Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = organophosphorus pesticide residues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6601 KiB  
Review
Advances in Detection Technologies for Pesticide Residues and Heavy Metals in Rice: A Comprehensive Review of Spectroscopy, Chromatography, and Biosensors
by Yu Han, Ye Tian, Qingqing Li, Tianle Yao, Jie Yao, Zhengmao Zhang and Long Wu
Foods 2025, 14(6), 1070; https://doi.org/10.3390/foods14061070 - 20 Mar 2025
Cited by 2 | Viewed by 2231
Abstract
Pesticide residues and heavy metals, originating from diverse sources such as agricultural practices and industrial activities, pose substantial risks to human health and the ecological environment. For instance, residues of organophosphorus pesticides may damage the human nervous system, while heavy metals such as [...] Read more.
Pesticide residues and heavy metals, originating from diverse sources such as agricultural practices and industrial activities, pose substantial risks to human health and the ecological environment. For instance, residues of organophosphorus pesticides may damage the human nervous system, while heavy metals such as mercury and cadmium accumulate in living organisms, potentially leading to severe organ damage. The contamination of rice with these pollutants has become a critical concern, necessitating the development of innovative detection techniques that are sensitive, accurate, rapid, portable, and intelligent. This review offers an in-depth analysis of the types, sources, health risks, and ecological impacts of pesticide residues and heavy metals in rice, providing a comprehensive understanding of the challenges and solutions associated with these contaminants. It further provides the fundamental principles, comparative advantages, and technical constraints of both conventional and emerging detection methodologies. These encompass traditional analytical techniques such as spectroscopy and chromatography, well-established immunoassay systems, as well as innovative biosensing technologies. This discussion is substantiated with representative case studies demonstrating their practical applications in rice quality assessment and safety testing. In addition, this review envisions future directions for the development of detection technologies, emphasizing the importance of miniaturization, multiplexed detection, integration with nanotechnology, and real-time monitoring systems. By providing a theoretical foundation for advancing food safety innovation, this review aims to contribute to the ongoing efforts to ensure rice quality and safety, protect public health, and preserve ecological balance. Full article
(This article belongs to the Special Issue Development and Application of Biosensors in the Food Field)
Show Figures

Figure 1

26 pages, 2877 KiB  
Review
A Comprehensive Review of Multifunctional Nanozymes for Degradation and Detection of Organophosphorus Pesticides in the Environment
by Jijia Liang, Zhongtian Dong, Ning Xu, Tao Chen, Jie Liang, Mingzhu Xia and Fenghe Wang
Toxics 2024, 12(12), 926; https://doi.org/10.3390/toxics12120926 - 20 Dec 2024
Cited by 4 | Viewed by 1919
Abstract
Organophosphorus pesticides are the most extensively utilized agrichemicals in the world. They play a crucial role in regulating crop growth, immunizing against pests, and improving yields, while their unregulated residues exert serious detrimental effects on both the environment and human health. Many efforts [...] Read more.
Organophosphorus pesticides are the most extensively utilized agrichemicals in the world. They play a crucial role in regulating crop growth, immunizing against pests, and improving yields, while their unregulated residues exert serious detrimental effects on both the environment and human health. Many efforts have been made in the world to monitor organophosphorus pesticides and solve the issues caused by them. Nanozymes, as one kind of enzyme mimic that is artificially designed to simulate the function of natural enzymes, have aroused a lot of attention due to their unparalleled advantages. Nanozymes inherit both the unique properties of nanomaterials and catalytic functions, which could overcome the limitations inherent in natural enzymes and have great versatile and adaptable application prospects. This review presents a recent advancement in synthesizing multifunctional nanozymes with enzymatic-like activities by using various nanomaterials to degrade and detect organophosphorus pesticides. It mainly encompasses metal-based nanozymes, carbon-based nanozymes, metal–organic-framework-based nanozymes, and single-atom-based nanozymes. Additionally, this paper discusses the potential of nanozymes as novel functional environmental materials. Full article
(This article belongs to the Special Issue Novel Remediation Strategies for Soil Pollution)
Show Figures

Figure 1

14 pages, 4641 KiB  
Article
Oral Administration of Lactiplantibacillus plantarum CCFM8661 Alleviates Dichlorvos-Induced Toxicity in Mice
by Weiwei Ma, Yiyang Zhao, Hang Sun, Ziwei Zhang and Lili Huang
Foods 2024, 13(19), 3211; https://doi.org/10.3390/foods13193211 - 9 Oct 2024
Cited by 1 | Viewed by 1309
Abstract
Dichlorvos (DDVP) is an organophosphorus pesticide commonly used in agriculture for pest control, which may enter the organism from the food chain and cause harm. This study aimed to investigate the mitigation effect of Lactiplantibacillus plantarum CCFM8661 (a strain of the bacteria) on [...] Read more.
Dichlorvos (DDVP) is an organophosphorus pesticide commonly used in agriculture for pest control, which may enter the organism from the food chain and cause harm. This study aimed to investigate the mitigation effect of Lactiplantibacillus plantarum CCFM8661 (a strain of the bacteria) on DDVP toxicity. Sixty male mice were randomly divided into five groups including control (saline), model (DDVP), low-dose, medium-dose, and high-dose groups, and alleviating effect was evaluated by determining body weight, pesticide residues, oxidative stress, and inflammation, and by histological analysis. The results showed that compared with the model group, body weight and acetylcholinesterase activity, and SOD, CAT, T-AOC, and GSH levels significantly increased, and serum DDVP content, MDA level, IL-1β, and TNF-α significantly decreased after administration of the L. plantarum CCFM8661. The study demonstrated that L. plantarum CCFM8661 exhibited a significant detoxification effect on pesticide toxicity in mice, providing a theoretical basis for the application of probiotics in mitigating pesticide-induced damage. Full article
(This article belongs to the Special Issue Probiotics: Selection, Cultivation, Evaluation and Application)
Show Figures

Figure 1

22 pages, 905 KiB  
Article
Gas Chromatography Tandem Mass Spectrometry (GC-MS/MS) for High-Throughput Screening of Pesticides in Rice Samples Collected in Bangladesh and Saudi Arabia
by Ilya Strashnov, Farah T. Ahmed, May M. Alrashdi, Inna Nesmiyan and David A. Polya
Processes 2024, 12(10), 2170; https://doi.org/10.3390/pr12102170 - 5 Oct 2024
Viewed by 2033
Abstract
Gas Chromatography Tandem Mass Spectrometry (GC-MS/MS) with modified QuEChERS sample preparation has been applied to the high-throughput screening of pesticide residuals in rice collected from Bangladesh and Saudi Arabia markets. Both countries consume high volumes of rice, which is a fundamental food for [...] Read more.
Gas Chromatography Tandem Mass Spectrometry (GC-MS/MS) with modified QuEChERS sample preparation has been applied to the high-throughput screening of pesticide residuals in rice collected from Bangladesh and Saudi Arabia markets. Both countries consume high volumes of rice, which is a fundamental food for their populations. We report optimized sample preparation and mass spectrometry analysis protocols, which can be rapidly deployed in analytical laboratories. The screening of four groups (organophosphorus, synthetic pyrethroid, organonitrogen, and organochlorine) of a total of 115 pesticides can be performed within ~10 min using a matrix-matched calibration. For most compounds, the limits of detection and quantification (LOD/LOQ) are well below the maximum residue levels (MRLs) of the main regulators. The method generally demonstrates acceptable recovery values (91 compounds 75–125% and 10 compounds 30–75%). Out of 55 rice samples analyzed, 16 samples (29%) contained pesticide residues above LOQ. Four samples contained chlorpyrifos with concentrations ranging from 21.3 to 71.9 µg/kg, ten samples contained tebuconazole (34.7–69.0 µg/kg), and three samples contained pirimiphos methyl (10.7–20.7 µg/kg). The concentrations of the pesticide residues detected in these samples are well below MRL of FAO/WHO (chlorpyrifos, 500 µg/kg; tebuconazole, 1500 µg/kg; pirimiphos methyl, 7000 µg/kg). Full article
(This article belongs to the Special Issue Monitoring, Detection and Control of Food Contaminants)
Show Figures

Figure 1

14 pages, 4396 KiB  
Article
Deep Eutectic Solvents-Based Ultrasonic-Assisted Dispersive Liquid–Liquid Microextraction for the Determination of Organophosphorus Pesticides in Honeysuckle Dew Samples
by Kangmiao Guo, Xiaokun Wu, Fan Zhang, Ying Cao, Zenglei Tan, Shuwen Xiao and Lijie Wu
Molecules 2024, 29(14), 3423; https://doi.org/10.3390/molecules29143423 - 21 Jul 2024
Cited by 4 | Viewed by 1992
Abstract
A deep eutectic solvent (DES) with the ability to change from hydrophilic to hydrophobic was designed and synthesized and applied to the determination of organophosphorus (OPP) pesticides in honeysuckle dew samples. Choline chloride, phenol, and tetrahydrofuran (THF) were used as the hydrogen bond [...] Read more.
A deep eutectic solvent (DES) with the ability to change from hydrophilic to hydrophobic was designed and synthesized and applied to the determination of organophosphorus (OPP) pesticides in honeysuckle dew samples. Choline chloride, phenol, and tetrahydrofuran (THF) were used as the hydrogen bond acceptor, hydrogen bond donor, and demulsifier, respectively. Eight OPP pesticides were extracted by DES coupled with ultrasonic-assisted extraction (UA) and then chromatographed by GC-MS. DES used as an extract solvent has the advantages of high extraction efficiency, low cost, and environmental protection. Furthermore, DES is compatible with GC-MS. The single factor experiment design and Box–Behnken design (BBD) were applied to the optimization of experimental factors, including the type and composition of extraction solvent, type of demulsifier solvent, the volume of DES and THF, pH of sample solution, and ultrasonic time. Under the optimum experimental conditions, the high degree of linearity from 0.1 to 20.0 ng mL−1 (R2 ≥ 0.9989), the limits of detection from 0.014 to 0.051 ng mL−1 (S/N = 3), and the recoveries of analytes from 81.4 to 104.4% with relative standard deviation below 8.6%. In addition, the adsorption mechanism of OPPs on DES was explored by adsorption kinetic studies. These results have demonstrated that the present method has offered an effective, accurate, and sensitive methodology for OPP pesticides in honeysuckle dew samples, and this method provides a reference for the detection of pesticide residues in traditional Chinese medicine. Full article
(This article belongs to the Special Issue Chromatography and Extraction Techniques for Chemical Applications)
Show Figures

Graphical abstract

15 pages, 4092 KiB  
Article
Preparation of Hybrid Magnetic Nanoparticles for Sensitive and Rapid Detection of Phorate Residue in Celery Using SERS Immunochromatography Assay
by Xiangyang Li, Hean Qian, Jin Tao, Mingshuo Cao, Meng Wang and Wenlei Zhai
Nanomaterials 2024, 14(12), 1046; https://doi.org/10.3390/nano14121046 - 18 Jun 2024
Cited by 1 | Viewed by 1718
Abstract
Extensive use of pesticides in agricultural production has been causing serious health threats to humans and animals. Among them, phorate is a highly toxic organophosphorus insecticide that has been widely used in planting. Due to its harmful effects on human and animal health, [...] Read more.
Extensive use of pesticides in agricultural production has been causing serious health threats to humans and animals. Among them, phorate is a highly toxic organophosphorus insecticide that has been widely used in planting. Due to its harmful effects on human and animal health, it has been restricted for use in many countries. Analytical methods for the rapid and sensitive detection of phorate residues in agricultural products are urgently needed. In this study, a new method was developed by combining surface-enhanced Raman spectroscopy (SERS) and immunochromatography assay (ICA). Hybrid magnetic Fe3O4@Au@DTNB-Ab nanoprobes were prepared by modifying and growing Au nanoseeds on an Fe3O4 core. SERS activity of the nanoprobe was optimized by adjusting the concentration of the Au precursor. A rapid and sensitive assay was established by replacing the traditional colloidal gold-based ICA with hybrid SERS nanoprobes for SERS-ICA. After optimizing parameters including coating antibody concentrations and the composition and pH of the buffer solution, the limit of detection (LOD) for phorate could reach 1 ng/mL, with a linear range of 5~100 ng/mL. This LOD is remarkably lower than the maximum residue limit in vegetables and fruits set by the Chinese government. The feasibility of this method was further examined by conducting a spiking test with celery as the real sample. The result demonstrated that this method could serve as a promising platform for rapid and sensitive detection of phorate in agricultural products. Full article
(This article belongs to the Special Issue Novel Nanomaterials and Nanotechnology for Food Safety)
Show Figures

Figure 1

13 pages, 4915 KiB  
Article
A Multienzyme Reaction-Mediated Electrochemical Biosensor for Sensitive Detection of Organophosphorus Pesticides
by Chengzhen Ji, Xuemei Tang, Ruiming Wen, Chengdong Xu, Jing Wei, Bingjun Han and Long Wu
Biosensors 2024, 14(2), 62; https://doi.org/10.3390/bios14020062 - 24 Jan 2024
Cited by 11 | Viewed by 2557
Abstract
Ethephon (ETH), a commonly employed growth regulator, poses potential health risks due to its residue in fruits and vegetables, leading to both acute and subchronic toxicity. However, the detection accuracy of ETH is compromised by the color effects of the samples during the [...] Read more.
Ethephon (ETH), a commonly employed growth regulator, poses potential health risks due to its residue in fruits and vegetables, leading to both acute and subchronic toxicity. However, the detection accuracy of ETH is compromised by the color effects of the samples during the detection process. In this work, a multienzyme reaction-mediated electrochemical biosensor (MRMEC) was developed for the sensitive, rapid, and color-interference-resistant determination of ETH. Nanozymes Fe3O4@Au–Pt and graphene nanocomplexes (GN–Au NPs) were prepared as catalysts and signal amplifiers for MRMEC. Acetylcholinesterase (AChE), acetylcholine (ACh), and choline oxidase (CHOx) form a cascade enzyme reaction to produce H2O2 in an electrolytic cell. Fe3O4@Au–Pt has excellent peroxidase-like activity and can catalyze the oxidation of 3,3′,5,5′-tetramethvlbenzidine (TMB) in the presence of H2O2, resulting in a decrease in the characteristic peak current of TMB. Based on the inhibitory effect of ETH on AChE, the differential pulse voltammetry (DPV) current signal of TMB was used to detect ETH, offering the limit of detection (LOD) of 2.01 nmol L−1. The MRMEC method effectively analyzed ETH levels in mangoes, showing satisfactory precision (coefficient of variations, 2.88–15.97%) and recovery rate (92.18–110.72%). This biosensor holds promise for detecting various organophosphorus pesticides in food samples. Full article
Show Figures

Figure 1

14 pages, 6188 KiB  
Article
A Multi-Enzyme Cascade Response for the Colorimetric Recognition of Organophosphorus Pesticides Utilizing Core-Shell Pd@Pt Nanoparticles with High Peroxidase-like Activity
by Zainabu Majid, Qi Zhang, Zhansen Yang, Huilian Che and Nan Cheng
Foods 2023, 12(17), 3319; https://doi.org/10.3390/foods12173319 - 4 Sep 2023
Cited by 4 | Viewed by 2461
Abstract
In modern agricultural practices, organophosphorus pesticides or insecticides (OPs) are regularly used to restrain pests. Their limits are closely monitored since their residual hinders the capability of acetylcholinesterase (AChE) and brings out a threatening accumulation of the neurotransmitter acetylcholine (ACh), which affects human [...] Read more.
In modern agricultural practices, organophosphorus pesticides or insecticides (OPs) are regularly used to restrain pests. Their limits are closely monitored since their residual hinders the capability of acetylcholinesterase (AChE) and brings out a threatening accumulation of the neurotransmitter acetylcholine (ACh), which affects human well-being. Therefore, spotting OPs in food and the environment is compulsory to prevent human health. Several techniques are available to identify OPs but encounter shortcomings like time-consuming, operating costs, and slow results achievement, which calls for further solutions. Herein, we present a rapid colorimetric sensor for quantifying OPs in foods using TMB as a substrate, a multi-enzyme cascade system, and the synergistic property of core-shell Palladinum@Platinum (Pd@Pt) nanoparticles. The multi-enzyme cascade response framework is a straightforward and effective strategy for OPs recognition and can resolve the previously mentioned concerns. Numerous OPs, including Carbofuran, Malathion, Parathion, Phoxim, Rojor, and Phosmet, were successfully quantified at different concentrations. The cascade method established using Pd@Pt had a simple and easy operation, a lower detection limit range of (1–2.5 ng/mL), and a short detection time of about 50 min. With an R2 value of over 0.93, OPs showed a linear range of 10–200 ng/mL, portraying its achievement in quantifying pesticide residue. Lastly, the approach was utilized in food samples and recovered more than 80% of the residual OPs. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

12 pages, 3669 KiB  
Article
Development and Characterization of Nano-Ink from Silicon Carbide/Multi-Walled Carbon Nanotubes/Synthesized Silver Nanoparticles for Non-Enzymatic Paraoxon Residuals Detection
by Itsarapong Chuasontia, Wichaya Sirisom, Natthapon Nakpathomkun, Surachet Toommee, Chiravoot Pechyen, Benchamaporn Tangnorawich and Yardnapar Parcharoen
Micromachines 2023, 14(8), 1613; https://doi.org/10.3390/mi14081613 - 16 Aug 2023
Cited by 6 | Viewed by 2921
Abstract
The ongoing advancement in the synthesis of new nanomaterials has accelerated the rapid development of non-enzymatic pesticide sensors based on electrochemical platforms. This study aims to develop and characterize Nano-ink for applying organophosphorus pesticides using paraoxon residue detection. Multi-walled carbon nanotubes, silicon carbide, [...] Read more.
The ongoing advancement in the synthesis of new nanomaterials has accelerated the rapid development of non-enzymatic pesticide sensors based on electrochemical platforms. This study aims to develop and characterize Nano-ink for applying organophosphorus pesticides using paraoxon residue detection. Multi-walled carbon nanotubes, silicon carbide, and silver nanoparticles were used to create Nano-ink using a green synthesis process in 1:1:0, 1:1:0.5, and 1:1:1 ratios, respectively. These composites were combined with chitosan of varying molecular weights, which served as a stabilizing glue to keep the Nano-ink employed in a functioning electrode stable. By using X-ray powder diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and a field emission scanning electron microscope, researchers were able to examine the crystallinity, element composition, and surface morphology of Nano-ink. The performance of the proposed imprinted working electrode Nano-ink was investigated using cyclic voltammetry and differential pulse voltammetry techniques. The Cyclic voltammogram of Ag NPs/chitosan (medium, 50 mg) illustrated high current responses and favorable conditions of the Nano-ink modified electrode. Under the optimized conditions, the reduction currents of paraoxon using the DPV techniques demonstrated a linear reaction ranging between 0.001 and 1.0 µg/mL (R2 = 0.9959) with a limit of detection of 0.0038 µg/mL and a limit of quantitation of 0.011 µg/mL. It was concluded that the fabricated Nano-ink showed good electrochemical activity for non-enzymatic paraoxon sensing. Full article
Show Figures

Figure 1

34 pages, 5210 KiB  
Review
Recent Progress in Electrochemical Nano-Biosensors for Detection of Pesticides and Mycotoxins in Foods
by Zhaoyuan Gong, Yueming Huang, Xianjing Hu, Jianye Zhang, Qilei Chen and Hubiao Chen
Biosensors 2023, 13(1), 140; https://doi.org/10.3390/bios13010140 - 14 Jan 2023
Cited by 34 | Viewed by 5933
Abstract
Pesticide and mycotoxin residues in food are concerning as they are harmful to human health. Traditional methods, such as high-performance liquid chromatography (HPLC) for such detection lack sensitivity and operation convenience. Efficient, accurate detection approaches are needed. With the recent development of nanotechnology, [...] Read more.
Pesticide and mycotoxin residues in food are concerning as they are harmful to human health. Traditional methods, such as high-performance liquid chromatography (HPLC) for such detection lack sensitivity and operation convenience. Efficient, accurate detection approaches are needed. With the recent development of nanotechnology, electrochemical biosensors based on nanomaterials have shown solid ability to detect trace pesticides and mycotoxins quickly and accurately. In this review, English articles about electrochemical biosensors in the past 11 years (2011–2022) were collected from PubMed database, and various nanomaterials are discussed, including noble metal nanomaterials, magnetic metal nanoparticles, metal–organic frameworks, carbon nanotubes, as well as graphene and its derivatives. Three main roles of such nanomaterials in the detection process are summarized, including biomolecule immobilization, signal generation, and signal amplification. The detection targets involve two types of pesticides (organophosphorus and carbamate) and six types of mycotoxins (aflatoxin, deoxynivalenol, zearalenone, fumonisin, ochratoxin A, and patulin). Although significant achievements have been made in the evolution of electrochemical nano-biosensors, many challenges remain to be overcome. Full article
Show Figures

Figure 1

14 pages, 5503 KiB  
Article
Electrochemical Organophosphorus Pesticide Detection Using Nanostructured Gold-Modified Electrodes
by Han-Wei Chang, Chien-Lin Chen, Yan-Hua Chen, Yu-Ming Chang, Feng-Jiin Liu and Yu-Chen Tsai
Sensors 2022, 22(24), 9938; https://doi.org/10.3390/s22249938 - 16 Dec 2022
Cited by 14 | Viewed by 3649
Abstract
In this study, nanostructured gold was successfully prepared on a bare Au electrode using the electrochemical deposition method. Nanostructured gold provided more exposed active sites to facilitate the ion and electron transfer during the electrocatalytic reaction of organophosphorus pesticide (methyl parathion). The morphological [...] Read more.
In this study, nanostructured gold was successfully prepared on a bare Au electrode using the electrochemical deposition method. Nanostructured gold provided more exposed active sites to facilitate the ion and electron transfer during the electrocatalytic reaction of organophosphorus pesticide (methyl parathion). The morphological and structural characterization of nanostructured gold was conducted using field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), which was further carried out to evaluate the electrocatalytic activity towards methyl parathion sensing. The electrochemical performance of nanostructured gold was investigated by electrochemical measurements (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)). The proposed nanostructured gold-modified electrode exhibited prominent electrochemical methyl parathion sensing performance (including two linear concentration ranges from 0.01 to 0.5 ppm (R2 = 0.993) and from 0.5 to 4 ppm (R2 = 0.996), limit of detection of 5.9 ppb, excellent selectivity and stability), and excellent capability in determination of pesticide residue in real fruit and vegetable samples (bok choy and strawberry). The study demonstrated that the presented approach to fabricate a nanostructured gold-modified electrode could be practically applied to detect pesticide residue in agricultural products via integrating the electrochemical and gas chromatography coupled with mass spectrometry (GC/MS-MS) analysis. Full article
(This article belongs to the Special Issue The Design, Fabrication and Sensor Applications of Nano-Electrodes)
Show Figures

Figure 1

11 pages, 3094 KiB  
Article
Acetylcholinesterase Immobilization on ZIF-8/Graphene Composite Engenders High Sensitivity Electrochemical Sensing for Organophosphorus Pesticides
by Long Wen, Ning Wang, Zhuoliang Liu, Cheng-an Tao, Xiaorong Zou, Fang Wang and Jianfang Wang
Chemosensors 2022, 10(10), 418; https://doi.org/10.3390/chemosensors10100418 - 13 Oct 2022
Cited by 10 | Viewed by 2406
Abstract
A sensitive and flexible detection method for organophosphorus pesticides (OPs) detection is a crucial request to avoid their further expanded pollution. Herein, an acetylcholinesterase (AChE) electrochemical sensor, based on the co-modification of ZIF-8 and graphene (GR), was constructed for the detection of OPs. [...] Read more.
A sensitive and flexible detection method for organophosphorus pesticides (OPs) detection is a crucial request to avoid their further expanded pollution. Herein, an acetylcholinesterase (AChE) electrochemical sensor, based on the co-modification of ZIF-8 and graphene (GR), was constructed for the detection of OPs. ZIF-8/GR composite can provide a stable and biocompatible environment for the loading of AChE and can accelerate the chemical reaction on the electrode surface. After optimization, the linear detection range of the constructed AChE-CS/GR/ZIF-8/GCE sensor for ICP was 0.5–100 ng/mL (1.73–345.7 nM), and the limit of detection was 0.18 ng/mL (0.62 nM). Moreover, high sensitivity and high specificity of the sensor were also achieved in actual cabbage and tap water samples. Therefore, it has great potential for the application of organophosphorus pesticide residue analysis. Full article
(This article belongs to the Special Issue The Prospect and Application of Electrochemical Biosensors)
Show Figures

Graphical abstract

16 pages, 3944 KiB  
Article
A Novel Organophosphorus Acid Anhydrolase from Deep Sea Sediment with High Degradation Efficiency for Organophosphorus Pesticides and Nerve Agent
by Xiaofang Zheng, Li Wang, Lihong Qi and Zhiyang Dong
Microorganisms 2022, 10(6), 1112; https://doi.org/10.3390/microorganisms10061112 - 27 May 2022
Cited by 15 | Viewed by 2666
Abstract
Organophosphorus compounds (OPCs), including highly toxic nerve agents and pesticides, have been used widely in agricultural and military applications. However, they have aroused widespread concern because they persistently pollute the environment and threaten human life. Organophosphorus acid anhydrolase (OPAA) is a promising enzyme [...] Read more.
Organophosphorus compounds (OPCs), including highly toxic nerve agents and pesticides, have been used widely in agricultural and military applications. However, they have aroused widespread concern because they persistently pollute the environment and threaten human life. Organophosphorus acid anhydrolase (OPAA) is a promising enzyme that can detoxify OPCs. Here, a novel OPAA (OPAA114644) was isolated and characterized from deep-sea sediment (−3104 m). It exhibited excellent alkaline stability, and the loss of activity was less than 20% in the pH range 5.0–9.0, even after being incubated for 30 d at 4 °C. It also exhibited high salt tolerance, and its enzymatic activity increased by approximately fourfold in the presence of 20% NaCl (w/v). Additionally, OPAA114644 exhibited high degradation efficiency for soman, dichlorvos, paraoxon, coumaphos, and chlorpyrifos with a concentration of up to 250 mg/L, with the degradation rate being 100%, 100%, 100%, 80% and 51%, respectively, in 20 min under optimal conditions. Notably, OPAA114644 dissolved in different solutions, such as 20% NaCl, 1 mM SDS, 0.05% soap, 10% methanol, and tap water, could efficiently decontaminate the residual paraoxon on the surfaces of glasses, cotton tissues, and apples. These results indicate that OPAA114644 has excellent potential for the biodegradation and bioremediation of OPCs pollution and represents a real application of OPAA in the decontamination and detoxification of foods and clothes, and in the remediation of sites such as floors. Deep-sea sediment might also be an abundant resource for various functional microorganisms and enzymes. Full article
(This article belongs to the Special Issue Microbial Biodegradation and Biotransformation)
Show Figures

Figure 1

11 pages, 1843 KiB  
Article
Detection of Chlorpyrifos Using Bio-Inspired Silver Nanograss
by Hyunjun Park, Joohyung Park, Gyudo Lee, Woong Kim and Jinsung Park
Materials 2022, 15(10), 3454; https://doi.org/10.3390/ma15103454 - 11 May 2022
Cited by 12 | Viewed by 2894
Abstract
Chlorpyrifos (CPF) is widely used as an organophosphorus insecticide; however, owing to developmental neurotoxicity, genotoxicity, and other adverse effects, it is harmful not only to livestock but also to humans. Therefore, the use of CPF was recently regulated, and its sensitive detection is [...] Read more.
Chlorpyrifos (CPF) is widely used as an organophosphorus insecticide; however, owing to developmental neurotoxicity, genotoxicity, and other adverse effects, it is harmful not only to livestock but also to humans. Therefore, the use of CPF was recently regulated, and its sensitive detection is crucial, as it causes serious toxicity, even in the case of residual pesticides. Because it is hard to detect the chlorpyrifos directly using spectroscopy (especially in SERS) without chemical reagents, we aimed to develop a SERS platform that could detect the chlorpyrifos directly in the water. In this study, we utilized the intrinsic properties of natural lawns that grow randomly and intertwine with each other to have a large surface area to promote photosynthesis. To detect CPF sensitively, we facilitated the rapid fabrication of biomimetic Ag nanograss (Ag-NG) as a surface-enhanced Raman spectroscopy (SERS) substrate using the electrochemical over-deposition method. The efficiency of the SERS method was confirmed through experiments and finite element method (FEM)-based electromagnetic simulations. In addition, the sensitive detection of CPF was enhanced by pretreatment optimization of the application of the SERS technique (limit of detection: 500 nM). The Ag-NG has potential as a SERS platform that could precisely detect organic compounds, as well as various toxic substances. Full article
Show Figures

Figure 1

18 pages, 5133 KiB  
Article
Rapid Detection of Dimethoate in Soybean Samples by Microfluidic Paper Chips Based on Oil-Soluble CdSe Quantum Dots
by Xinpeng Yan, Zhong Zhang, Runguang Zhang, Tian Yang, Guoying Hao, Li Yuan and Xingbin Yang
Foods 2021, 10(11), 2810; https://doi.org/10.3390/foods10112810 - 15 Nov 2021
Cited by 8 | Viewed by 2856
Abstract
Given the imperative of monitoring organophosphorus pesticides (OPs) residues in the ecosystem, here a novel, facile and sensitive fluorescence sensor is presented for the rapid detection of dimethoate. In this work, surface molecularly imprinted polymer (SMIP) and microfluidic technology had been introduced to [...] Read more.
Given the imperative of monitoring organophosphorus pesticides (OPs) residues in the ecosystem, here a novel, facile and sensitive fluorescence sensor is presented for the rapid detection of dimethoate. In this work, surface molecularly imprinted polymer (SMIP) and microfluidic technology had been introduced to enhance the selectivity and portability of the described methodology. Oil-soluble CdSe quantum dots (QDs) synthesized in a green way were used as fluorescent material for the selective detection of dimethoate on the basis of static quenching and photoinduced electron transfer mechanism. Among many kinds of paper materials, glass fiber paper was used as the novel substrate of paper chip due to low pristine fluorescence and better performance when combining CdSe QDs. In the process of molecular imprinting, the interaction between several functional monomers and dimethoate molecule was investigated and simulated theoretically by software to improve the selectivity of the sensor. Consequently, the fabricated novel detection platform could effectively respond to dimethoate in 10 min with the concentration range of 0.45–80 μmol/L and detection limit of 0.13 μmol/L. The recovery in the spiked experiment soybean sample was in an acceptable range (97.6–104.1%) and the accuracy was verified by gas chromatography-mass spectrometry, which signified the feasibility and potential in food sampling. Full article
(This article belongs to the Special Issue Emerging Detection Techniques for Contaminants in Food Science)
Show Figures

Graphical abstract

Back to TopTop