Economic Effects of Sustainable Weed Management Against Broomrape Parasitism in Industrial Tomato
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Survey Profile and Data Collection
2.3. Methodological Background and Data Analysis
2.3.1. Categorical Principal Component Analysis
2.3.2. Two-Step Cluster Analysis
2.3.3. Comparative Technical and Economic Analysis
- Gross revenue. The sum of the values of all products sold on the market plus income support payments.
- Production expenses. The sum of land use expenses (implicit rent of owned land and paid rent of rented land); labor expenses (implicit wages of family members and paid wages of hired personnel); fixed capital expenses (depreciations, interests, premiums and maintenance of buildings, mechanical equipment and land reclamation); and variable capital expenses (including the value of all purchased inputs and other services).
- Net profit/loss. The difference between gross revenue and production expenses.
- Return to labor. The algebraic sum of labor wages (implicit and paid) plus net profit/loss divided by total working hours.
- Farm income. The algebraic sum of land rent (paid and implicit); labor wages (paid and implicit); capital interest; and net profit/loss.
- Gross margin. The difference between gross revenue and variable capital expenses.
2.3.4. Statistical Analysis
3. Results
3.1. Farm Typology
3.2. Farm-Level Economic Effects of the Four Approaches
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Labor Requirements (hours/ha/year) 1 | Farm Types | Total Sample (n = 76) | |||
---|---|---|---|---|---|
“Transitional” (n = 33) | “Holistic” (n = 2) | “Conventional” (n = 21) | “Selective” (n = 20) | ||
Cotton | 88.5 | 113.2 | 100.4 | 88.9 | 92.8 |
Winter cereals | 30.7 | 37.2 | 37.9 | 25.1 | 31.7 |
Industrial tomato | 84.1 | 85.1 | 100.4 | 80.3 | 87.3 |
Legumes (for human consumption) | 41.1 | 59.7 | 49.6 | 30.8 | 41.6 |
Legumes (for forage) | 30.8 | 34.2 | 36.6 | 26.1 | 31.6 |
Maize | 80.0 | 96.6 | 91.9 | 76.2 | 83.3 |
Oilseed rape | 39.1 | 44.4 | 44.7 | 35.0 | 39.9 |
Total (weighted average) | 51.4 | 59.3 | 66.8 | 46.2 | 54.8 |
References
- Kasimatis, C.N.; Psomakelis, E.; Katsenios, N.; Papatheodorou, M.; Apostolou, D.; Efthimiadou, A. Industrial tomato yield prediction using machine learning models. Smart Agric. Technol. 2025, 11, 100920. [Google Scholar] [CrossRef]
- Anastasiadis, F.; Apostolidou, I.; Michailidis, A. Mapping sustainable tomato supply chain in Greece: A framework for research. Foods 2020, 9, 539. [Google Scholar] [CrossRef]
- ELSTAT. Areas and Production, Reference Year 2021. Hellenic Statistical Authority. Available online: https://www.statistics.gr/en/statistics/-/publication/SPG06/2021 (accessed on 5 April 2025).
- Chachalis, D.; Tani, E.; Kapazoglou, A.; Gerakari, M.; Petraki, A.; Pérez-Alfocea, F.; Martínez-Melgarejo, P.A.; Albert, M.; Khamassi, K.; Kharrat, M. Broomrapes in major Mediterranean crops: From management strategies to novel approaches for next-generation control. BioTech 2025, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Cartry, D.; Steinberg, C.; Gibot-Leclerc, S. Main drivers of broomrape regulation. A review. Agron. Sustain. Dev. 2021, 41, 17. [Google Scholar] [CrossRef]
- Negewo, T.; Ahmed, S.; Tessema, T.; Tana, T. Biological characteristics, impacts, and management of crenate broomrape (Orobanche crenata) in faba bean (Vicia faba): A review. Front. Agron. 2022, 4, 708187. [Google Scholar] [CrossRef]
- Ofosu, R.; Agyemang, E.D.; Márton, A.; Pásztor, G.; Taller, J.; Kazinczi, G. Herbicide resistance: Managing weeds in a changing world. Agronomy 2023, 13, 1595. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S. Sustainable approach to weed management: The role of precision weed management. Agronomy 2022, 12, 118. [Google Scholar] [CrossRef]
- Vurro, M. Are root parasitic broomrapes still a good target for bioherbicide control? Pest Manag. Sci. 2024, 80, 10–18. [Google Scholar] [CrossRef]
- Rubiales, D. Managing root parasitic weeds to facilitate legume reintroduction into Mediterranean rain-fed farming systems. Soil Syst. 2023, 7, 99. [Google Scholar] [CrossRef]
- Nosratti, I.; Mobli, A.; Mohammadi, G.; Yousefi, A.; Sabeti, P.; Chauhan, B. The problem of Orobanche spp. and Phelipanche spp. and their management in Iran. Weed Sci. 2020, 68, 555–564. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Reboud, X.; Gibot-Leclerc, S. Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: A review. Front. Plant Sci. 2016, 7, 135. [Google Scholar] [CrossRef]
- European Union. Directive 2009/128/EC: Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2009:309:TOC (accessed on 15 June 2025).
- European Commission. Green Deal: Halving Pesticide Use by 2030. Available online: https://ec.europa.eu/eip/agriculture/en/news/green-deal-halving-pesticide-use-2030.html (accessed on 15 June 2025).
- Finger, R.; Sok, J.; Ahovi, E.; Akter, S.; Bremmerj, J.; Dachbrodt-Saaydeh, S.; de Lauwere, C.; Kreft, C.; Kudsk, K.; Lambarraa-Lehnhardt, F.; et al. Towards sustainable crop protection in agriculture: A framework for research and policy. Agric. Syst. 2024, 219, 104037. [Google Scholar] [CrossRef]
- Michalis, E.; Ragkos, A.; Travlos, I.; Malesios, C. Understanding the adoption of sustainable weed management in Greek agriculture. Int. J. Pest Manag. 2025, 71, 1–21. [Google Scholar] [CrossRef]
- Wynn, S.; Webb, E. Impact assessment of the loss of glyphosate within the EU: A literature review. Environ. Sci. Eur. 2022, 34, 91. [Google Scholar] [CrossRef]
- Nikolić, N.; Mattivi, P.; Pappalardo, S.E.; De Marchi, M.; Masin, R. From detection to action: Creating operational prescription maps for weed management using low-cost UAVs. Ital. J. Agron. 2025, 20, 100047. [Google Scholar] [CrossRef]
- Riar, D.S.; Norsworthy, J.K.; Steckel, L.E.; Stephenson, D.O., IV; Eubank, T.W.; Bond, J.; Scott, R.C. Adoption of best management practices for herbicide-resistant weeds in midsouthern United States cotton, rice, and soybean. Weed Technol. 2013, 27, 788–797. [Google Scholar] [CrossRef]
- Böcker, T.; Britz, W.; Möhring, N.; Finger, R. An economic and environmental assessment of a glyphosate ban for the example of maize production. Eur. Rev. Agric. Econ. 2020, 47, 371–402. [Google Scholar] [CrossRef]
- Moss, S. Integrated weed management (IWM): Why are farmers reluctant to adopt non-chemical alternatives to herbicides? Pest Manag. Sci. 2019, 75, 1205–1211. [Google Scholar] [CrossRef]
- Riemens, M.; Sønderskov, M.; Moonen, A.C.; Storkey, J.; Kudsk, P. An integrated weed management framework: A pan-European perspective. Eur. J. Agron. 2022, 133, 126443. [Google Scholar] [CrossRef]
- Hasan, M.; Ahmad-Hamdani, M.S.; Rosli, A.M.; Hamdan, H. Bioherbicides: An eco-friendly tool for sustainable weed management. Plants 2021, 10, 1212. [Google Scholar] [CrossRef]
- Everman, W.J.; Contreras, D. Drivers, concepts, processes, and recent advances in Integrated Weed Management. In Recent Advances in Weed Science; Chauhan, B.S., Mahajan, G., Eds.; Springer: Cham, Switzerland, 2025; pp. 125–145. [Google Scholar] [CrossRef]
- Liu, C.; Yang, K.; Chen, Y.; Gong, H.; Feng, X.; Tang, Z.; Fu, D.; Qi, L. Benefits of mechanical weeding for weed control, rice growth characteristics and yield in paddy fields. Field Crops Res. 2023, 293, 108852. [Google Scholar] [CrossRef]
- Gazoulis, I.; Kanatas, P.; Antonopoulos, N.; Tataridas, A.; Travlos, I. False seedbed for agroecological weed management in forage cereal–legume intercrops and monocultures in Greece. Agronomy 2023, 13, 123. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Crop allelopathy for sustainable weed management in agroecosystems: Knowing the present with a view to the future. Agronomy 2021, 11, 2104. [Google Scholar] [CrossRef]
- Gerhards, R.; Andujar Sanchez, D.; Hamouz, P.; Peteinatos, G.G.; Christensen, S.; Fernandez-Quintanilla, C. Advances in site-specific weed management in agriculture—A review. Weed Res. 2022, 62, 123–133. [Google Scholar] [CrossRef]
- Esposito, M.; Crimaldi, M.; Cirillo, V.; Sarghini, F.; Maggio, A. Drone and sensor technology for sustainable weed management: A review. Chem. Biol. Technol. Agric. 2021, 8, 18. [Google Scholar] [CrossRef]
- Sharma, G.; Shrestha, S.; Kunwar, S.; Tseng, T.M. Crop diversification for improved weed management: A review. Agriculture 2021, 11, 461. [Google Scholar] [CrossRef]
- Godar, A.S.; Norsworthy, J.K.; Barber, L.T.; Farr, R.; Smith, T. Yield and economics following 5 years of integrated weed management in cotton. Agron. J. 2025, 117, e70101. [Google Scholar] [CrossRef]
- Ghosh, D.; Brahmachari, K.; Brestic, M.; Ondrisik, P.; Hossain, A.; Skalicky, M.; Sarkar, S.; Moulick, D.; Dinda, N.K.; Das, A.; et al. Integrated weed and nutrient management improve yield, nutrient uptake and economics of maize in the rice-maize cropping system of Eastern India. Agronomy 2020, 10, 1906. [Google Scholar] [CrossRef]
- Dhakal, M.; Sah, S.K.; Kharel, G. Integrated weed management in direct-seeded rice: Dynamics and economics. Int. J. Agric. Environ. Food Sci. 2019, 3, 83–92. [Google Scholar] [CrossRef]
- Vasileiadis, V.P.; Otto, S.; Van Dijk, W.; Urek, G.; Leskovšek, R.; Verschwele, A.; Furlan, L.; Sattin, M. On-farm evaluation of integrated weed management tools for maize production in three different agro-environments in Europe: Agronomic efficacy, herbicide use reduction, and economic sustainability. Eur. J. Agron. 2015, 63, 71–78. [Google Scholar] [CrossRef]
- Aldakhil, A.I.; Alamri, Y.; Alsultan, M.; Alduwais, A.; Bashir, K.; Alhashim, J. Evaluating the economic impact of integrated pest management (IPM) on smallholder date palms farmers. J. Saudi Soc. Agric. Sci. 2025, 24, 31. [Google Scholar] [CrossRef]
- Mulungu, K.; Abro, Z.A.; Muriithi, W.B.; Kassie, M.; Kidoido, M.; Sevgan, S.; Mohamed, S.; Tanga, C.; Khamis, F. One size does not fit all: Heterogeneous economic impact of integrated pest management practices for mango fruit flies in Kenya—A machine learning approach. J. Agric. Econ. 2024, 75, 261–279. [Google Scholar] [CrossRef]
- Midingoyi, S.K.G.; Kassie, M.; Muriithi, B.; Diiro, G.; Ekesi, S. Do farmers and the environment benefit from adopting integrated pest management practices? Evidence from Kenya. J. Agric. Econ. 2019, 70, 452–470. [Google Scholar] [CrossRef]
- Rahman, M.S.; Norton, G.W.; Rashid, M.H.A. Economic impacts of integrated pest management on vegetables production in Bangladesh. Crop Prot. 2018, 113, 6–14. [Google Scholar] [CrossRef]
- Isoto, R.E.; Kraybill, D.S.; Erbaugh, M.J. Impact of integrated pest management technologies on farm revenues of rural households: The case of smallholder Arabica coffee farmers. Afr. J. Agric. Resour. Econ. 2014, 9, 119–131. [Google Scholar] [CrossRef]
- Huber, R.; Bartkowski, B.; Brown, C.; El Benni, N.; Feil, J.H.; Grohmann, P.; Joormann, I.; Leonhardt, H.; Mitter, H.; Müller, B. Farm typologies for understanding farm systems and improving agricultural policy. Agric. Syst. 2024, 213, 103800. [Google Scholar] [CrossRef]
- Noulas, C.; Tziouvalekas, M.; Vlachostergios, D.; Baxevanos, D.; Karyotis, T.; Iliadis, C. Adaptation, agronomic potential, and current perspectives of quinoa under mediterranean conditions: Case studies from the lowlands of central Greece. Commun. Soil Sci. Plant Anal. 2017, 48, 2612–2629. Available online: https://www.tandfonline.com/doi/abs/10.1080/00103624.2017.1416129 (accessed on 13 October 2025).
- Dimitriou, E.; Efstratiadis, A.; Zotou, I.; Papadopoulos, A.; Iliopoulou, T.; Sakki, G.-K.; Mazi, K.; Rozos, E.; Koukouvinos, A.; Koussis, A.D.; et al. Post-analysis of Daniel extreme flood event in Thessaly, Central Greece: Practical lessons and the value of state-of-the-art water-monitoring networks. Water 2024, 16, 980. [Google Scholar] [CrossRef]
- Iatrou, M.; Tziouvalekas, M.; Tsitouras, A.; Evangelou, E.; Noulas, C.; Vlachostergios, D.; Aschonitis, V.; Arampatzis, G.; Metaxa, I.; Karydas, C.; et al. Analyzing the impact of Storm ‘Daniel’ and subsequent flooding on Thessaly’s soil chemistry through causal inference. Agriculture 2024, 14, 549. [Google Scholar] [CrossRef]
- Hellenic Republic-Region of Thessaly. Strategic Plan for the Sustainable Agricultural Development of Thessaly. Available online: https://www.thessaly.gov.gr/images/right/sxedio.pdf (accessed on 14 May 2024).
- Silent Resident; Philly Boy92. The Location of Thessaly Within Greece. Available online: https://commons.wikimedia.org/wiki/File:Location_map_of_Thessaly_(Greece).svg (accessed on 6 May 2025).
- Google. The Region of Thessaly, Greece. Available online: https://www.google.com/maps (accessed on 6 May 2025).
- Michalis, E.; Dar Ali, M.; Ragkos, A. Stakeholders’ opinions and perceptions on the cultivation of legumes for livestock in Greece. Int. J. Sustain. Agric. Manag. Inform. 2024, 10, 211–229. [Google Scholar] [CrossRef]
- Kleisiari, C.; Duquenne, M.N.; Vlontzos, G. E-commerce in the retail chain store market: An alternative or a main trend? Sustainability 2021, 13, 4392. [Google Scholar] [CrossRef]
- Ragkos, A.; Hayasi, K.; Serra, J.; Shibata, K.; Michalis, E.; Eguchi, S.; Oita, A.; Marques-dos-Santos Cordovil, C. Contrasting considerations among agricultural stakeholders in Japan on sustainable nitrogen management. Sustainability 2021, 13, 4866. [Google Scholar] [CrossRef]
- SPSS. SPSS Categories 11.5. A Software Package, Version 11.0; SPSS Inc.: Chicago, IL, USA, 2002.
- Bartkowski, B.; Schüßler, C.; Müller, B. Typologies of European farmers: Approaches, methods and research gaps. Reg. Environ. Change 2022, 22, 43. [Google Scholar] [CrossRef]
- Barkley, A.; Barkley, P.W. Principles of Agricultural Economics, 3rd ed.; Routledge: London, UK, 2020. [Google Scholar]
- Benitez-Altuna, F.; Trienekens, J.; Gaitán-Cremaschi, D. Categorizing the sustainability of vegetable production in Chile: A farming typology approach. Int. J. Agric. Sustain. 2023, 21, 2202538. [Google Scholar] [CrossRef]
- Laske, E. Characterizing agroecology’s practice in the Niayes, Senegal: A typology of agricultural models on family farms. Int. J. Sustain. Dev. World Ecol. 2023, 30, 329–344. [Google Scholar] [CrossRef]
- Teixeira, H.M.; Van den Berg, L.; Cardoso, I.M.; Vermue, A.J.; Bianchi, F.J.J.A.; Peña-Claros, M.; Tittonell, P. Understanding farm diversity to promote agroecological transitions. Sustainability 2018, 10, 4337. [Google Scholar] [CrossRef]
- Prentzas, A.; Nastis, S.A.; Moulogianni, C.; Kouriati, A. Technical and economic analysis of farms cultivating cereals and legumes: A Greek case study. Int. J. Sustain. Agric. Manag. Inform. 2022, 8, 446–459. [Google Scholar] [CrossRef]
- Tzouramani, I.; Mantziaris, S.; Karanikolas, P. Assessing sustainability performance at the farm level: Examples from Greek agricultural systems. Sustainability 2020, 12, 2929. [Google Scholar] [CrossRef]
- Radicetti, E.; Mancinelli, R. Sustainable weed control in the agro-ecosystems. Sustainability 2021, 13, 8639. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Integrated Weed Management in herbaceous field crops. Agronomy 2020, 10, 466. [Google Scholar] [CrossRef]
- Bagavathiannan, M.V.; Davis, A.S. An ecological perspective on managing weeds during the great selection for herbicide resistance. Pest Manag. Sci. 2018, 74, 2277–2286. [Google Scholar] [CrossRef]
- Choudhary, R.; Verma, A.; Sumeria, H.K.; Tomar, M.; Kannoj. Effect of weed management on growth, yield and economics of dill (Anethum graveolens L.) in typic haplustept soils. Sci. Rep. 2025, 15, 27080. [Google Scholar] [CrossRef]
- Masson, S.; Rueda-Ayala, V.; Bragazza, L.; Cordeau, S.; Munier-Jolain, N.; Wirth, J. Reducing tillage and herbicide use intensity while limiting weed-related wheat yield loss. Eur. J. Agron. 2024, 160, 127284. [Google Scholar] [CrossRef]
- Yadav, R.; Jha, P.; Hartzler, R.; Liebman, M. Multi-tactic strategies to manage herbicide-resistant waterhemp (Amaranthus tuberculatus) in corn–soybean rotations of the US Midwest. Weed Sci. 2023, 71, 141–149. [Google Scholar] [CrossRef]
- Finco, A.; Bucci, G.; Belletti, M.; Bentivoglio, D. The economic results of investing in precision agriculture in durum wheat production: A case study in Central Italy. Agronomy 2021, 11, 1520. [Google Scholar] [CrossRef]
- Kouriati, A.; Dimitriadou, E.; Bournaris, T. Farm accounting for farm decision making: A case study in Greece. Int. J. Sustain. Agric. Manag. Inform. 2021, 7, 77–89. [Google Scholar] [CrossRef]
- Fishkis, O.; Weller, J.; Lehmhus, J.; Pöllinger, F.; Strassemeyer, J.; Koch, H.J. Ecological and economic evaluation of conventional and new weed control techniques in row crops. Agric. Ecosyst. Environ. 2024, 360, 108786. [Google Scholar] [CrossRef]
- Lukangila, M.A.B.; Tabu, H.I.; Mugisho, D.B.; Lubobo, A.K.; Mbombo, A.K.M.W. Evaluating the effects of manual hoeing and selective herbicides on maize (Zea mays L.) productivity and profitability. Heliyon 2024, 10, e33294. [Google Scholar] [CrossRef] [PubMed]
- Parker, C. Parasitic weeds: A world challenge. Weed Sci. 2012, 60, 269–276. [Google Scholar] [CrossRef]
- Negewo, T. Challenges and management of parasitic weeds in Ethiopia. CABI Agric. Biosci. 2024, 5, 114. [Google Scholar] [CrossRef]
- Atsmon, G.; Brook, A.; Cohen, T.A.; Kizel, F.; Eizenberg, H.; Lati, R.N. Leveraging time-based spectral data from UAV imagery for enhanced detection of broomrape in sunflower. Smart Agric. Technol. 2025, 10, 100809. [Google Scholar] [CrossRef]
- Phang, S.K.; Chiang, T.H.A.; Happonen, A.; Chang, M.M.L. From satellite to UAV-based remote sensing: A review on precision agriculture. IEEE Access 2023, 11, 127057–127076. [Google Scholar] [CrossRef]
- Brook, A.; De Micco, V.; Battipaglia, G.; Raggio, A.; Ludeno, G.; Catapano, I.; Bonfante, A. A smart multiple spatial and temporal resolution system to support precision agriculture from satellite images: Proof of concept on Aglianico vineyard. Remote Sens. Environ. 2023, 240, 111679. [Google Scholar] [CrossRef]
- Chanda, S.; Bhat, M.; Shetty, K.G.; Jayachandran, K. Technology, policy, and market adaptation mechanisms for sustainable fresh produce industry: The case of tomato production in Florida, USA. Sustainability 2021, 13, 5933. [Google Scholar] [CrossRef]
- European Union. EIP-AGRI Operational Groups: Collaboration and Funding Opportunities. Available online: https://eu-cap-network.ec.europa.eu/publications/eip-agri-operational-groups-collaboration-and-funding-opportunities_en (accessed on 25 July 2025).
- Papadopoulos, A.G.; Baltas, P. Rural depopulation in Greece: Trends, processes, and interpretations. Geographies 2024, 4, 1–20. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European and Social Committee and the Committee of the Regions: A Vision for Agriculture and Food. Shaping Together an Attractive Farming and Agri-Food Sector for Future Generations. COM(2025) 75 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52025DC0075 (accessed on 25 July 2025).
- Michalis, E.; Ragkos, A.; Malesios, C. Market-based or policy strategies to increase the cultivation of legumes for livestock? Effects on the cropping pattern and economic performance. Agric. Food Econ. 2025, 13, 3. [Google Scholar] [CrossRef]
- Ziehmann, E.; Möhring, N.; Finger, R. Economics of herbicide-free crop production. Appl. Econ. Perspect. Policy 2024, 46, 1692–1716. [Google Scholar] [CrossRef]
- Ye, F.; Yang, Z.; Yu, M.; Watson, S.; Lovell, A. Can market-oriented reform of agricultural subsidies promote the growth of agricultural green total factor productivity? Empirical evidence from maize in China. Agriculture 2023, 13, 251. [Google Scholar] [CrossRef]
- ELSTAT. Agricultural Price Indices, Reference Year 2025 (July). Hellenic Statistical Authority. Available online: https://www.statistics.gr/en/statistics/-/publication/DKT30/- (accessed on 7 October 2025).
SWMPs | Dimensions | |||
---|---|---|---|---|
Component Loadings * | ||||
1 | 2 | 3 | 4 | |
Cover crops | −0.139 | −0.560 | 0.682 | −0.162 |
Crop rotation | 0.712 | 0.256 | −0.056 | −0.112 |
False seeding | 0.837 | −0.313 | −0.196 | 0.148 |
Deep plowing | 0.340 | 0.643 | 0.234 | −0.312 |
Fallowing | 0.187 | 0.557 | 0.548 | 0.508 |
Adjustments on sowing dates | 0.867 | −0.276 | −0.114 | −0.012 |
Reduced tillage or no tillage | 0.826 | −0.353 | −0.262 | 0.113 |
Adjustments on sowing densities | 0.859 | −0.201 | −0.193 | −0.059 |
Competitive hybrids and cultivars | 0.025 | −0.548 | 0.702 | −0.271 |
Selection of competitive crops | 0.478 | −0.346 | 0.676 | −0.113 |
Precision weed management | 0.337 | 0.320 | 0.462 | 0.694 |
Mechanical weeding | 0.364 | 0.674 | 0.106 | −0.368 |
Manual interventions | 0.336 | 0.622 | 0.185 | −0.378 |
Cronbach’s-α (rotated matrix) | 0.822 | 0.697 | 0.588 | 0.236 |
Eigenvalue | 4.138 | 2.807 | 2.188 | 1.280 |
% of variance explained | 31.83 | 21.59 | 16.83 | 9.84 |
% of variance explained (Total) | 80.09 |
Clusters | Cluster Size | Dimensions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
“Cultural” | “Physical– Mechanical” | “Crop–Cultivar Selection” | “Precision Agriculture” | |||||||
Number of Farms | Percentage (%) | Mean | St. Dev. | Mean | St. Dev. | Mean | St. Dev. | Mean | St. Dev. | |
1 | 33 | 43.4 | 0.391 a | 1.221 | −0.367 a | 0.430 | −0.736 a | 0.451 | 0.319 a | 0.741 |
2 | 2 | 2.6 | 2.049 b | 1.128 | 1.949 b | 2.307 | 2.808 b | 1.162 | 4.224 b | 1.191 |
3 | 21 | 27.6 | −0.267 c | 0.286 | 1.245 b | 0.289 | −0.179 c | 0.402 | −0.619 c | 0.414 |
4 | 20 | 26.3 | −0.570 c | 0.457 | −0.896 c | 0.357 | 1.122 d | 0.535 | −0.299 c | 0.497 |
Total | 76 | 100.0 | 0.000 | 1.006 | 0.000 | 1.006 | 0.000 | 1.006 | 0.000 | 1.006 |
Variables | Clusters | Total Sample | |||
---|---|---|---|---|---|
Cluster 1 “Transitional” | Cluster 2 “Holistic” | Cluster 3 “Conventional” | Cluster 4 “Selective” | ||
Dimension 1 “Cultural” | |||||
- Crop rotation | |||||
Not at all | 6.1 | 0.0 | 0.0 | 0.0 | 2.6 |
Low | 12.1 | 0.0 | 9.5 | 15.0 | 11.8 |
Medium | 24.2 | 0.0 | 14.3 | 50.0 | 27.7 |
High | 12.1 | 0.0 | 47.6 | 30.0 | 26.3 |
Very high | 45.5 | 100.0 | 28.6 | 5.0 | 31.6 |
- False seeding | |||||
Not at all | 33.3 | 0.0 | 85.7 | 70.0 | 56.6 |
Low | 12.1 | 50.0 | 14.3 | 25.0 | 17.1 |
Medium | 15.2 | 0.0 | 0.0 | 5.0 | 7.9 |
High | 24.2 | 0.0 | 0.0 | 0.0 | 10.5 |
Very high | 15.2 | 50.0 | 0.0 | 0.0 | 7.9 |
- Adjustments on sowing dates | |||||
Not at all | 6.1 | 0.0 | 57.2 | 35.0 | 27.6 |
Low | 15.1 | 0.0 | 19.0 | 30.0 | 19.7 |
Medium | 18.2 | 50.0 | 14.3 | 10.0 | 15.8 |
High | 21.2 | 0.0 | 9.5 | 20.0 | 17.1 |
Very high | 39.4 | 50.0 | 0.0 | 5.0 | 19.8 |
- Reduced tillage or no tillage | |||||
Not at all | 24.2 | 50.0 | 81.0 | 50.0 | 47.4 |
Low | 9.1 | 0.0 | 14.3 | 25.0 | 14.5 |
Medium | 12.1 | 0.0 | 4.7 | 25.0 | 13.1 |
High | 36.4 | 0.0 | 0.0 | 0.0 | 15.8 |
Very high | 18.2 | 50.0 | 0.0 | 0.0 | 9.2 |
- Adjustments on sowing densities | |||||
Not at all | 6.0 | 0.0 | 9.5 | 0.0 | 5.3 |
Low | 18.2 | 0.0 | 19.0 | 30.0 | 21.0 |
Medium | 9.1 | 50.0 | 38.1 | 55.0 | 30.3 |
High | 27.3 | 0.0 | 28.6 | 15.0 | 23.7 |
Very high | 39.4 | 50.0 | 4.8 | 0.0 | 19.7 |
Dimension 2 “Physical– mechanical” | |||||
- Deep plowing | |||||
Not at all | 15.1 | 0.0 | 0.0 | 5.0 | 7.9 |
Low | 45.4 | 0.0 | 0.0 | 20.0 | 25.0 |
Medium | 21.2 | 0.0 | 14.3 | 60.0 | 28.9 |
High | 9.1 | 50.0 | 57.1 | 10.0 | 23.7 |
Very high | 9.1 | 50.0 | 28.6 | 5.0 | 14.5 |
- Mechanical weeding | |||||
Not at all | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Low | 24.2 | 0.0 | 0.0 | 25.0 | 17.1 |
Medium | 39.4 | 0.0 | 0.0 | 50.0 | 30.3 |
High | 21.2 | 50.0 | 28.6 | 20.0 | 23.7 |
Very high | 15.2 | 50.0 | 71.4 | 5.0 | 28.9 |
- Manual interventions | |||||
Not at all | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Low | 18.2 | 0.0 | 0.0 | 25.0 | 14.5 |
Medium | 42.4 | 0.0 | 14.3 | 45.0 | 34.2 |
High | 24.2 | 50.0 | 28.6 | 25.0 | 26.3 |
Very high | 15.2 | 50.0 | 57.1 | 5.0 | 25.0 |
Dimension 3 “Crop-cultivar selection” | |||||
- Cover crops | |||||
Not at all | 60.6 | 50.0 | 85.7 | 0.0 | 51.3 |
Low | 24.3 | 0.0 | 9.5 | 5.0 | 14.5 |
Medium | 12.1 | 50.0 | 4.8 | 15.0 | 11.8 |
High | 0.0 | 0.0 | 0.0 | 60.0 | 15.8 |
Very high | 3.0 | 0.0 | 0.0 | 20.0 | 6.6 |
- Fallowing | |||||
Not at all | 69.7 | 0.0 | 4.8 | 60.0 | 47.4 |
Low | 24.2 | 0.0 | 28.6 | 20.0 | 23.7 |
Medium | 6.1 | 0.0 | 57.1 | 15.0 | 22.4 |
High | 0.0 | 50.0 | 9.5 | 5.0 | 5.2 |
Very high | 0.0 | 50.0 | 0.0 | 0.0 | 1.3 |
- Competitive hybrids and cultivars | |||||
Not at all | 48.5 | 0.0 | 42.9 | 0.0 | 32.9 |
Low | 21.2 | 50.0 | 19.0 | 0.0 | 15.8 |
Medium | 12.1 | 0.0 | 28.6 | 0.0 | 13.2 |
High | 12.1 | 50.0 | 9.5 | 40.0 | 19.7 |
Very high | 6.1 | 0.0 | 0.0 | 60.0 | 18.4 |
- Selection of competitive crops | |||||
Not at all | 18.2 | 0.0 | 23.8 | 0.0 | 14.5 |
Low | 15.1 | 0.0 | 28.6 | 0.0 | 14.5 |
Medium | 27.3 | 0.0 | 33.3 | 10.0 | 23.7 |
High | 21.2 | 0.0 | 14.3 | 45.0 | 25.0 |
Very high | 18.2 | 100.0 | 0.0 | 45.0 | 22.3 |
Dimension 4 “Precision agriculture” | |||||
- Precision weed management | |||||
Not at all | 78.8 | 0.0 | 100.0 | 75.0 | 81.6 |
Low | 18.2 | 0.0 | 0.0 | 5.0 | 9.2 |
Medium | 0.0 | 0.0 | 0.0 | 20.0 | 5.3 |
High | 3.0 | 0.0 | 0.0 | 0.0 | 1.3 |
Very high | 0.0 | 100.0 | 0.0 | 0.0 | 2.6 |
Indicators | Farm Types | Total Sample (n = 76) | |||
---|---|---|---|---|---|
“Transitional” (n = 33) | “Holistic” (n = 2) | “Conventional” (n = 21) | “Selective” (n = 20) | ||
Farm area (ha) | 70.5 | 86.5 | 62.9 | 50.3 | 63.5 |
Cotton | 9.6 | 2.5 | 15.7 | 7.4 | 10.5 |
Winter cereals | 36.4 | 37.5 | 27.1 | 24.9 | 30.9 |
Industrial tomato | 12.6 | 26.5 | 9.6 | 8.0 | 10.9 |
Others (legumes, maize, oilseed rape) | 11.9 | 20.0 | 10.5 | 10.0 | 11.2 |
Labor requirements (hours/ha/year) 1 | 61.3 | 68.0 | 79.2 | 59.8 | 66.1 |
Family | 42.3 | 43.0 | 54.0 | 46.0 | 46.3 |
Hired | 19.0 | 25.0 | 25.2 | 13.8 | 19.8 |
Gross revenue (€/ha) | 3355.3 | 4241.5 | 3621.5 | 3200.4 | 3427.7 |
Product sales (weighted average) | 2601.3 | 3498.9 | 2842.2 | 2499.7 | 2678.3 |
Industrial tomato | 7731.0 | 7900.4 | 7808.4 | 7503.7 | 7716.7 |
Income support | 754.0 | 742.6 | 779.3 | 700.7 | 749.4 |
Production expenses (€/ha) | 3312.8 | 3753.0 | 3601.5 | 3284.3 | 3401.7 |
Land expenses | 499.5 | 564.3 | 513.6 | 488.4 | 503.4 |
Labor expenses | 214.7 | 244.2 | 283.6 | 212.9 | 234.2 |
Fixed expenses | 892.3 | 958.5 | 1136.8 | 932.7 | 970.1 |
Variable expenses | 1706.3 | 1986.0 | 1667.5 | 1650.3 | 1694.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalis, E.; Ragkos, A.; Travlos, I.; Chachalis, D.; Malesios, C. Economic Effects of Sustainable Weed Management Against Broomrape Parasitism in Industrial Tomato. Agronomy 2025, 15, 2401. https://doi.org/10.3390/agronomy15102401
Michalis E, Ragkos A, Travlos I, Chachalis D, Malesios C. Economic Effects of Sustainable Weed Management Against Broomrape Parasitism in Industrial Tomato. Agronomy. 2025; 15(10):2401. https://doi.org/10.3390/agronomy15102401
Chicago/Turabian StyleMichalis, Efstratios, Athanasios Ragkos, Ilias Travlos, Dimosthenis Chachalis, and Chrysovalantis Malesios. 2025. "Economic Effects of Sustainable Weed Management Against Broomrape Parasitism in Industrial Tomato" Agronomy 15, no. 10: 2401. https://doi.org/10.3390/agronomy15102401
APA StyleMichalis, E., Ragkos, A., Travlos, I., Chachalis, D., & Malesios, C. (2025). Economic Effects of Sustainable Weed Management Against Broomrape Parasitism in Industrial Tomato. Agronomy, 15(10), 2401. https://doi.org/10.3390/agronomy15102401