Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,175)

Search Parameters:
Keywords = oriental elements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 25742 KiB  
Article
Development and Simulation-Based Validation of Biodegradable 3D-Printed Cog Threads for Pelvic Organ Prolapse Repair
by Ana Telma Silva, Nuno Miguel Ferreira, Henrique Leon Bastos, Maria Francisca Vaz, Joana Pinheiro Martins, Fábio Pinheiro, António Augusto Fernandes and Elisabete Silva
Materials 2025, 18(15), 3638; https://doi.org/10.3390/ma18153638 (registering DOI) - 1 Aug 2025
Abstract
Pelvic organ prolapse (POP) is a prevalent condition, affecting women all over the world, and is commonly treated through surgical interventions that present limitations such as recurrence or complications associated with synthetic meshes. In this study, biodegradable poly(ϵ-caprolactone) (PCL) cog threads [...] Read more.
Pelvic organ prolapse (POP) is a prevalent condition, affecting women all over the world, and is commonly treated through surgical interventions that present limitations such as recurrence or complications associated with synthetic meshes. In this study, biodegradable poly(ϵ-caprolactone) (PCL) cog threads are proposed as a minimally invasive alternative for vaginal wall reinforcement. A custom cutting tool was developed to fabricate threads with varying barb angles (90°, 75°, 60°, and 45°), which were produced via Melt Electrowriting. Their mechanical behavior was assessed through uniaxial tensile tests and validated using finite element simulations. The results showed that barb orientation had minimal influence on tensile performance. In simulations of anterior vaginal wall deformation under cough pressure, all cog thread configurations significantly reduced displacement in the damaged tissue model, achieving values comparable to or even lower than those of healthy tissue. A ball burst simulation using an anatomically accurate model further demonstrated a 13% increase in reaction force with cog thread reinforcement. Despite fabrication limitations, this study supports the biomechanical potential of 3D-printed PCL cog threads for POP treatment, and lays the groundwork for future in vivo validation. Full article
21 pages, 4169 KiB  
Article
An Anisotropic Failure Characteristic- and Damage-Coupled Constitutive Model
by Ruiqing Chen, Jieyu Dai, Shuning Gu, Lang Yang, Laohu Long and Jundong Wang
Modelling 2025, 6(3), 75; https://doi.org/10.3390/modelling6030075 (registering DOI) - 1 Aug 2025
Abstract
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage [...] Read more.
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage creep curves, macroscopic fracture morphologies, and microstructural features under uniaxial tensile creep for specimens with different crystallographic orientations. Creep behavior of SX superalloys was simulated under multiple orientations and various temperature-stress conditions using the proposed model. The resulting creep curves aligned well with experimental observations, thereby validating the model’s feasibility and accuracy. Furthermore, a finite element model of cylindrical specimens was established, and simulations of the macroscopic fracture morphology were performed using a user-defined material subroutine. By integrating the rafting theory governed by interfacial energy density, the model successfully predicts the rafting morphology of the microstructure at the fracture surface for different crystallographic orientations. The proposed model maintains low programming complexity and computational cost while effectively predicting the creep life and deformation behavior of anisotropic materials. The model accurately captures the three-stage creep deformation behavior of SX specimens and provides reliable predictions of stress fields and microstructural changes at critical cross-sections. The model demonstrates high accuracy in life prediction, with all predicted results falling within a ±1.5× error band and an average error of 14.6%. Full article
Show Figures

Graphical abstract

20 pages, 1457 KiB  
Article
A Semi-Random Elliptical Movement Model for Relay Nodes in Flying Ad Hoc Networks
by Hyeon Choe and Dongsu Kang
Telecom 2025, 6(3), 56; https://doi.org/10.3390/telecom6030056 (registering DOI) - 1 Aug 2025
Abstract
This study presents a semi-random mobility model called Semi-Random Elliptical Movement (SREM), developed for relay-oriented Flying Ad Hoc Networks (FANETs). In FANETs, node distribution has a major impact on network performance, making the mobility model a critical design element. While random models offer [...] Read more.
This study presents a semi-random mobility model called Semi-Random Elliptical Movement (SREM), developed for relay-oriented Flying Ad Hoc Networks (FANETs). In FANETs, node distribution has a major impact on network performance, making the mobility model a critical design element. While random models offer simplicity and path diversity, they often result in unstable relay paths due to inconsistent node placement. In contrast, planned path models provide alignment but lack the flexibility needed in dynamic environments. SREM addresses these challenges by enabling nodes to move along elliptical trajectories, combining autonomous movement with alignment to the relay path. This approach encourages natural node concentration along the relay path while maintaining distributed mobility. The spatial characteristics of SREM have been analytically defined and validated through the Monte Carlo method, confirming stable node distributions that support effective relaying. Computer simulation results show that SREM performs better than general mobility models that do not account for relaying, offering more suitable performance in relay-focused scenarios. These findings suggest that SREM provides both structural consistency and practical effectiveness, making it a strong candidate for improving the realism and reliability of FANET simulations involving relay-based communication. Full article
Show Figures

Figure 1

27 pages, 15611 KiB  
Article
An Innovative Design of a Rail Vehicle for Modern Passenger Railway Transport
by Martin Bučko, Dalibor Barta, Alyona Lovska, Miroslav Blatnický, Ján Dižo and Mykhailo Pavliuchenkov
Future Transp. 2025, 5(3), 98; https://doi.org/10.3390/futuretransp5030098 (registering DOI) - 1 Aug 2025
Abstract
The structural design of rail vehicle bodies significantly influences rail vehicle performance, passenger comfort, and operational efficiency. This study presents a comparative analysis of three key concepts of a rail vehicle body, namely a differential, an integral, and a hybrid structure, with a [...] Read more.
The structural design of rail vehicle bodies significantly influences rail vehicle performance, passenger comfort, and operational efficiency. This study presents a comparative analysis of three key concepts of a rail vehicle body, namely a differential, an integral, and a hybrid structure, with a focus on their structural principles, material utilization, and implications for manufacturability and maintenance. Three rail vehicle body variants were developed, each incorporating a low-floor configuration to enhance accessibility and interior layout flexibility. The research explores the suitable placement of technical components such as a power unit and an air-conditioning system, and it evaluates interior layouts aimed at maximizing both passenger capacity and their travelling comfort. Key features, including door and window technologies, thermal comfort solutions, and seating arrangements, are also analyzed. The study emphasizes the importance of compromises between structural stiffness, reparability, production complexity, and passenger-oriented design considerations. A part of the research includes a proposal of three variants of a rail vehicle body frame, together with their strength analysis by means of the finite element method. These analyses identified that the maximal permissible stresses for the individual versions of the frame were not exceeded. Findings contribute to the development of more efficient, accessible, and sustainable regional passenger rail vehicles. Full article
Show Figures

Figure 1

19 pages, 3130 KiB  
Article
Deep Learning-Based Instance Segmentation of Galloping High-Speed Railway Overhead Contact System Conductors in Video Images
by Xiaotong Yao, Huayu Yuan, Shanpeng Zhao, Wei Tian, Dongzhao Han, Xiaoping Li, Feng Wang and Sihua Wang
Sensors 2025, 25(15), 4714; https://doi.org/10.3390/s25154714 (registering DOI) - 30 Jul 2025
Viewed by 157
Abstract
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping [...] Read more.
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping status of conductors is crucial, and instance segmentation techniques, by delineating the pixel-level contours of each conductor, can significantly aid in the identification and study of galloping phenomena. This work expands upon the YOLO11-seg model and introduces an instance segmentation approach for galloping video and image sensor data of OCS conductors. The algorithm, designed for the stripe-like distribution of OCS conductors in the data, employs four-direction Sobel filters to extract edge features in horizontal, vertical, and diagonal orientations. These features are subsequently integrated with the original convolutional branch to form the FDSE (Four Direction Sobel Enhancement) module. It integrates the ECA (Efficient Channel Attention) mechanism for the adaptive augmentation of conductor characteristics and utilizes the FL (Focal Loss) function to mitigate the class-imbalance issue between positive and negative samples, hence enhancing the model’s sensitivity to conductors. Consequently, segmentation outcomes from neighboring frames are utilized, and mask-difference analysis is performed to autonomously detect conductor galloping locations, emphasizing their contours for the clear depiction of galloping characteristics. Experimental results demonstrate that the enhanced YOLO11-seg model achieves 85.38% precision, 77.30% recall, 84.25% AP@0.5, 81.14% F1-score, and a real-time processing speed of 44.78 FPS. When combined with the galloping visualization module, it can issue real-time alerts of conductor galloping anomalies, providing robust technical support for railway OCS safety monitoring. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

23 pages, 6315 KiB  
Article
A Kansei-Oriented Morphological Design Method for Industrial Cleaning Robots Integrating Extenics-Based Semantic Quantification and Eye-Tracking Analysis
by Qingchen Li, Yiqian Zhao, Yajun Li and Tianyu Wu
Appl. Sci. 2025, 15(15), 8459; https://doi.org/10.3390/app15158459 - 30 Jul 2025
Viewed by 101
Abstract
In the context of Industry 4.0, user demands for industrial robots have shifted toward diversification and experience-orientation. Effectively integrating users’ affective imagery requirements into industrial-robot form design remains a critical challenge. Traditional methods rely heavily on designers’ subjective judgments and lack objective data [...] Read more.
In the context of Industry 4.0, user demands for industrial robots have shifted toward diversification and experience-orientation. Effectively integrating users’ affective imagery requirements into industrial-robot form design remains a critical challenge. Traditional methods rely heavily on designers’ subjective judgments and lack objective data on user cognition. To address these limitations, this study develops a comprehensive methodology grounded in Kansei engineering that combines Extenics-based semantic analysis, eye-tracking experiments, and user imagery evaluation. First, we used web crawlers to harvest user-generated descriptors for industrial floor-cleaning robots and applied Extenics theory to quantify and filter key perceptual imagery features. Second, eye-tracking experiments captured users’ visual-attention patterns during robot observation, allowing us to identify pivotal design elements and assemble a sample repository. Finally, the semantic differential method collected users’ evaluations of these design elements, and correlation analysis mapped emotional needs onto stylistic features. Our findings reveal strong positive correlations between four core imagery preferences—“dignified,” “technological,” “agile,” and “minimalist”—and their corresponding styling elements. By integrating qualitative semantic data with quantitative eye-tracking metrics, this research provides a scientific foundation and novel insights for emotion-driven design in industrial floor-cleaning robots. Full article
(This article belongs to the Special Issue Intelligent Robotics in the Era of Industry 5.0)
Show Figures

Figure 1

15 pages, 11156 KiB  
Article
Inter-Turn Fault Diagnosis of Induction Motors Based on Current Vector Pattern Analysis in Stationary Coordinate Frame
by Inyeol Yun, Hyunwoo Kim, Ju Lee and Sung-Gu Lee
Appl. Sci. 2025, 15(15), 8414; https://doi.org/10.3390/app15158414 - 29 Jul 2025
Viewed by 139
Abstract
In this study, a current vector pattern is analyzed for inter-turn fault (ITF) diagnosis of induction machines (IMs), and an ITF diagnosis algorithm is proposed. When an ITF occurs in IMs, a negative-sequence current is generated due to fault resistance, even though a [...] Read more.
In this study, a current vector pattern is analyzed for inter-turn fault (ITF) diagnosis of induction machines (IMs), and an ITF diagnosis algorithm is proposed. When an ITF occurs in IMs, a negative-sequence current is generated due to fault resistance, even though a positive-sequence voltage is applied to IMs. Based on the mathematical model of IMs with an ITF, the current vector patterns in the stationary coordinate frame are analyzed. The superposition of positive- and negative-sequence components results in an elliptical current vector trajectory, and its orientation varies depending on the fault conditions. The co-simulation using finite element analysis and circuit simulation is implemented to analyze the current vector pattern of IMs with an ITF. The ITF diagnosis is proposed based on the current vector pattern. A 12 kW, four-pole, three-phase IM and terminal box, which was used to implement an ITF, is manufactured, and an experiment setup is established to verify the ITF algorithm. The effectiveness of the proposed ITF algorithm is validated through experimental verification of the manufactured IM and terminal box. Full article
Show Figures

Figure 1

36 pages, 4967 KiB  
Review
Mechanical Behavior of Adhesively Bonded Joints Under Tensile Loading: A Synthetic Review of Configurations, Modeling, and Design Considerations
by Leila Monajati, Aurelian Vadean and Rachid Boukhili
Materials 2025, 18(15), 3557; https://doi.org/10.3390/ma18153557 - 29 Jul 2025
Viewed by 305
Abstract
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an [...] Read more.
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an integrated review that compares joint configurations, modeling strategies, and performance optimization methods under tensile loading remains lacking. This work addresses that gap by examining the mechanical behavior of key joint types, namely, single-lap, single-strap, and double-strap joints, and highlighting their differences in stress distribution, failure mechanisms, and structural efficiency. Modeling and simulation approaches, including cohesive zone modeling, extended finite element methods, and virtual crack closure techniques, are assessed for their predictive accuracy and applicability to various joint geometries. This review also covers material and geometric enhancements, such as adherend tapering, fillets, notching, bi-adhesives, functionally graded bondlines, and nano-enhanced adhesives. These strategies are evaluated in terms of their ability to reduce stress concentrations and improve damage tolerance. Failure modes, adhesive and adherend defects, and delamination risks are also discussed. Finally, comparative insights into different joint configurations illustrate how geometry and adhesive selection influence strength, energy absorption, and weight efficiency. This review provides design-oriented guidance for optimizing bonded joints in aerospace, automotive, and structural engineering applications. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

17 pages, 7151 KiB  
Article
A Recycling-Oriented Approach to Rare Earth Element Recovery Using Low-Cost Agricultural Waste
by Nicole Ferreira, Daniela S. Tavares, Inês Baptista, Thainara Viana, Jéssica Jacinto, Thiago S. C. Silva, Eduarda Pereira and Bruno Henriques
Metals 2025, 15(8), 842; https://doi.org/10.3390/met15080842 - 28 Jul 2025
Viewed by 126
Abstract
The exponential increase in electronic waste (e-waste) from end-of-life electrical and electronic equipment presents a growing environmental challenge. E-waste contains high concentrations of rare earth elements (REEs), which are classified as critical raw materials (CRMs). Their removal and recovery from contaminated systems not [...] Read more.
The exponential increase in electronic waste (e-waste) from end-of-life electrical and electronic equipment presents a growing environmental challenge. E-waste contains high concentrations of rare earth elements (REEs), which are classified as critical raw materials (CRMs). Their removal and recovery from contaminated systems not only mitigate pollution but also support resource sustainability within a circular economy framework. The present study proposed the use of hazelnut shells as a biosorbent to reduce water contamination and recover REEs. The sorption capabilities of this lignocellulosic material were assessed and optimized using the response surface methodology (RSM) combined with a Box–Behnken Design (three factors, three levels). Factors such as pH (4 to 8), salinity (0 to 30), and biosorbent dose (0.25 to 0.75 g/L) were evaluated in a complex mixture containing 9 REEs (Y, La, Ce, Pr, Nd, Eu, Gd, Tb and Dy; equimolar concentration of 1 µmol/L). Salinity was found to be the factor with greater significance for REEs sorption efficiency, followed by water pH and biosorbent dose. At a pH of 7, salinity of 0, biosorbent dose of 0.75 g/L, and a contact time of 48 h, optimal conditions were observed, achieving removals of 100% for Gd and Eu and between 81 and 99% for other REEs. Optimized conditions were also predicted to maximize the REEs concentration in the biosorbent, which allowed us to obtain values (total REEs content of 2.69 mg/g) higher than those in some ores. These results underscore the high potential of this agricultural waste with no relevant commercial value to improve water quality while providing an alternative source of elements of interest for reuse (circular economy). Full article
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
Synthesis and Properties of Bi1.8Mn0.5Ni0.5Ta2O9-Δ Pyrochlore
by Sergey V. Nekipelov, Olga V. Petrova, Alexandra V. Koroleva, Mariya G. Krzhizhanovskaya, Kristina N. Parshukova, Nikolay A. Sekushin, Boris A. Makeev and Nadezhda A. Zhuk
Chemistry 2025, 7(4), 119; https://doi.org/10.3390/chemistry7040119 - 25 Jul 2025
Viewed by 150
Abstract
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a [...] Read more.
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a porous microstructure formed by randomly oriented oblong grains. The average crystallite size determined by X-ray diffraction is 65 nm. The charge state of transition element cations in the pyrochlore was analyzed by soft X-ray spectroscopy using synchrotron radiation. For mixed pyrochlore, a characteristic shift of Bi4f and Ta4f and Ta5p spectra to the region of lower energies by 0.25 and 0.90 eV is observed compared to the binding energy in Bi2O3 and Ta2O5 oxides. XPS Mn2p spectrum of pyrochlore has an intermediate energy position compared to the binding energy in MnO and Mn2O3, which indicates a mixed charge state of manganese (II, III) cations. Judging by the nature of the Ni2p spectrum of the complex oxide, nickel ions are in the charge state of +(2+ζ). The relative permittivity of the sample in a wide temperature (up to 350 °C) and frequency range (25–106 Hz) does not depend on the frequency and exhibits a constant low value of 25. The minimum value of 4 × 10−3 dielectric loss tangent is exhibited by the sample at a frequency of 106 Hz. The activation energy of conductivity is 0.7 eV. The electrical behavior of the sample is modeled by an equivalent circuit containing a Warburg diffusion element. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

29 pages, 9152 KiB  
Article
Effect of Cracks on the Compressive Ultimate Strength of Plate and Stiffened Panel Under Biaxial Loads: A Finite Element Analysis
by Sang Jin Kim, Jung Min Sohn and Do Kyun Kim
Appl. Sci. 2025, 15(15), 8287; https://doi.org/10.3390/app15158287 - 25 Jul 2025
Viewed by 121
Abstract
Crack damage can significantly reduce the ultimate strength of marine structures, potentially leading to progressive collapse. This study employs finite element analysis to investigate how cracks affect the strength of plates and stiffened panels under uniaxial and biaxial compression, providing insights essential for [...] Read more.
Crack damage can significantly reduce the ultimate strength of marine structures, potentially leading to progressive collapse. This study employs finite element analysis to investigate how cracks affect the strength of plates and stiffened panels under uniaxial and biaxial compression, providing insights essential for robust structural design. The effects of crack size and orientation are explored through a systematic evaluation of longitudinal, transverse, and bidirectional cracks—sized at 10%, 25%, and 50% of structural dimensions (plate length and plate breadth/web height)—in both plates and unstiffened panels. The analysis identifies key parameters governing strength degradation and reveals that stiffened panels are more resistant to cracking, whereas plates are more sensitive to crack orientation and loading direction. These findings underscore the role of crack characteristics and structural reinforcement in maintaining residual strength and provide guidance for improving the accuracy and reliability of ultimate strength predictions. Full article
Show Figures

Figure 1

18 pages, 9314 KiB  
Article
Damage Mechanism and Modeling of CFRP Laminates Impacted by Single Waterjets: Effect of the Impact Direction
by Naidan Hou, Yulong Li and Ping Liu
Materials 2025, 18(15), 3495; https://doi.org/10.3390/ma18153495 - 25 Jul 2025
Viewed by 235
Abstract
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid [...] Read more.
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid impact tests on a unidirectional carbon fiber-reinforced polymer (CFRP) laminate, with special focus on the effects of the impingement angle and the fiber orientation. Finite-element simulation is employed to help reveal the failure mechanism of oblique impacts. The results show that, in most cases, the damage caused by a 15° oblique impact is slightly larger than that of a normal impact, while the increase amplitude varies with different impact speeds. Resin removal is more prone to occur when the projection of the waterjet velocity on the impact surface is perpendicular (marked as the fiber orientation PE) rather than parallel (marked as the fiber orientation PA) to the fiber direction of the top layer. A PE fiber orientation can lead to mass material peeling in comparison with PA, and the damage range is even much larger than for a normal impact. The underlying mechanism can be attributed to the increased lateral jet-particle velocity and resultant shear stress along the impact projection direction. The distinct damage modes observed on the CFRP laminate with the different fiber orientations PE and PA originate from the asymmetric tensile properties in the longitudinal/transverse directions of laminates coupled with dissimilar fiber–matrix interfacial characteristics. A theoretical model for the surface damage area under a single-jet impact was established through experimental data fitting based on a modified water-hammer pressure contact-radius formulation. The model quantitatively characterizes the influence of critical parameters, including the jet velocity, diameter, and impact angle, on the central area of the surface failure ring. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
A Single-Phase Aluminum-Based Chiral Metamaterial with Simultaneous Negative Mass Density and Bulk Modulus
by Fanglei Zhao, Zhenxing Shen, Yong Cheng and Huichuan Zhao
Crystals 2025, 15(8), 679; https://doi.org/10.3390/cryst15080679 - 25 Jul 2025
Viewed by 198
Abstract
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, [...] Read more.
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, slender aluminum beams. The design avoids the manufacturing complexity of multi-phase systems by relying solely on geometric topology and chirality to induce dipolar and rotational resonances. Dispersion analysis and effective parameter retrieval confirm a double-negative frequency region from 30.9 kHz to 34 kHz. Finite element simulations further demonstrate negative refraction behavior when the metamaterial is immersed in water and subjected to 32 kHz and 32.7 kHz incident plane wave. Equifrequency curves (EFCs) analysis shows excellent agreement with simulated refraction angles, validating the material’s double-negative performance. This study provides a robust, manufacturable platform for elastic wave manipulation using a single-phase metallic metamaterial design. Full article
(This article belongs to the Special Issue Research Progress of Crystalline Metamaterials)
Show Figures

Figure 1

30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Viewed by 210
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

24 pages, 4943 KiB  
Article
Evaluation of Optimum Thermal Insulation for Mass Walls in Severe Solar Climates of Northern Chile
by Konstantin Verichev, Carmen Díaz-López, Gerardo Loncomilla Huenupán and Andrés García-Ruiz
Buildings 2025, 15(14), 2580; https://doi.org/10.3390/buildings15142580 - 21 Jul 2025
Viewed by 201
Abstract
The Life Cycle Cost Assessment (LCCA) methodology is widely used to determine the optimal thickness of thermal insulation for walls and roofs. The results depend on several factors, such as the degree day calculations method, the ambient or sol–air temperature, base temperature variations, [...] Read more.
The Life Cycle Cost Assessment (LCCA) methodology is widely used to determine the optimal thickness of thermal insulation for walls and roofs. The results depend on several factors, such as the degree day calculations method, the ambient or sol–air temperature, base temperature variations, and the heat capacity of the thermal envelope elements. This study aims to analyze the impact of solar radiation on mass walls with different orientations in five cities in northern Chile, which have severe solar climates. The goal is to determine the optimal thickness of expanded polystyrene insulation using the LCCA method, considering solar radiation, a varying base temperature, and validating results by analyzing the energy demand for heating and cooling of a typical house. The findings show that excluding solar radiation in the LCCA methodology can lead to an underestimation of the optimal insulation thickness by 21–39% for walls in northern Chile. It was also found that using variable monthly threshold temperatures for heating and cooling based on the adaptive thermal comfort model results in a slight underestimation (1–3%) of the optimal thickness compared to a constant annual temperature. An energy simulation of a typical house in five cities in northern Chile showed that neglecting the effect of solar radiation when determining the thermal insulation thickness for the studied wall can lead to a minor increase in heating and cooling energy demand, ranging from approximately 1% to 9%. However, this study emphasizes the importance of applying optimal insulation thickness for cities with more continental climates like Santiago and Calama, where the heating demand is higher than cooling. Full article
Show Figures

Figure 1

Back to TopTop