Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (211)

Search Parameters:
Keywords = organic weed management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2196 KB  
Article
Soil Quality Index as a Predictor of Maize–Wheat System Productivity Under Long-Term Nutrient Management
by Deepika Suri, Raj Paul Sharma, Sandeep Gawdiya, Narender Kumar Sankhyan, Sandeep Manuja, Janardan Singh, Tarun Sharma, Nadhir Al-Ansari, Mohamed A. Mattar and Ali Salem
Land 2026, 15(1), 183; https://doi.org/10.3390/land15010183 - 20 Jan 2026
Viewed by 119
Abstract
The long-term effects of integrated nutrient management (INM) on crop performance and soil health—particularly within sub-humid environments—remain insufficiently explored. This research aimed to quantify the relationship between the soil quality index (SQI) and overall system productivity. The SQI represents a numerical indicator of [...] Read more.
The long-term effects of integrated nutrient management (INM) on crop performance and soil health—particularly within sub-humid environments—remain insufficiently explored. This research aimed to quantify the relationship between the soil quality index (SQI) and overall system productivity. The SQI represents a numerical indicator of soil functioning and its biological and chemical integrity, while system productivity reflects the economic yield generated by the cropping system. A long-term experiment initiated in 1972 formed the foundation for this study, which was conducted from 2019 to 2021 and included eleven nutrient management treatments. These comprised the following treatments: inorganic fertilizers alone (100% NPK, 150% NPK, 100% NP, 100% N, and 100% NPK without sulfur); combinations of organic and inorganic inputs (50% NPK + FYM and 100% NPK + FYM); lime with inorganic fertilizers (100% NPK + lime); zinc with inorganics (100% NPK + Zn); hand weeding with inorganics (100% NPK + HW); an unfertilized control. The study was implemented in a maize–wheat rotation under the sub-humid climatic conditions of Palampur, Himachal Pradesh, India. System productivity was estimated using wheat grain equivalent yield, and SQI values were generated from selected soil properties. These indicators—along with the sustainable yield index (SYI)—were applied to assess the effectiveness of each treatment. The results showed that the 100% NPK + FYM combination produced the highest SQI, followed by 100% NPK + lime, whereas the 100% N treatment yielded the lowest value. Overall, the findings highlight the crucial role of adopting sustainable nutrient management practices to maintain soil quality and optimize productivity in sub-humid agricultural systems. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

23 pages, 6563 KB  
Article
Sorption-Mediated Carbon Stabilization and Bacterial Assembly Regulated by Biochar Derived from Invasive Solanum rostratum in China
by Lei Song, Peifeng Xu, Xiaorong Zhang and Zongqiang Gong
Soil Syst. 2026, 10(1), 16; https://doi.org/10.3390/soilsystems10010016 - 18 Jan 2026
Viewed by 97
Abstract
The surface chemistry of biochar plays a pivotal role in the adsorption and stabilization of soil organic carbon (SOC); however, sorption-mediated mechanisms remain insufficiently understood for biochars derived from invasive plants. In this study, Solanum rostratum biomass, an aggressive invasive weed in northern [...] Read more.
The surface chemistry of biochar plays a pivotal role in the adsorption and stabilization of soil organic carbon (SOC); however, sorption-mediated mechanisms remain insufficiently understood for biochars derived from invasive plants. In this study, Solanum rostratum biomass, an aggressive invasive weed in northern China, was pyrolyzed at 400–600 °C in 2023 to produce biochars with varying surface functionalities and structural features. FTIR, Raman, XPS, and SEM analyses revealed that increasing pyrolysis temperature led to decreased oxygen-containing functional groups and enhanced aromatic condensation, reflecting a transition from hydrogen bonding to π–π and hydrophobic sorption mechanisms. Soil incubation experiments using sandy loam soil showed that biochar produced at 500 °C significantly increased the stable carbon pool (SCP) to 52.4%, compared to 30.6% in unamended soils. It also reduced cumulative CO2 release from 1.74 mg g−1 to 1.21 mg g−1 soil, indicating improved carbon retention. Bacterial 16S rRNA gene sequencing revealed that biochar amendments significantly altered community composition and increased deterministic assembly, particularly under 500 °C biochar, suggesting a sorption-driven niche filtering effect. These findings demonstrate that S. rostratum-derived biochar, especially at intermediate pyrolysis temperatures, enhances both carbon sequestration and microbial habitat structure. This has direct implications for improving degraded soils in arid farming regions, offering a dual strategy for invasive biomass management and climate-resilient agriculture. Full article
(This article belongs to the Special Issue Adsorption Processes in Soils and Sediments)
Show Figures

Graphical abstract

24 pages, 3393 KB  
Article
Genotype–Environment Interaction in Shaping the Agronomic Performance of Silage Maize Varieties Cultivated in Organic Farming Systems
by Katarzyna Marcinkowska, Karolina Kolańska, Konrad Banaś, Agnieszka Łacka, Tomasz Lenartowicz, Piotr Szulc and Henryk Bujak
Agriculture 2026, 16(1), 123; https://doi.org/10.3390/agriculture16010123 - 3 Jan 2026
Viewed by 315
Abstract
Organic production systems impose strong environmental constraints on silage maize, yet the relative contributions of genotype, environment and their interaction (G × E) to key performance traits remain insufficiently resolved. This study evaluated six maize cultivars across 11 organically managed environments (location × [...] Read more.
Organic production systems impose strong environmental constraints on silage maize, yet the relative contributions of genotype, environment and their interaction (G × E) to key performance traits remain insufficiently resolved. This study evaluated six maize cultivars across 11 organically managed environments (location × year combinations) in Poland, assessing weed infestation, plant height, fresh matter yield, dry matter content and dry matter yield. Genotype × environment interaction was explicitly analyzed using AMMI-based models, and cultivar adaptability and stability were evaluated using complementary indices. Environmental effects consistently dominated all traits, explaining 78–91% of total variation, while G × E interactions, though smaller, were significant and altered cultivar rankings. Weed infestation ranged widely across environments, from below 10% to over 90%, and was almost entirely environment-driven. Yield-related traits followed a strong precipitation gradient, with Pawłowice and Śrem showing the highest biomass potential. SM Perseus produced the greatest dry matter yields (13.53 t·ha−1), whereas SM Mieszko combined high dry matter content (37.73%) with outstanding stability. Mega-environment analysis identified distinct adaptive niches, confirming that no genotype performed consistently best across all conditions. These findings close a key knowledge gap regarding cultivar performance under organic management and demonstrate the necessity of multi-environment evaluation that integrates performance, stability and adaptability analyses to support site-specific cultivar recommendations that enhance biomass productivity and silage quality in ecologically managed maize systems. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

18 pages, 2327 KB  
Article
Preliminary Study on Synergistic Effects of Humic Acid and Seaweed Extract on Cereal Crop Yield and Competitiveness with Wild Weed Beets (Beta vulgaris L.)
by Zainulabdeen Kh. Al-Musawi, Husam S. M. Khalaf, Ali A. Hassouni, Rusul R. Shakir, Viktória Vona and István Mihály Kulmány
Plants 2025, 14(24), 3770; https://doi.org/10.3390/plants14243770 - 11 Dec 2025
Viewed by 519
Abstract
Crop–weed competition markedly reduces cereal yield. Integrative weed management approaches, involving the use of humic acid (HA) and seaweed extract (SWE), have gained attention as herbicide efficacy declines and environmental concerns grow. However, potential synergistic effects between HA and SWE have not yet [...] Read more.
Crop–weed competition markedly reduces cereal yield. Integrative weed management approaches, involving the use of humic acid (HA) and seaweed extract (SWE), have gained attention as herbicide efficacy declines and environmental concerns grow. However, potential synergistic effects between HA and SWE have not yet been investigated. We evaluated the effects of HA, SWE, and their combination (HA+SWE) on the growth, yield, and competitive ability of cereals against wild weed beets (Beta vulgaris L.). A single-season field experiment was conducted using a split-plot design within a randomised complete block to assess the effects of treatment amendments on wheat, barley, and oats. The results showed that HA and HA+SWE organic amendments consistently improved grain yield and biomass across crop species. SWE responses varied across species, indicating species-dependent sensitivity. In addition, HA enhanced barley weed suppression, highlighting its dual roles in improving crop vigour and reducing weed proliferation. In contrast, SWE modestly increased spike length in oats, emphasising its effect on crop growth characteristics. Overall, these preliminary findings support targeted biostimulant use to enhance cereal yield and integrate weed management into sustainable cropping systems. Full article
Show Figures

Figure 1

26 pages, 3691 KB  
Review
Intercropping Medicinal and Aromatic Plants with Other Crops: Insights from a Review of Sustainable Farming Practices
by Milica Aćimović, Juliana Navarro Rocha, Alban Ibraliu, Janko Červenski, Vladimir Sikora, Silvia Winter, Biljana Lončar, Lato Pezo and Ivan Salamon
Agronomy 2025, 15(12), 2692; https://doi.org/10.3390/agronomy15122692 - 22 Nov 2025
Cited by 1 | Viewed by 1470
Abstract
Intercropping medicinal and aromatic plants with other crops has demonstrated substantial potential for improving sustainable agricultural systems. Across a wide range of species, including yarrow, dill, wormwood, pot marigold, ajowan, coriander, saffron, cumin, lemongrass, Moldavian dragonhead, fennel, hyssop, dragons head, lavender, chamomile, lemon [...] Read more.
Intercropping medicinal and aromatic plants with other crops has demonstrated substantial potential for improving sustainable agricultural systems. Across a wide range of species, including yarrow, dill, wormwood, pot marigold, ajowan, coriander, saffron, cumin, lemongrass, Moldavian dragonhead, fennel, hyssop, dragons head, lavender, chamomile, lemon balm, mint, black cumin, basil, rose-scented geranium, aniseed, patchouli, rosemary, sage, summer savory, marigold, thyme, fenugreek, and vetiver, integration with cereals, legumes, vegetables, and perennial trees enhanced both land use efficiency and overall crop productivity. These systems often resulted in improved essential oil (EO) yield and composition, optimized plant growth, and increased economic returns, particularly when combined with organic inputs or biofertilizers. In addition to productivity gains, intercropping provides important ecological benefits. It can enhance soil fertility, stimulate microbial activity, and contribute to effective pest and weed management. Incorporating medicinal and aromatic plants into orchards, vineyards, or agroforestry systems further supported biodiversity. It influenced secondary metabolite production in companion crops, demonstrating the multifunctional role of these species in integrated farming systems. Overall, intercropping medicinal and aromatic plants represents a versatile and economically viable approach for sustainable crop production. The selection of compatible species, careful management of planting ratios, and appropriate agronomic practices are critical to maximizing both biological and economic benefits. Such strategies not only increase farm profitability but also promote environmental sustainability and resilience in diverse cropping systems. This review explores the effects of MAP integration on agroecological performance and identifies key mechanisms and practical outcomes. Full article
Show Figures

Figure 1

22 pages, 1477 KB  
Review
Pesticides in the Environment: Benefits, Harms, and Detection Methods
by Francis Xavier D. Verdadero, Alfred Z. Agarap, Czarina Nicole E. Macatingrao, Isagani A. Ordonez, Lady Edlenill J. Tavu, David Pires and Mark Angelo O. Balendres
Sci 2025, 7(4), 171; https://doi.org/10.3390/sci7040171 - 21 Nov 2025
Cited by 1 | Viewed by 3717
Abstract
Pesticides play a critical role in food production by enhancing crop yields and protecting against pests and pathogens, such as insects, bacteria, fungi, and weeds. However, their extensive use raises significant environmental concerns. The paper reviews and describes the reported adverse effects of [...] Read more.
Pesticides play a critical role in food production by enhancing crop yields and protecting against pests and pathogens, such as insects, bacteria, fungi, and weeds. However, their extensive use raises significant environmental concerns. The paper reviews and describes the reported adverse effects of pesticides on terrestrial and marine life to raise awareness of the ecological impact of pesticide use across life niches. The adverse effects on soil microorganisms, arthropods, reptiles, and amphibians highlight the extensive ecological disruption caused by these chemicals. Understanding the mechanisms of pesticide toxicity and their impact on various organisms is crucial for developing effective bioremediation techniques and on-field management practices. By implementing these strategies and enhancing environmental biomonitoring, countries can mitigate the harmful effects of pesticides, ultimately protecting biodiversity and ensuring the health of their ecosystems. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

18 pages, 911 KB  
Review
Glyphosate Use in Crop Systems: Risks to Health and Sustainable Alternatives
by Pamela G. Aoun, Walid Khairallah, Abderahman Rejeb and Amira Haddarah
Toxics 2025, 13(11), 971; https://doi.org/10.3390/toxics13110971 - 12 Nov 2025
Viewed by 1919
Abstract
Glyphosate, a widely used non-selective herbicide, has been a subject of intense scientific debate due to its environmental persistence and potential health risks. This review examines glyphosate’s mechanisms of action, its effects on crop production, and its broader environmental impact, including soil degradation, [...] Read more.
Glyphosate, a widely used non-selective herbicide, has been a subject of intense scientific debate due to its environmental persistence and potential health risks. This review examines glyphosate’s mechanisms of action, its effects on crop production, and its broader environmental impact, including soil degradation, water contamination, and biodiversity loss. Furthermore, it examines the expanding body of research linking glyphosate exposure to various human health concerns, including metabolic, neurological, reproductive, and oncological disorders. The review also assesses glyphosate’s role in hindering the achievement of the Sustainable Development Goals (SDGs), particularly those related to food security, health, access to clean water, and the protection of marine ecosystems. Finally, potential alternatives to glyphosate-based weed control, including organic and non-chemical methods, are discussed to promote sustainable agricultural practices that balance productivity with ecological and public health considerations. The evidence reviewed highlights glyphosate’s pervasive presence across ecosystems and its potential to disrupt both environmental and human health. The findings underscore the urgent need to regulate glyphosate use, prioritize soil and water protection, and accelerate the transition toward sustainable, low-toxicity weed management strategies that align with global sustainability objectives. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Figure 1

14 pages, 679 KB  
Article
Living Mulches, Rolled Cover Crops, and Plastic Mulch: Effects on Soil Properties, Weed Suppression, and Yield in Organic Strawberry Systems
by Arianna Bozzolo, Jacob Pecenka and Andrew Smith
Plants 2025, 14(21), 3385; https://doi.org/10.3390/plants14213385 - 5 Nov 2025
Cited by 1 | Viewed by 627
Abstract
Plastic mulch is widely used in organic strawberry production but raises sustainability concerns due to its persistence, disposal challenges, and contribution to microplastic pollution. This study evaluated the potential of high-residue cover crops and living mulches as alternatives to plastic mulch in coastal [...] Read more.
Plastic mulch is widely used in organic strawberry production but raises sustainability concerns due to its persistence, disposal challenges, and contribution to microplastic pollution. This study evaluated the potential of high-residue cover crops and living mulches as alternatives to plastic mulch in coastal California. Over two seasons (2022–2024), we compared five mulching treatments: black polyethylene mulch (Plastic); a white clover (Trifolium repens) living mulch (Clover); two roller-crimped sorghum–sudangrass and field pea mixtures (Sorghum 1, Sorghum 2); and a roller-crimped buckwheat–pea mixture (Buckwheat). The objectives were to evaluate the effectiveness of these treatments on (i) soil properties and biological indicators, (ii) weed suppression, and (iii) strawberry yield in organic systems. A schematic timeline was developed to depict cover-crop growth, termination, and strawberry production across both years. Compost (10 t·ha−1) and fish emulsion (5–1–1 NPK, 4 L·ha−1 biweekly) were applied to all treatments during fruiting. Sorghum residues produced the highest biomass (up to 23 t·ha−1) and supported yields comparable to plastic mulch in 2023. Under lower-yield conditions in 2024, sorghum-based treatments outperformed plastic. Soil responses were modest and time-point specific: Sorghum 1 showed higher organic C and organic N pre-harvest in 2023, and both sorghum treatments increased soil organic matter pre-harvest in 2024. Biological indicators such as CO2–C and microbially active carbon declined seasonally across all treatments, indicating strong temporal control. Weed outcomes diverged by system—Clover suppressed weeds effectively but reduced yield by >50% due to competition, while Buckwheat decomposed rapidly and provided limited late-season suppression. These results demonstrate that rolled high-residue cover crops, particularly sorghum-based systems, can reduce dependence on plastic mulch while maintaining yields and enhancing soil cover. Living mulches and short-lived covers may complement residue systems when managed to minimize competition and extend ground cover. Full article
Show Figures

Figure 1

17 pages, 1659 KB  
Article
Response of Soil Microbial Biomass and Activity to Cover Crop Incorporation Methods
by Caterina Lucia, Vito Armando Laudicina, Sara Paliaga, Luciano Gristina and Sofia Maria Muscarella
Agronomy 2025, 15(11), 2504; https://doi.org/10.3390/agronomy15112504 - 28 Oct 2025
Viewed by 1096
Abstract
Cover crop management in vineyards under a semiarid Mediterranean environment needs strategies that enhance soil C and N status and microbial functioning without increasing disturbance. This study compared cover crops biomass incorporation (harrowing, HR; rotary tillage; RT) and non-incorporation (NI, residues left on [...] Read more.
Cover crop management in vineyards under a semiarid Mediterranean environment needs strategies that enhance soil C and N status and microbial functioning without increasing disturbance. This study compared cover crops biomass incorporation (harrowing, HR; rotary tillage; RT) and non-incorporation (NI, residues left on the topsoil) into the soil in a 12-year Grecanico dorato vineyard. Traditional vineyard soil management (continuously tilled for weeds control) was also used as a control. Soil samples from 0 to 20 and 20 to 40 cm were analyzed for total organic carbon (TOC), total nitrogen (TN), microbial biomass carbon (MBC) and nitrogen (MBN), and enzyme activities. NI and HR raised TOC and TN in the topsoil versus TR, with NI frequently maintaining advantages at depth. NI also maximized MBC/MBN and reduced the metabolic quotient (qCO2), indicating improved microbial C-use efficiency; RT showed intermediate chemistry but depressed subsoil MBC and altered MBC/MBN. Enzyme profiles reflected contrasting mechanisms: RT boosted β-glucosidase in the topsoil, TR peaked for urease and arylsulfatase but alongside lower biomass and higher specific enzyme activities, while NI supported greater overall functioning via larger biomass and lower per-C enzyme demand. The calculated geometric mean enzyme (GMea) index emphasized transient TR flush versus steadier conservation functioning. Strong vertical stratification occurred for all indices, yet NI transmitted some benefits to 20–40 cm. We conclude that residue retention or moderate incorporation promotes larger, more efficient microbial population and more balanced nutrient cycling, whereas repeated rotary tillage risks subsoil inefficiencies. In semi-arid Mediterranean vineyards, low-disturbance cover-crop incorporation (HR) or, preferably, residue retention at the topsoil (NI) offer a simple, scalable route to sustain soil quality and long-term fertility. Full article
(This article belongs to the Special Issue Effects of Agronomic Practices on Soil Properties and Health)
Show Figures

Figure 1

21 pages, 1128 KB  
Article
Economic Effects of Sustainable Weed Management Against Broomrape Parasitism in Industrial Tomato
by Efstratios Michalis, Athanasios Ragkos, Ilias Travlos, Dimosthenis Chachalis and Chrysovalantis Malesios
Agronomy 2025, 15(10), 2401; https://doi.org/10.3390/agronomy15102401 - 16 Oct 2025
Viewed by 804
Abstract
Sustainable Weed Management Practices (SWMPs) are currently underrepresented in European cropping systems despite considerable attention from the research and policymaking communities. In public discourse, their adoption is associated with low yields, high initial investment costs, additional machinery requirements, elevated labor demands and limited [...] Read more.
Sustainable Weed Management Practices (SWMPs) are currently underrepresented in European cropping systems despite considerable attention from the research and policymaking communities. In public discourse, their adoption is associated with low yields, high initial investment costs, additional machinery requirements, elevated labor demands and limited or uncertain profitability. Nevertheless, little is known regarding their economic effects when implemented under real-life conditions at the farm level. This study aims to determine the impact of SWMPs against broomrape parasitism on the organization, management and economic performance of industrial tomato farms, considering that broomrapes (Orobanche and Phelipanche species) are a major impediment to the expansion of key crops in the Mediterranean basin due to their resistance toward commonly applied herbicides. For the purpose of economic appraisal, detailed technical and economic data were collected in 2022 from 76 arable farms cultivating industrial tomato in the Region of Thessaly in Central Greece. By combining Principal Component Analysis (PCA) with Two-Step Cluster Analysis (TSCA), a farm typology according to the implementation level of different SWMPs was developed. Based on this typology, a comparative technical and economic analysis revealed important differences in terms of structure, resource utilization and economic performance across the various farm types. “Holistic” farms, which exhibited the highest adoption levels of SWMPs, implemented an effective broomrape management strategy and achieved superior economic outcomes, evidenced by a remarkable net profit of 488.5 €/ha. Conversely, this was either negative or nearly negligible in farm types characterized by low adoption rates, indicating a lack of economic viability in the long run. The findings of this study offer useful recommendations for farm-level decision making, advisory support and policy design toward the promotion of SWMPs. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

19 pages, 1201 KB  
Article
Impact of Different Agroecological Practices for Weed Management on Weeds and Crops Development
by Chiara Chirilli, Asia Biafora, Andrea Giaccardi, Stefano Benedettelli and Paola Migliorini
Agronomy 2025, 15(10), 2335; https://doi.org/10.3390/agronomy15102335 - 4 Oct 2025
Viewed by 821
Abstract
Cover crops and mulches are widely used techniques for limiting weeds and pests’ effects on crops. This study compared six practices over two growing seasons in two organic farms in Cuneo province, North-West Italy: two bio-based biodegradable mulch sheets (BM01 and BM02), dead [...] Read more.
Cover crops and mulches are widely used techniques for limiting weeds and pests’ effects on crops. This study compared six practices over two growing seasons in two organic farms in Cuneo province, North-West Italy: two bio-based biodegradable mulch sheets (BM01 and BM02), dead mulch (hazelnut shells), living mulch (Trifolium repens L.), mechanical control, and an untreated control. Spring crops included Lactuca sativa L. var. capitata, Allium cepa L. cv. ‘Tropea’, and Brassica oleracea L. var. italica, while autumn crops were Lactuca sativa L. var. capitata, Allium fistulosum L., and Brassica oleracea L. var. italica. Weed infestation was evaluated through density (n/m2), biomass (g/m2), and diversity (Shannon Index), alongside crop yield and quality. Biodegradable mulch sheets provided the greatest weed suppression, followed by hazelnut shells, while living mulch and untreated control showed the highest weed pressure. Crop yield varied significantly among practices and species: BM01 and BM02 resulted in the highest yields, while living mulch consistently produced the lowest. Lettuce displayed the best quality across both farms, whereas onion quality varied by site. The highest quality scores were observed under biodegradable mulches and mechanical control, while living mulch and untreated control yielded the poorest results. Overall, biodegradable mulches emerged as the most effective balance between weed suppression, crop yield, and quality in organic systems. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 3368 KB  
Article
Effects of Different Land-Use Types on Soil Properties and Microbial Communities in a Southeastern Tibetan Valley
by Ximei Zhao, Wenyan He, Fengyun Xiang, Jianqiang Zhu and Jifu Li
Agronomy 2025, 15(10), 2317; https://doi.org/10.3390/agronomy15102317 - 30 Sep 2025
Cited by 1 | Viewed by 748
Abstract
Land-use type is a key factor influencing soil properties, microbial community composition, and plant nutrient status. In this study, five land-use types (Tibetan barley, rapeseed, walnut, wheat, and weeds) were investigated in a river valley of southeastern Tibet to compare their effects on [...] Read more.
Land-use type is a key factor influencing soil properties, microbial community composition, and plant nutrient status. In this study, five land-use types (Tibetan barley, rapeseed, walnut, wheat, and weeds) were investigated in a river valley of southeastern Tibet to compare their effects on soil chemical characteristics, microbial communities, and plant nutrients. Soils under walnut trees had significantly higher available phosphorus and microbial biomass phosphorus but lower soil organic matter. Rapeseed fields had higher levels of available potassium and were dominated by the fungal genus Tausonia; rapeseed leaves also contained the highest nitrogen and potassium concentrations. Weed plots supported a distinct fungal community dominated by Helvella. Tibetan barley and wheat increased overall bacterial and fungal diversity, with wheat soils with the highest microbial biomass carbon and nitrogen. Redundancy analysis indicated that soil total nitrogen, available nitrogen, and organic matter were the main drivers of plant nutrient variation, together explaining 93.5% of the total variance. These findings demonstrate how land-use type regulates soil–microbe–plant interactions in alpine valleys and provide empirical references for agricultural management and soil improvement on the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

19 pages, 2710 KB  
Article
Later Incorporation of Astragalus sinicus with Flooding Reduces Rice-Associated Weed Infestation and Increases Rice Yield in the Green Manure–Rice Rotation System
by Pinglei Gao, Liuyun Diao, Fei Zheng, Zhong Ji, Guojun Sun, Yuhua Ding, Haoyu Wang, Shiwen Deng and Qigen Dai
Agronomy 2025, 15(10), 2291; https://doi.org/10.3390/agronomy15102291 - 27 Sep 2025
Viewed by 798
Abstract
Chinese milk vetch (CMV; Astragalus sinicus L.), serving as winter green manure in rice cropping systems, is widely adopted in the southern China. Field experiments including different incorporation regimes (CMV incorporation, urea substitution incorporation and fertilizer-free incorporation), times (45 days, 30 days and [...] Read more.
Chinese milk vetch (CMV; Astragalus sinicus L.), serving as winter green manure in rice cropping systems, is widely adopted in the southern China. Field experiments including different incorporation regimes (CMV incorporation, urea substitution incorporation and fertilizer-free incorporation), times (45 days, 30 days and 15 days before rice transplanting) and methods (no flooding, intermittent flooding and continuous flooding) were conducted from 2022 to 2024 to determine the optimal time and method for CMV incorporation that could improve soil nutrients, reduce rice-associated weed infestation, and increase rice yield. Delaying CMV incorporation was beneficial to the accumulation of dry matter and organic matter content in CMV shoots and the increase in the total nitrogen content of the soil before rice transplanting. Broadleaf weed infestation was significantly influenced by flooding method, CMV incorporation and incorporation time. Delaying CMV incorporation combined with flooding significantly reduced the density of broadleaf weeds. Grassy weed infestation was only significantly affected by the flooding method, with significantly lower density under flooding conditions compared to non-flooding conditions when other treatments were consistent. Sedge weed infestation was not affected by any of the experimental treatments. Compared with conventional CMV incorporation (incorporated 30 days before rice transplanting without flooding), incorporating CMV 15 days before rice transplanting with flooding (continuous or intermittent flooding) resulted in a 59.20–66.86% reduction in rice-associated weed infestation. Rice yield was also increased with a delay in CMV incorporation, which mainly manifested in increases in panicle number and seed setting rate. Incorporating CMV 15 days before rice transplanting increased rice yield by 5.34–13.24% compared to conventional CMV incorporation. Therefore, considering the comprehensive effects on soil nutrients, weed infestation and rice yield, incorporating CMV 15 days before rice transplanting combined with intermittent flooding is a recommended green manure management practice in green manure–rice rotation systems. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

31 pages, 4501 KB  
Review
Shifting from Tillage to Cover Cropping in Warm Climate Viticulture: Seeking the Optimal Balance
by Harsh Tiwari, Ginevra Canavera, Francesco Pelusi and Stefano Poni
Agronomy 2025, 15(10), 2245; https://doi.org/10.3390/agronomy15102245 - 23 Sep 2025
Viewed by 1808
Abstract
Vineyard sustainability increasingly focuses on transitioning from traditional soil management practices, such as tillage and herbicides, to environmentally friendly methods like cover cropping and mulching. While this strategy works in cool climates with abundant rainfall, its application in warmer areas is not advisable [...] Read more.
Vineyard sustainability increasingly focuses on transitioning from traditional soil management practices, such as tillage and herbicides, to environmentally friendly methods like cover cropping and mulching. While this strategy works in cool climates with abundant rainfall, its application in warmer areas is not advisable due to potential disadvantages, such as water and nutrient competition from cover crops, which may outweigh the benefits. We examine the pros and cons of vineyard tillage, including data on evaporation rates from wet and dry tilled soils. We explore methodologies to quantify competition between vine roots and grass roots, focusing on distinguishing native versus spontaneous vegetation, duration and extent of cover cropping, species used in sown mixtures, and cover crop water use rates. Novel soil management practices are discussed as alternatives to traditional green manuring, such as mid-row rolling and sub-row sward mulching. The review updates recent approaches for establishing native or sown under-vine cover crops, which, with irrigation, might control native weeds while colonizing shallow soil, allowing grapevine roots to penetrate deeper, moistened soil layers. Promising grasses include creeping species such as Glechoma hederacea, Trifolium subterraneum, and Hieracium pilosella. Finally, we describe three soil management protocols: two suited to dry farm conditions and one involving blue water availability, which may mitigate cover crop competition for water and nutrients while maintaining benefits such as reduced soil erosion, increased soil organic matter, carbon sequestration, and improved machinery access. Full article
Show Figures

Figure 1

19 pages, 2308 KB  
Article
Weed and Grassland Community Structure, Biomass and Forage Value Across Crop Types and Light Conditions in an Organic Agrivoltaic System
by Riccardo Dainelli, Margherita Santoni, Anita Maienza, Sara Remelli, Cristina Menta, Davide Zanotti, Giancarlo Ghidesi and Aldo Dal Prà
Sustainability 2025, 17(18), 8119; https://doi.org/10.3390/su17188119 - 9 Sep 2025
Cited by 1 | Viewed by 1347
Abstract
Agrivoltaics represents a crucial technology and an innovative solution to promote sustainability. After a cropping season in an agrivoltaic system in Northern Italy, this study investigated the floristic composition and biomass of weed communities across three crops, evaluating their variation under shaded and [...] Read more.
Agrivoltaics represents a crucial technology and an innovative solution to promote sustainability. After a cropping season in an agrivoltaic system in Northern Italy, this study investigated the floristic composition and biomass of weed communities across three crops, evaluating their variation under shaded and full light conditions. In addition, the research assessed the role of uncultivated grassland areas in agrivoltaic-shaded conditions by quantifying their biomass and evaluating their potential feed value. Weed floristic diversity and biomass were surveyed at three different times. Soil and canopy parameters were analyzed in relation to photosynthetically active radiation (PAR). Grassland biomass was assessed after four different cuts and its suitability as a feed source was evaluated by the pastoral value and near infrared (NIR) spectroscopic analysis. Results showed that tomato had the lowest weed presence, and Setaria italica and Sorghum halepense were predominant in rice, while in durum wheat, higher nutrient availability favored Echinochloa crus-galli and Cirsium arvense. In weed community composition and biomass, no significant differences were observed for the effect of different light conditions (sun/shadow), and this may be attributed to their high environmental plasticity. PAR was strongly correlated with both soil and canopy temperatures. The analysis of floristic composition, biomass yield, pastoral value and nutritional quality of grassland vegetation indicated that spring cuts can be effectively used as forage, including for grazing. These findings suggest that integrating livestock activities could offer a win–win strategy for managing uncultivated areas within agrivoltaic systems, thereby enhancing their sustainability under organic farming practices. Full article
Show Figures

Figure 1

Back to TopTop