using a visual analog scale from 1 to 10 (highest comfort). Results: The peak pressure of both inlays was significantly lower than in the OTS shoe (A: 230.6 ± 44.6 kPa, B: 218.0 ± 49.7 kPa, C: 278.6 ± 50.5 kPa; p < 0.001). In a sub-analysis of the different regions, the XELGO® inlay significantly reduced plantar pressure in the medial forefoot compared to the vacuum orthosis (A: 181.7 ± 45.7 kPa, B: 158.6 ± 51.7 kPa, p < 0.002). The wearing comfort was significantly higher with the XELGO® inlay compared to the vacuum inlay (A: 5.68/10, B: 7.24/10; p < 0.001). Conclusions: The VACOpedes® orthosis with a new XELGO® inlay showed at least equivalent relief in all pressure distribution measurements analyzed and greater relief in the forefoot area than the VACOpedes® orthosis with a vacuum inlay, as well as increased wearing comfort. Full article
Show Figures

Figure 1

19 pages, 7692 KiB  
Article
Biomechanical Analysis of Rheumatoid Arthritis of the Hand and the Design of Orthotics: A Finite Element Study
by Guiyuan Li, Jie Yang, Pengfei Feng, Xiaona Li and Weiyi Chen
Bioengineering 2025, 12(5), 462; https://doi.org/10.3390/bioengineering12050462 - 27 Apr 2025
Viewed by 690
Abstract
Hand orthoses are often recommended as a rehabilitation measure for patients with rheumatoid arthritis (RA). However, existing research on the efficacy of hand orthoses has predominantly focused on 3D-printed devices and post-intervention clinical functional assessments, which tend to be subjective. There is a [...] Read more.
Hand orthoses are often recommended as a rehabilitation measure for patients with rheumatoid arthritis (RA). However, existing research on the efficacy of hand orthoses has predominantly focused on 3D-printed devices and post-intervention clinical functional assessments, which tend to be subjective. There is a notable lack of biomechanical studies evaluating the effects of wearing orthoses. Therefore, in this study, the finite element method was used to analyze the biomechanical properties of an RA hand. A hand orthosis was designed based on the principle of three-point force, and a composite model of the RA hand and orthosis was constructed to verify its effectiveness. The results showed that the peak stress and displacement of the RA hand were 3.22–183.21% and 28.81–124.23% higher than those of the normal hand. Compared with the RA hand under direct force, the peak stress of the RA hand after wearing orthosis was generally reduced by 3.05–55.60%, and the peak displacement was generally reduced by 20.35–71.43%, verifying the effectiveness of the orthosis. Additionally, variations in the magnitude of three-point forces influenced the orthopedic effects. This study proves the effectiveness of hand orthosis and provides some theoretical data for subsequent research and treatment of rheumatoid arthritis. Full article
(This article belongs to the Special Issue Biomechanics of Orthopaedic Rehabilitation)
Show Figures

Figure 1

29 pages, 3703 KiB  
Article
Improving Social Acceptance of Orthopedic Foot Orthoses Through Image-Generative AI in Product Design
by Stefan Resch, Jakob Schauer, Valentin Schwind, Diana Völz and Daniel Sanchez-Morillo
Appl. Sci. 2025, 15(8), 4132; https://doi.org/10.3390/app15084132 - 9 Apr 2025
Cited by 1 | Viewed by 1230
Abstract
The lack of social acceptability for wearable devices such as orthopedic foot orthoses can lead to irregular usage and missed health benefits, as shown in prior studies. While AI-generated designs have been explored for prototyping aesthetic hand orthoses, their impact on social acceptability, [...] Read more.
The lack of social acceptability for wearable devices such as orthopedic foot orthoses can lead to irregular usage and missed health benefits, as shown in prior studies. While AI-generated designs have been explored for prototyping aesthetic hand orthoses, their impact on social acceptability, particularly for foot orthoses, remains unknown. The current state of research is limited, as no empirical evidence exists on whether AI-designed orthoses influence acceptance, nor has the role of customized generative pre-trained transformers (GPTs) and specific prompting strategies been examined in this context. To address these gaps, we conducted two mixed-methods studies to investigate (1) the impact of AI-generated orthosis designs on social acceptability compared to existing orthopedic products and development concepts and (2) how a customized GPT and different prompt keywords influence acceptance. Our results show that AI-generated designs significantly enhance social acceptance across orthotic categories. Furthermore, we found that personalized GPTs and targeted prompt keywords significantly influence user perception. Overall, our findings highlight the potential of using AI to create socially acceptable design solutions for wearable technology and offer new applications for future smart devices. We contribute to generative AI in product design and provide concrete recommendations for optimizing prompting strategies to enhance social acceptance. Full article
Show Figures

Figure 1

30 pages, 5862 KiB  
Article
A Muscle-Driven Spine Model for Predictive Simulations in the Design of Spinal Implants and Lumbar Orthoses
by Robin Remus, Andreas Lipphaus, Marisa Ritter, Marc Neumann and Beate Bender
Bioengineering 2025, 12(3), 263; https://doi.org/10.3390/bioengineering12030263 - 6 Mar 2025
Viewed by 2214
Abstract
Knowledge of realistic loads is crucial in the engineering design process of medical devices and for assessing their interaction with the spinal system. Depending on the type of modeling, current numerical spine models generally either neglect the active musculature or oversimplify the passive [...] Read more.
Knowledge of realistic loads is crucial in the engineering design process of medical devices and for assessing their interaction with the spinal system. Depending on the type of modeling, current numerical spine models generally either neglect the active musculature or oversimplify the passive structural function of the spine. However, the internal loading conditions of the spine are complex and greatly influenced by muscle forces. It is often unclear whether the assumptions made provide realistic results. To improve the prediction of realistic loading conditions in both conservative and surgical treatments, we modified a previously validated forward dynamic musculoskeletal model of the intact lumbosacral spine with a muscle-driven approach in three scenarios. These exploratory treatment scenarios included an extensible lumbar orthosis and spinal instrumentations. The latter comprised bisegmental internal spinal fixation, as well as monosegmental lumbar fusion using an expandable interbody cage with supplementary posterior fixation. The biomechanical model responses, including internal loads on spinal instrumentation, influences on adjacent segments, and effects on abdominal soft tissue, correlated closely with available in vivo data. The muscle forces contributing to spinal movement and stabilization were also reliably predicted. This new type of modeling enables the biomechanical study of the interactions between active and passive spinal structures and technical systems. It is, therefore, preferable in the design of medical devices and for more realistically assessing treatment outcomes. Full article
(This article belongs to the Special Issue Spine Biomechanics)
Show Figures

Figure 1

15 pages, 25915 KiB  
Article
A Compact Orthosis Compliance Monitoring Device Using Pressure Sensors and Accelerometers: Design and Proof-of-Concept Testing
by Devi Baruni Devanand, Matthew D. Gardiner and Angela E. Kedgley
Sensors 2025, 25(5), 1352; https://doi.org/10.3390/s25051352 - 22 Feb 2025
Cited by 1 | Viewed by 955
Abstract
Monitoring orthosis compliance using patient diaries is subjective, as patients can overestimate their levels of device use. An objective way to monitor compliance is required because if an orthotic prescription is not followed, the orthosis will not work as intended. This study aimed [...] Read more.
Monitoring orthosis compliance using patient diaries is subjective, as patients can overestimate their levels of device use. An objective way to monitor compliance is required because if an orthotic prescription is not followed, the orthosis will not work as intended. This study aimed to develop and validate a device that monitors orthosis compliance objectively using pressure and acceleration. Fifteen participants were recruited to test the device’s ability to estimate wear time during the performance of several grip patterns and whilst completing selected activities of daily living. Sensor threshold values were used to discern whether users were wearing their orthosis or not. No differences between pressure sensor and accelerometer-based wear time estimations were found. The device’s pressure-based wear time estimations were found to have a specificity of 92.7 ± 16.4% and sensitivity of 74.0 ± 41.3%, whilst accelerometer-based wear time estimates had a specificity of 66.1 ± 34.7% and sensitivity of 86.2 ± 8.0%. This study successfully demonstrated the feasibility of monitoring hand orthosis compliance using pressure or acceleration. This device has the potential to provide insight into the effectiveness of both existing and novel orthotics, benefitting both clinical practice and research. Full article
Show Figures

Figure 1

10 pages, 8668 KiB  
Proceeding Paper
Additive Manufacturing of a Customized Printed Ankle–Foot Orthosis: Design, Manufacturing, and Mechanical Evaluation
by Adrián Hernández, Valery Huarcaya, Ítalo Acuña, Gabriel Marcos, Gianella Ccama, Emilio Ochoa and Andoni R. Molina
Eng. Proc. 2025, 83(1), 24; https://doi.org/10.3390/engproc2025083024 - 11 Feb 2025
Viewed by 1198
Abstract
The ankle, a pivotal and intricate joint within human anatomy, is particularly susceptible to injuries, notably sprains, due to its complex structural composition and the substantial load it endures, especially among high-performance athletes, thereby necessitating the development of innovative, patient-specific rehabilitation solutions to [...] Read more.
The ankle, a pivotal and intricate joint within human anatomy, is particularly susceptible to injuries, notably sprains, due to its complex structural composition and the substantial load it endures, especially among high-performance athletes, thereby necessitating the development of innovative, patient-specific rehabilitation solutions to address the challenges presented during the recovery process. In response to this, a non-surgical approach is proposed, involving the meticulous design and implementation of a personalized orthosis. It will be designed employing additive manufacturing with polyethylene terephthalate glycol (PETG), which facilitates immobilization while also enhancing breathability and comfort through the strategic incorporation of hexagonal holes. It demonstrates significant promise in its innovative design, customizability, and potential applicability, contributing to the broader field of biomechanics and orthopedic rehabilitation. Full article
Show Figures

Figure 1

9 pages, 2971 KiB  
Proceeding Paper
Development of a Customized 3D Printed Orthosis for Non-Surgical Treatment of Olecranon Elbow Fractures
by Dante Rodriguez, Catherine Boggio, Melany Cama, Joao Torres, Gianella Ccama, Emilio Ochoa and Andoni R. Molina
Eng. Proc. 2025, 83(1), 23; https://doi.org/10.3390/engproc2025083023 - 11 Feb 2025
Viewed by 680
Abstract
Elbow injuries are the second most common upper extremity fractures and often require invasive and costly surgical treatments. To explore a non-surgical alternative, we present the development and evaluation of a custom 3D-printed static orthosis made from polylactic acid (PLA) designed using 3D [...] Read more.
Elbow injuries are the second most common upper extremity fractures and often require invasive and costly surgical treatments. To explore a non-surgical alternative, we present the development and evaluation of a custom 3D-printed static orthosis made from polylactic acid (PLA) designed using 3D scanning, CAD software-based modeling and material characterization, showing promise for broader application in similar elbow injuries. Full article
Show Figures

Figure 1

Back to TopTop