Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = organized industrial zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6694 KiB  
Article
Spatiotemporal Assessment of Benzene Exposure Characteristics in a Petrochemical Industrial Area Using Mobile-Extraction Differential Optical Absorption Spectroscopy (Me-DOAS)
by Dong keun Lee, Jung-min Park, Jong-hee Jang, Joon-sig Jung, Min-kyeong Kim, Jaeseok Heo and Duckshin Park
Toxics 2025, 13(8), 655; https://doi.org/10.3390/toxics13080655 - 31 Jul 2025
Viewed by 233
Abstract
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in [...] Read more.
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in the Ulsan petrochemical complex, South Korea. A vehicle-mounted Me-DOAS system conducted monthly measurements throughout 2024, capturing data during four daily intervals to evaluate diurnal variation. Routes included perimeter loops and grid-based transects within core industrial zones. The highest benzene concentrations were observed in February (mean: 64.28 ± 194.69 µg/m3; geometric mean: 5.13 µg/m3), with exceedances of the national annual standard (5 µg/m3) in several months. Notably, nighttime and early morning sessions showed elevated levels, suggesting contributions from nocturnal operations and meteorological conditions such as atmospheric inversion. A total of 179 exceedances (≥30 µg/m3) were identified, predominantly in zones with benzene-handling activities. Correlation analysis revealed a significant relationship between high concentrations and specific emission sources. These results demonstrate the utility of Me-DOAS in capturing spatiotemporal emission dynamics and support its application in exposure risk assessment and industrial emission control. The findings provide a robust framework for targeted management strategies and call for integration with source apportionment and dispersion modeling tools. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 261
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

22 pages, 6926 KiB  
Article
Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health
by Ioannis Papadopoulos, Evangelia E. Golia, Ourania-Despoina Kantzou, Sotiria G. Papadimou and Anna Bourliva
Toxics 2025, 13(8), 632; https://doi.org/10.3390/toxics13080632 - 27 Jul 2025
Viewed by 989
Abstract
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential [...] Read more.
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential neighborhoods, parks, and mixed-use areas, with sampling conducted both after the wet (winter) and dry (summer) seasons. Soil physicochemical properties (pH, electrical conductivity, texture, organic matter, and calcium carbonate content) were analyzed alongside the concentrations of heavy metals such as Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. A pollution assessment employed the Geoaccumulation Index (Igeo), Contamination Factor (Cf), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI), revealing variable contamination levels across the city, with certain hotspots exhibiting a considerable to very high ecological risk. Multivariate statistical analyses (PCA and HCA) identified distinct anthropogenic and geogenic sources of heavy metals. Health risk assessments, based on USEPA models, evaluated non-carcinogenic and carcinogenic risks for both adults and children via ingestion and dermal contact pathways. The results indicate that while most sites present low to moderate health risks, specific locations, particularly near major transport and industrial areas, pose elevated risks, especially for children. The findings underscore the need for targeted monitoring and remediation strategies to mitigate the ecological and human health risks associated with urban soil pollution in Thessaloniki. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Figure 1

15 pages, 5142 KiB  
Article
Cavitation-Jet-Induced Erosion Controlled by Injection Angle and Jet Morphology
by Jinichi Koue and Akihisa Abe
J. Mar. Sci. Eng. 2025, 13(8), 1415; https://doi.org/10.3390/jmse13081415 - 25 Jul 2025
Viewed by 185
Abstract
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria [...] Read more.
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria and larvae, from ship hulls and underwater infrastructure. Through erosion experiments on coated specimens, variations in jet morphology, and flow visualization using the Schlieren method, we examined how factors such as jet incident angle and nozzle configuration influence removal performance. The results reveal that erosion occurs not only at the direct jet impact zone but also in regions where cavitation bubbles exhibit intense motion, driven by pressure fluctuations and shock waves. Notably, single-hole jets with longer potential cores produced more concentrated erosion, while multi-jet interference enhanced bubble activity. These findings underscore the importance of understanding bubble distribution dynamics in the flow field and provide insight into optimizing cavitation jet configurations to expand the effective cleaning area while minimizing material damage. This study contributes to advancing biofouling removal technologies that promote safer and more sustainable maritime operations. Full article
Show Figures

Figure 1

37 pages, 5333 KiB  
Review
The Potential of Microbial Fuel Cells as a Dual Solution for Sustainable Wastewater Treatment and Energy Generation: A Case Study
by Shajjadur Rahman Shajid, Monjur Mourshed, Md. Golam Kibria and Bahman Shabani
Energies 2025, 18(14), 3725; https://doi.org/10.3390/en18143725 - 14 Jul 2025
Viewed by 404
Abstract
Microbial fuel cells (MFCs) are bio-electrochemical systems that harness microorganisms to convert organic pollutants in wastewater directly into electricity, offering a dual solution for sustainable wastewater treatment and renewable energy generation. This paper presents a holistic techno-economic and environmental feasibility assessment of large-scale [...] Read more.
Microbial fuel cells (MFCs) are bio-electrochemical systems that harness microorganisms to convert organic pollutants in wastewater directly into electricity, offering a dual solution for sustainable wastewater treatment and renewable energy generation. This paper presents a holistic techno-economic and environmental feasibility assessment of large-scale MFC deployment in Dhaka’s industrial zone, Bangladesh, as a relevant case study. Here, treating 100,000 cubic meters of wastewater daily would require a capital investment of approximately USD 500 million, with a total project cost ranging between USD 307.38 million and 1.711 billion, depending on system configurations. This setup has an estimated theoretical energy recovery of 478.4 MWh/day and a realistic output of 382 MWh/day, translating to a per-unit energy cost of USD 0.2–1/kWh. MFCs show great potential for treating wastewater and addressing energy challenges. However, this paper explores remaining challenges, including high capital costs, electrode and membrane inefficiencies, and scalability issues. Full article
(This article belongs to the Special Issue A Circular Economy Perspective: From Waste to Energy)
Show Figures

Figure 1

24 pages, 3328 KiB  
Article
Biocontrol of Cheese Spoilage Moulds Using Native Yeasts
by Catalina M. Cabañas, Alejandro Hernández León, Santiago Ruiz-Moyano, Almudena V. Merchán, José Manuel Martínez Torres and Alberto Martín
Foods 2025, 14(14), 2446; https://doi.org/10.3390/foods14142446 - 11 Jul 2025
Viewed by 407
Abstract
Biocontrol is one of the most promising alternatives to chemical preservatives for food preservation. This study investigated the biocontrol potential of yeasts isolated from raw milk cheese against spoilage moulds. Eighty-four native yeast strains were screened for antagonistic activity against Penicillium commune, [...] Read more.
Biocontrol is one of the most promising alternatives to chemical preservatives for food preservation. This study investigated the biocontrol potential of yeasts isolated from raw milk cheese against spoilage moulds. Eighty-four native yeast strains were screened for antagonistic activity against Penicillium commune, Fusarium verticillioides, and Mucor plumbeus/racemosus via confrontation using a milk-based culture medium. Fifteen strains from the species Pichia jadinii, Kluyveromyces lactis, Kluyveromyces marxianus, and Geotrichum candidum exhibited significant antagonistic activity (inhibition zone > 2 mm) against M. plumbeus/racemosus and F. verticillioides. The modelling of the impact of ripening conditions revealed that temperature was the primary factor influencing yeast antagonism. In addition, notable variability at both species and strain levels was found. The antagonist activity was associated with different mechanisms depending on the species and strains. K. lactis stood out for its proteolytic activity and competition for iron and manganese. Additionally, two strains of this species (KL890 and KL904) were found to produce volatile organic compounds with antifungal properties (phenylethyl alcohol and 1-butanol-3-methyl propionate). G. candidum GC663 exhibited strong competition for space, as well as the ability to parasitise hyphae linked to its pectinase and β-glucanase activity. The latter enzymatic activity was detected in all P. jadinii strains, with P. jadinii PJ433 standing out due to its proteolytic activity. In a cheese matrix, the efficacy of eight yeast strains against three target moulds was assessed, highlighting the potential of G. candidum GC663 and P. jadinii PJ433 as biocontrol agents, exhibiting high and moderate efficacy, respectively, in controlling the growth of F. verticillioides and M. plumbeus/racemosus. Nonetheless, further research is necessary to elucidate their full spectrum of antifungal mechanisms and to validate their performance under industrial-scale conditions, including their impact on cheese quality. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

34 pages, 3597 KiB  
Article
Human Factors and Ergonomics in Sustainable Manufacturing Systems: A Pathway to Enhanced Performance and Wellbeing
by Violeta Firescu and Daniel Filip
Machines 2025, 13(7), 595; https://doi.org/10.3390/machines13070595 - 9 Jul 2025
Viewed by 513
Abstract
Human Factors and Ergonomics (HF/E) play an essential role in the development of sustainable manufacturing systems. By prioritizing worker wellbeing through the mitigation of occupational hazards and the enhancement of workplace health, HF/E contributes significantly to improved system performance. In accordance with the [...] Read more.
Human Factors and Ergonomics (HF/E) play an essential role in the development of sustainable manufacturing systems. By prioritizing worker wellbeing through the mitigation of occupational hazards and the enhancement of workplace health, HF/E contributes significantly to improved system performance. In accordance with the principles of Industry 5.0 and Society 5.0, which emphasize human-centered design and wellbeing, organizations that effectively integrate HF/E principles can achieve a competitive advantage on the market. Based on a globally recognized ranking system utilized by investors in making informed decisions, the study focuses on manufacturing companies ranked by their occupational health and safety (OHS) scores, a key criterion for assessing the social dimension of company performance. This research aims to identify and analyze top-ranked companies that explicitly highlight HF/E-related benefits within their public documents and sustainability reports. The paper investigates aspects related to the integration of AI and digital technologies to enhance safety and health in manufacturing systems, with a specific focus on human presence detection in hazardous zones, improvements in machines and equipment design, occupational risk assessments, and initiatives for enhancing worker wellbeing. The findings are expected to provide compelling evidence for companies to prioritize HF/E consideration during the design and redesign phases of sustainable manufacturing systems. The paper provides significant value to non-indexed companies by offering a dual approach for improving OHS performance, based on an empirical evaluation assessment method and practical strategies for effective OHS implementation in different manufacturing industries and countries. Full article
Show Figures

Figure 1

20 pages, 4992 KiB  
Article
Spatial Heterogeneity and Controlling Factors of Heavy Metals in Groundwater in a Typical Industrial Area in Southern China
by Jiaxu Du, Fu Liao, Ziwen Zhang, Aoao Du and Jiale Qian
Water 2025, 17(13), 2012; https://doi.org/10.3390/w17132012 - 4 Jul 2025
Viewed by 573
Abstract
Heavy metal contamination in groundwater has emerged as a significant environmental issue, driven by rapid industrialization and intensified human activities, particularly in southern China. Heavy metal pollution in groundwater often presents complex spatial patterns and multiple sources; understanding the spatial heterogeneity and controlling [...] Read more.
Heavy metal contamination in groundwater has emerged as a significant environmental issue, driven by rapid industrialization and intensified human activities, particularly in southern China. Heavy metal pollution in groundwater often presents complex spatial patterns and multiple sources; understanding the spatial heterogeneity and controlling factors of heavy metals is crucial for pollution prevention and water resource management in industrial regions. This study applied spatial autocorrelation analysis and self-organizing maps (SOM) coupled with K-means clustering to investigate the spatial distribution and key influencing factors of nine heavy metals (Cr, Fe, Mn, Ni, Cu, Zn, As, Ba, and Pb) in a typical industrial area in southern China. Heavy metals show significant spatial heterogeneity in concentrations. Cr, Mn, Fe, and Cu form local hotspots near urban and peripheral zones; Ni and As present downstream enrichment along the river pathway with longitudinal increase trends; Zn, Ba, and Pb exhibit a fluctuating pattern from west to east in the piedmont region. Local Moran’s I analysis further revealed spatial clustering in the northwest, riverine zones, and coastal outlet areas, providing insight into potential source regions. SOM clustering identified three types of groundwater: Cluster 1 (characterized by Cr, Mn, Fe, and Ni) is primarily influenced by industrial pollution and present spatially scattered distribution; Cluster 2 (dominated by As, NO3, Ca2+, and K+) is associated with domestic sewage and distributes following river flow; Cluster 3 (enriched in Zn, Ba, Pb, and NO3) is shaped by agricultural activities and natural mineral dissolution, with a lateral distribution along the piedmont zone. The findings of this study provide a scientific foundation for groundwater pollution prevention and environmental management in industrialized areas. Full article
Show Figures

Figure 1

22 pages, 4363 KiB  
Article
Enhancing Cutting Oil Efficiency with Nanoparticle Additives: A Gaussian Process Regression Approach to Viscosity and Cost Optimization
by Beytullah Erdoğan, İrfan Kılıç, Abdulsamed Güneş, Orhan Yaman and Ayşegül Çakır Şencan
Nanomaterials 2025, 15(13), 1008; https://doi.org/10.3390/nano15131008 - 30 Jun 2025
Viewed by 335
Abstract
Nanoparticle additives are used to increase the cooling efficiency of cutting fluids in machining. In this study, changing dynamic viscosity values depending on the addition of nanoparticles to cutting oils was investigated. Mono nanofluids were prepared by adding hBN (hexagonal boron nitride), ZnO, [...] Read more.
Nanoparticle additives are used to increase the cooling efficiency of cutting fluids in machining. In this study, changing dynamic viscosity values depending on the addition of nanoparticles to cutting oils was investigated. Mono nanofluids were prepared by adding hBN (hexagonal boron nitride), ZnO, MWCNT (multi-walled carbon nanotube), TiO2, and Al2O3 as nanoparticles, hybrid nanofluids were prepared by using two types of nanoparticles (ZnO + MWCNT, hBN + MWCNT etc.), and ternary nanofluids were prepared by using three types of nanoparticles. GPR (Gaussian process regression) was used to estimate unmeasured dynamic viscosity values using the dynamic viscosity values measured for different temperatures. Dynamic viscosity results are a precise determination (R2 = 1). An augmented dataset was obtained by adding the dynamic viscosity values estimated with high accuracy. A fitness function based on dynamic viscosity and nanoparticle unit costs was proposed for the cost analysis. With the help of the proposed fitness function, it was observed that the best performing nanoparticles were the ZnO and ZnO hybrid mixtures according to different dynamic viscosity and cost effects. The study showed that the most suitable nanofluid selection focused on performance and cost could be made without performing experiments under various operating conditions by increasing the limited experimental measurements with strong GPR estimates and using the proposed fitness function. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

17 pages, 6013 KiB  
Article
The Effect of Injection Molding Processing Parameters on Chrome-Plated Acrylonitrile Butadiene Styrene-Based Automotive Parts: An Industrial Scale
by Yunus Emre Polat, Mustafa Oksuz, Aysun Ekinci, Murat Ates and Ismail Aydin
Polymers 2025, 17(13), 1787; https://doi.org/10.3390/polym17131787 - 27 Jun 2025
Viewed by 570
Abstract
In recent years, plastic decorative materials have been used in the automotive industry due to their advantages such as being environmentally friendly, aesthetic, light and economically affordable. Plastic decorative materials can exhibit high strength and metallic reflection with metal coatings. Chrome plating is [...] Read more.
In recent years, plastic decorative materials have been used in the automotive industry due to their advantages such as being environmentally friendly, aesthetic, light and economically affordable. Plastic decorative materials can exhibit high strength and metallic reflection with metal coatings. Chrome plating is generally preferred in the production of decorative plastic parts in the automotive industry. In this study, the effect of injection molding processing parameters on the metal–polymer adhesion of chrome-plated acrylonitrile butadiene styrene (ABS) was investigated. The ABS-based front grille frames are fabricated by means of using an industrial-scale injection molding machine. Then, the fabricated ABS-based front grille frame was plated with chrome by means of the electroplating method. The metal–polymer adhesion was investigated as a function of the injection molding processing parameters by means of a cross-cut test and scanning electron microscope (SEM). As a result, it was determined that the optimal injection process parameters, a cooling time of 18 s, a mold temperature of 70 °C, injection rates of 45-22-22-20-15-10 mm/s, and packing pressures of 110-100-100 bar, were effective in enhancing polymer–metal adhesion for the ABS-based front grille frame. Full article
(This article belongs to the Special Issue Advances in Polymer Molding and Processing)
Show Figures

Graphical abstract

19 pages, 3174 KiB  
Article
Comprehensive Assessment and Mitigation of Indoor Air Quality in a Commercial Retail Building in Saudi Arabia
by Wael S. Al-Rashed and Abderrahim Lakhouit
Sustainability 2025, 17(13), 5862; https://doi.org/10.3390/su17135862 - 25 Jun 2025
Viewed by 578
Abstract
The acceleration of industrialization and urbanization worldwide has dramatically improved living standards but has also introduced serious environmental and public health challenges. One of the most critical challenges is air pollution, particularly indoors, where individuals typically spend over 90% of their time. Ensuring [...] Read more.
The acceleration of industrialization and urbanization worldwide has dramatically improved living standards but has also introduced serious environmental and public health challenges. One of the most critical challenges is air pollution, particularly indoors, where individuals typically spend over 90% of their time. Ensuring good Indoor Air Quality (IAQ) is essential, especially in heavily frequented public spaces such as shopping malls. This study focuses on assessing IAQ in a large shopping mall located in Tabuk, Saudi Arabia, covering retail zones as well as an attached underground parking area. Monitoring is conducted over a continuous two-month period using calibrated instruments placed at representative locations to capture variations in pollutant levels. The investigation targets key contaminants, including carbon monoxide (CO), carbon dioxide (CO2), fine particulate matter (PM2.5), total volatile organic compounds (TVOCs), and formaldehyde (HCHO). The data are analyzed and compared against international and national guidelines, including World Health Organization (WHO) standards and Saudi environmental regulations. The results show that concentrations of CO, CO2, and PM2.5 in the shopping mall are generally within acceptable limits, with values ranging from approximately 7 to 15 ppm, suggesting that ventilation systems are effective in most areas. However, the study identifies high levels of TVOCs and HCHO, particularly in zones characterized by poor ventilation and high human occupancy. Peak concentrations reach 1.48 mg/m3 for TVOCs and 1.43 mg/m3 for HCHO, exceeding recommended exposure thresholds. These findings emphasize the urgent need for enhancing ventilation designs, prioritizing the use of low-emission materials, and establishing continuous air quality monitoring protocols within commercial buildings. Improving IAQ is not only crucial for protecting public health but also for enhancing occupant comfort, satisfaction, and overall building sustainability. This study offers practical recommendations to policymakers, building managers, and designers striving to create healthier indoor environments in rapidly expanding urban centers. Full article
Show Figures

Figure 1

11 pages, 979 KiB  
Communication
Heat Stress Memory Is Critical for Tolerance to Recurrent Thermostress in the Foliose Red Alga Pyropia yezoensis
by Megumu Takahashi and Koji Mikami
Phycology 2025, 5(3), 28; https://doi.org/10.3390/phycology5030028 - 23 Jun 2025
Viewed by 264
Abstract
Bangiales are photosynthetic organisms that grow in the intertidal zone, a region characterized by fluctuating environmental conditions. The order comprises genera exhibiting two different morphological variations, filamentous and foliose. It was recently demonstrated that the filamentous alga ‘Bangia’ sp. ESS1 possesses [...] Read more.
Bangiales are photosynthetic organisms that grow in the intertidal zone, a region characterized by fluctuating environmental conditions. The order comprises genera exhibiting two different morphological variations, filamentous and foliose. It was recently demonstrated that the filamentous alga ‘Bangia’ sp. ESS1 possesses the intrinsic ability to “memorize” an experience of prior heat stress to enhance its survival under subsequent, normally lethal, high-temperature conditions via the acquisition of heat stress tolerance. Here, we investigated whether foliose red algae can similarly memorize heat stress to acquire thermotolerance. When Pyropia yezoensis thalli were primed with non-lethal, high-temperature treatments (22 and 25 °C) for 7 days, vegetative cells subsequently triggered with a normally lethal temperature of 30 °C showed dramatically increased survival rates, indicating that P. yezoensis can acquire heat stress tolerance via exposure to non-lethal high temperatures. In addition, when 22 °C-primed thalli were incubated at 15 °C for recovery, vegetative cells survived subsequent incubation at 30 °C; their survival rates varied depending on the duration of recovery. These findings indicate that, like filamentous red algae, the foliose species P. yezoensis memorizes heat stress to acquire tolerance to recurrent thermostress. The identification of heat stress memory in foliose Bangiales lays a foundation for improving the heat stress tolerance of these important algae, supporting the sustainability of the nori mariculture industry. Full article
Show Figures

Figure 1

32 pages, 798 KiB  
Article
Factors Leading to the Digital Transformation Dead Zone in Shipping SMEs: A Dynamic Capability Theory Perspective
by Thanh-Nhat-Lai Nguyen and Son-Tung Le
Sustainability 2025, 17(12), 5553; https://doi.org/10.3390/su17125553 - 17 Jun 2025
Viewed by 973
Abstract
Digital transformation (DT) has become a crucial driver of competitiveness in the shipping industry. However, many small- and medium-sized enterprises (SMEs) encounter barriers that result in digital transformation dead zones (DTDZs), where digital initiatives stagnate or fail to achieve the expected outcomes. This [...] Read more.
Digital transformation (DT) has become a crucial driver of competitiveness in the shipping industry. However, many small- and medium-sized enterprises (SMEs) encounter barriers that result in digital transformation dead zones (DTDZs), where digital initiatives stagnate or fail to achieve the expected outcomes. This study investigates the key factors contributing to digital stagnation specifically within Vietnamese shipping SMEs, adopting the lens of the dynamic capabilities theory (DCT)—a framework that emphasizes firms’ abilities to sense opportunities, seize them, and reconfigure resources to maintain competitiveness in rapidly evolving environments. The DCT provides a dynamic and process-oriented perspective on how organizations adapt to technological change by building flexible and integrative capabilities. Based on quantitative data collected from 588 respondents across the Vietnamese shipping sector, the study employed structural equation modeling (SEM) to empirically assess the relationships among critical digital transformation variables. The findings reveal that inadequate sensing capabilities and a lack of data analytics are the most significant barriers, limiting firms’ ability to identify and act on digital opportunities. Additionally, limited ecosystem collaboration and supply chain fragmentation further exacerbate digital inertia. While poor reconfiguration capabilities and weak seizing capabilities also contribute to digital stagnation, their effects are comparatively weaker. The study offers theoretical contributions by extending the DCT, the resource-based view (RBV), and the ecosystem theory to the maritime sector, emphasizing the interplay between organizational, technological, and external barriers. Practical implications highlight the need for strategic investments in data analytics, ecosystem collaboration, and adaptive leadership to overcome digital stagnation. Full article
Show Figures

Figure 1

18 pages, 4783 KiB  
Article
Land Use Change and Mangrove Restoration Modulate Heavy Metal Accumulation in Tropical Coastal Sediments: A Nearly Decade-Long Study from Hainan, China
by Tingting Si, Penghua Qiu, Lei Li, Wenqian Zhou, Chuanzhao Chen, Qidong Shi, Meihuijuan Jiang and Yanli Yang
Land 2025, 14(6), 1259; https://doi.org/10.3390/land14061259 - 12 Jun 2025
Viewed by 831
Abstract
Mangrove forests, vital coastal ecosystems that provide critical biodiversity habitats and carbon sequestration services, face increasing heavy metal pollution that threatens their ecological functions through bioaccumulation and toxicity to marine organisms. However, existing studies lack dynamic insights into temporal and spatial variations of [...] Read more.
Mangrove forests, vital coastal ecosystems that provide critical biodiversity habitats and carbon sequestration services, face increasing heavy metal pollution that threatens their ecological functions through bioaccumulation and toxicity to marine organisms. However, existing studies lack dynamic insights into temporal and spatial variations of heavy metals in mangrove sediments. This study systematically analyzed two mangrove reserves in Hainan Island, China (Hainan Dongzhaigang National Nature Reserve [DZG] and Hainan Qinglan Provincial Nature Reserve [QL]), by collecting sediment samples in 2014 and 2022, analyzing metals (Cr, Cu, Zn, As, Cd, and Pb) via ICP-MS, and applying the geo-accumulation index, potential ecological risk index, Markov transition matrix, and statistical analyses. Results showed that DZG exhibited rising Cu and Zn levels but declining Cr, As, Cd, and Pb, with Cd showing the most significant decrease (66.83%). In contrast, QL saw only a 42.7% reduction in Cd, while other heavy metals increased. Spatial heterogeneity linked higher concentrations to anthropogenic hotspots, DZG’s southeast (industrial/aquaculture inputs), and QL’s northwest (urban/industrial discharges). Although ecological risks were generally low, Cd in QL reached a moderate risk level (ECd = 46.44, 40 ≤ Ei < 80). The large-scale pond-to-mangrove conversion significantly increased vegetation cover, which enhanced sedimentation rates and exerted a “dilution effect” on sediment heavy metals. These findings underscore anthropogenic activities as the dominant driver of heavy metal contamination. We recommend (1) stringent wastewater control near QL, (2) enhanced shipping regulation, and (3) the establishment of mangrove buffers in heavy metal accumulation zones to improve ecological status. Full article
Show Figures

Figure 1

34 pages, 7396 KiB  
Article
Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment
by Abdessamia El Alaoui, Imane Haidara, Nawal Bouya, Bennacer Moussaid, Khadeijah Yahya Faqeih, Somayah Moshrif Alamri, Eman Rafi Alamery, Afaf Rafi AlAmri, Youness Moussaid and Mohamed Ait Haddou
Sustainability 2025, 17(12), 5392; https://doi.org/10.3390/su17125392 - 11 Jun 2025
Viewed by 809
Abstract
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and [...] Read more.
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and anthropogenic pressures. This study aims to assess groundwater quality and its vulnerability to pollution risks and map the spatial distribution of key hydrochemical processes through an integrated approach combining Geographic Information System (GIS) techniques and multivariate statistical analysis, as well as applying the DRASTIC model to evaluate water vulnerability. A total of fifty-eight groundwater samples were collected across the plain and analyzed for major ions to identify dominant hydrochemical facies. Spatial interpolation using Inverse Distance Weighting (IDW) within GIS revealed distinct patterns of sodium chloride (Na-Cl) facies near the coastal areas with chloride concentrations exceeding the World Health Organization (WHO) drinking water guideline of 250 mg/L—indicative of seawater intrusion. In addition to marine intrusion, agricultural pollution constitutes a major diffuse pressure across the aquifer. Shallow groundwater zones in agricultural areas show heightened vulnerability to salinization and nitrate contamination, with nitrate concentrations reaching up to 152.3 mg/L, far surpassing the WHO limit of 45 mg/L. Furthermore, other anthropogenic pollution sources—such as wastewater discharges from septic tanks in peri-urban zones lacking proper sanitation infrastructure and potential leachate infiltration from informal waste disposal sites—intensify stress on the aquifer. Principal Component Analysis (PCA) identified three key factors influencing groundwater quality: natural mineralization due to carbonate rock dissolution, agricultural inputs, and salinization driven by seawater intrusion. Additionally, The DRASTIC model was used within the GIS environment to create a vulnerability map based on seven key parameters. The map revealed that low-lying coastal areas are most vulnerable to contamination. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

Back to TopTop