Weed and Grassland Community Structure, Biomass and Forage Value Across Crop Types and Light Conditions in an Organic Agrivoltaic System
Abstract
1. Introduction
- to describe how weeds/spontaneous vegetation communities respond to different light conditions in terms of floristic composition and biomass;
- to evaluate the potential function of uncultivated areas (grassland) by assessing their quantity in terms of total biomass (yield) and their quality as feed through the determination of the pastoral value.
2. Materials and Methods
2.1. Study Site
2.2. Weeds/Grassland Sampling Method and Data Collection
2.3. Near-Infrared Reflectance Spectroscopy Analysis
2.4. Statistical Analysis
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADF | Acid Detergent Fiber |
ADIP | Acid Detergent-Insoluble Protein |
ADL | Acid Detergent Lignin |
AS | Agrivoltaic system |
CP | Crude Protein |
CSi | Single species percentage contribution to vegetation composition |
DM | Dry Matter |
dNDF | digestible NDF evaluated after 24 h of in situ rumen incubations |
EC | Electrical Conductivity |
GCR | Ground Coverage Ratio |
IR | Infrared |
ISi | Index of Specific forage value |
NDF | Neutral Detergent Fiber with amylase and sodium sulfite method |
NEL | Net Energy for Lactation |
NIR | Near Infrared |
NIRS | Near Infrared Spectroscopy |
PAR | Photosynthetically Active Radiation |
PV | Photovoltaics |
SolP | Soluble Protein |
uNDF | undigested NDF after 240 h |
VWC | Volumetric Water Content |
References
- Widmer, J.; Christ, B.; Grenz, J.; Norgrove, L. Agrivoltaics, a Promising New Tool for Electricity and Food Production: A Systematic Review. Renew. Sustain. Energy Rev. 2024, 192, 114277. [Google Scholar] [CrossRef]
- Goetzberger, A.; Zastrow, A. On the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy 1982, 1, 55–69. [Google Scholar] [CrossRef]
- Amaducci, S.; Yin, X.; Colauzzi, M. Agrivoltaic Systems to Optimise Land Use for Electric Energy Production. Appl. Energy 2018, 220, 545–561. [Google Scholar] [CrossRef]
- Touil, S.; Richa, A.; Fizir, M.; Bingwa, B. Shading Effect of Photovoltaic Panels on Horticulture Crops Production: A Mini Review. Rev. Environ. Sci. Biotechnol. 2021, 20, 281–296. [Google Scholar] [CrossRef]
- Asa’a, S.; Reher, T.; Rongé, J.; Diels, J.; Poortmans, J.; Radhakrishnan, H.S.; van der Heide, A.; Van de Poel, B.; Daenen, M. A Multidisciplinary View on Agrivoltaics: Future of Energy and Agriculture. Renew. Sustain. Energy Rev. 2024, 200, 114515. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The Potential of Agrivoltaic Systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining Food and Energy Production: Design of an Agrivoltaic System Applied in Arable and Vegetable Farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Weselek, A.; Bauerle, A.; Hartung, J.; Zikeli, S.; Lewandowski, I.; Högy, P. Agrivoltaic System Impacts on Microclimate and Yield of Different Crops within an Organic Crop Rotation in a Temperate Climate. Agron. Sustain. Dev. 2021, 41, 59. [Google Scholar] [CrossRef]
- Andrew, A.C.; Higgins, C.W.; Smallman, M.A.; Graham, M.; Ates, S. Herbage Yield, Lamb Growth and Foraging Behavior in Agrivoltaic Production System. Front. Sustain. Food Syst. 2021, 5, 659175. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining Solar Photovoltaic Panels and Food Crops for Optimising Land Use: Towards New Agrivoltaic Schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Ya’acob, M.E.; Lu, L.; Nobilly, F.; Che’Ya, N.N.; Aziz, A.A.; Dupraz, C.; Yahya, M.S.; Atikah, S.N.; Mamun, M.A. Al Analysis of Weed Communities in Solar Farms Located in Tropical Areas—The Case of Malaysia. Agronomy 2022, 12, 3073. [Google Scholar] [CrossRef]
- Begon, M.; Howarth, R.W.; Townsend, C.R. Ökologie; Springer Nature: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Campana, P.E.; Stridh, B.; Hörndahl, T.; Svensson, S.E.; Zainali, S.; Lu, S.M.; Zidane, T.E.K.; De Luca, P.; Amaducci, S.; Colauzzi, M. Experimental Results, Integrated Model Validation, and Economic Aspects of Agrivoltaic Systems at Northern Latitudes. J. Clean. Prod. 2024, 437, 140235. [Google Scholar] [CrossRef]
- Suttie, J.M.; Reynolds, S.G.; Batello, C. Grassland Perspectives BT. In Grasslands of the World; Food and Agriculture Organization: Rome, Italy, 2005; pp. 1–53. [Google Scholar]
- O’Mara, F.P. The Role of Grasslands in Food Security and Climate Change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef]
- Wilsey, B.J. The Biology of Grasslands; Oxford University Press (OUP): Oxford, UK, 2018. [Google Scholar]
- DeMartis, C. Solar Farming in Maine: An Objective Overview; Student Policy Briefs; University of Southern Maine: Portland, ME, USA, 2018. [Google Scholar]
- QGIS. Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://qgis.org (accessed on 15 September 2024).
- Dal Prà, A.; Miglietta, F.; Genesio, L.; Lanini, G.M.; Bozzi, R.; Morè, N.; Greco, A.; Fabbri, M.C. Determination of Feed Yield and Quality Parameters of Whole Crop Durum Wheat (Triticum durum Desf.) Biomass under Agrivoltaic System. Agrofor. Syst. 2024, 98, 2861–2873. [Google Scholar] [CrossRef]
- Pacini, G.C.; Bruschi, P.; Ferretti, L.; Santoni, M.; Serafini, F.; Gaifami, T. FunBies, a Model for Integrated Assessment of Functional Biodiversity of Weed Communities in Agro-Ecosystem. Ecol. Modell. 2023, 486, 110529. [Google Scholar] [CrossRef]
- Pignatti, S. Flora d’Italia, V. 1-3; Edagricole-New Business Media: Bologna, Italy, 1982. [Google Scholar]
- Brogna, N.; Pacchioli, M.T.; Immovilli, A.; Ruozzi, F.; Ward, R.; Formigoni, A. The Use of Near-Infrared Reflectance Spectroscopy (NIRS) in the Prediction of Chemical Composition and in Vitro Neutral Detergent Fiber (NDF) Digestibility of Italian Alfalfa Hay. Ital. J. Anim. Sci. 2009, 8, 271–273. [Google Scholar] [CrossRef]
- Palmonari, A.; Gallo, A.; Fustini, M.; Canestrari, G.; Masoero, F.; Sniffen, C.J.; Formigoni, A. Estimation of the Indigestible Fiber in Different Forage Types. J. Anim. Sci. 2016, 94, 248–254. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and some Applications); US Agricultural Research Service: Washington, DC, USA, 1975; pp. 387–598. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of Procedures for Nitrogen Fractionation of Ruminant Feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Mertens, D.R.; Allen, M.; Carmany, J.; Clegg, J.; Davidowicz, A.; Drouches, M.; Frank, K.; Gambin, D.; Garkie, M.; Gildemeister, B.; et al. Gravimetric Determination of Amylase-Treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [CrossRef]
- Palmonari, A.; Fustini, M.; Canestrari, G.; Grilli, E.; Formigoni, A. Influence of Maturity on Alfalfa Hay Nutritional Fractions and Indigestible Fiber Content. J. Dairy Sci. 2014, 97, 7729–7734. [Google Scholar] [CrossRef]
- AOAC. Fiber (Acid Detergent) and Lignin in Animal Feed (973.18), 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Daget, P.; Poissonet, J. Un Procédé d’estimation de La Valeur Pastorale Des Pâturages. Fourrages 1972, 49, 31–39. [Google Scholar]
- Argenti, G.; Lombardi, G. The Pasture-Type Approach for Mountain Pasture Description and Management. Ital. J. Agron. 2012, 7, e39. [Google Scholar] [CrossRef]
- Cavallero, A.; Rivoira, G.; Talamucci, P. Pascoli. In Coltivazioni Erbacee-Foraggere e Tappeti Erbosi; Patron Editore: Bologna, Italy, 2002; pp. 239–294. [Google Scholar]
- IBM Corporation. IBM SPSS Statistics, version 29; IBM Corporation: Armonk, NY, USA, 2023. [Google Scholar]
- OriginLab Corporation. OriginPro, version 2023b; OriginLab Corporation: Northampton, MA, USA, 2023. [Google Scholar]
- Ugolini, F.; Crisci, A.; Baronti, S.; Cencetti, G.; Dal Prà, A.; Albanese, L.; Michelozzi, M.; Zabini, F.; Meneguzzo, F. Effects of Orange Waste Extract Produced by Hydrodynamic Cavitation on the Germination of Chenopodium album L. and Lactuca sativa L. Sustainability 2024, 16, 3039. [Google Scholar] [CrossRef]
- Fanfarillo, E.; Zangari, G.; Küzmič, F.; Fiaschi, T.; Bonari, G.; Angiolini, C. Summer Roadside Vegetation Dominated by Sorghum Halepense in Peninsular Italy: Survey and Classification. Rend. Lincei. Sci. Fis. Nat. 2022, 33, 93–104. [Google Scholar] [CrossRef]
- Chmolowska, D.; Kozak, M.; Laskowski, R. Soil Physicochemical Properties and Floristic Composition of Two Ecosystems Differing in Plant Diversity: Fallows and Meadows. Plant Soil 2016, 402, 317–329. [Google Scholar] [CrossRef]
- Skorupinski, S.; Busset, H.; Caneill, J.; Moreau, D.; Mosa, B.; Motton, E.; Colbach, N. Combining a Field Experiment and Literature to Model the Regrowth Probability of Perennial Storage Organs Fragmented by Tillage: Case Study of Cirsium arvense (L.). Scop. Soil Tillage Res. 2024, 244, 106279. [Google Scholar] [CrossRef]
- Lemmens, C.M.H.M.; Boeck, H.J.D.; Gielen, B.; Bossuyt, H.; Malchair, S.; Carnol, M.; Merckx, R.; Nijs, I.; Ceulemans, R. End-of-Season Effects of Elevated Temperature on Ecophysiological Processes of Grassland Species at Different Species Richness Levels. Environ. Exp. Bot. 2006, 56, 245–254. [Google Scholar] [CrossRef]
- Schmid, J.S.; Huth, A.; Taubert, F. Impact of Mowing Frequency and Temperature on the Production of Temperate Grasslands: Explanations Received by an Individual-Based Model. Oikos 2022, 2022, e09108. [Google Scholar] [CrossRef]
- Piseddu, F.; Bellocchi, G.; Picon-Cochard, C. Mowing and Warming Effects on Grassland Species Richness and Harvested Biomass: Meta-Analyses. Agron. Sustain. Dev. 2021, 41, 74. [Google Scholar] [CrossRef]
- Schulz, D.; Stetter, C.; Muro, J.; Spekker, J.; Börner, J.; Cord, A.F.; Finger, R. Trade-Offs between Grassland Plant Biodiversity and Yields Are Heterogenous across Germany. Commun. Earth Environ. 2024, 5, 514. [Google Scholar] [CrossRef]
- Suter, M.; Hofer, D.; Lüscher, A. Weed Suppression Enhanced by Increasing Functional Trait Dispersion and Resource Capture in Forage Ley Mixtures. Agric. Ecosyst. Environ. 2017, 240, 329–339. [Google Scholar] [CrossRef]
- Anwar, M.P.; Islam, A.K.M.M.; Yeasmin, S.; Rashid, M.H.; Juraimi, A.S.; Ahmed, S.; Shrestha, A. Weeds and Their Responses to Management Efforts in A Changing Climate. Agronomy 2021, 11, 1921. [Google Scholar] [CrossRef]
- Ingraffia, R.; Amato, G.; Ruisi, P.; Giambalvo, D.; Frenda, A.S. Early Sowing Can Boost Grain Production by Reducing Weed Infestation in Organic No-till Wheat. J. Sci. Food Agric. 2022, 102, 6246–6254. [Google Scholar] [CrossRef] [PubMed]
- Pekrun, C.; El Titi, A.; Claupein, W. Implications of Soil Tillage for Crop and Weed Seeds. In Soil Tillage Agroecosystems; CRC Press: Boca Raton, FL, USA, 2002; pp. 115–146. [Google Scholar] [CrossRef]
- Gruber, S.; Claupein, W. Effect of Tillage Intensity on Weed Infestation in Organic Farming. Soil Tillage Res. 2009, 105, 104–111. [Google Scholar] [CrossRef]
- Sohrabi, S.; Gherekhloo, J.; Hassanpour-bourkheili, S.; Soltani, A.; Gonzalez-Andujar, J.L. Factors Influencing the Variation of Plants’ Cardinal Temperature: A Case Study in Iran. Plants 2024, 13, 2848. [Google Scholar] [CrossRef]
- Gramig, G.G.; Stoltenberg, D.E.; Norman, J.M. Weed Species Radiation-Use Efficiency as Affected by Competitive Environment. Weed Sci. 2006, 54, 1013–1024. [Google Scholar] [CrossRef]
- Colbach, N.; Munier-Jolain, N.; Dugué, F.; Gardarin, A.; Strbik, F.; Moreau, D. The Response of Weed and Crop Species to Shading. How to Predict Their Morphology and Plasticity from Species Traits and Ecological Indexes? Eur. J. Agron. 2020, 121, 126158. [Google Scholar] [CrossRef]
- Munier-Jolain, N.M.; Collard, A.; Busset, H.; Guyot, S.H.M.; Colbach, N. Investigating and Modelling the Morphological Plasticity of Weeds. Field Crop. Res. 2014, 155, 90–98. [Google Scholar] [CrossRef]
- Azizi, S.; Aliniaeifard, S.; Zarbakhsh, S.; Esmaeili, S.; Baghalian, K.; Gruda, N.S. Photobiology, Photosynthesis, and Plant Responses under Artificial Lighting in Controlled Environment Agriculture. Sci. Hortic. 2025, 349, 114248. [Google Scholar] [CrossRef]
- Moradi, S.; Kafi, M.; Aliniaeifard, S.; Moosavi-Nezhad, M.; Pedersen, C.; Gruda, N.S.; Salami, S.A. Monochromatic Blue Light Enhances Crocin and Picrocrocin Content by Upregulating the Expression of Underlying Biosynthetic Pathway Genes in Saffron (Crocus sativus L.). Front. Hortic. 2022, 1, 960423. [Google Scholar] [CrossRef]
- Pätzold, S.; Hbirkou, C.; Dicke, D.; Gerhards, R.; Welp, G. Linking Weed Patterns with Soil Properties: A Long-Term Case Study. Precis. Agric. 2020, 21, 569–588. [Google Scholar] [CrossRef]
- Uchanski, M.; Hickey, T.; Bousselot, J.; Barth, K.L. Characterization of Agrivoltaic Crop Environment Conditions Using Opaque and Thin-Film Semi-Transparent Modules. Energies 2023, 16, 3012. [Google Scholar] [CrossRef]
- Prakash, V.; Lunagaria, M.M.; Trivedi, A.P.; Upadhyaya, A.; Kumar, R.; Das, A.; Kumar Gupta, A.; Kumar, Y. Shading and PAR under Different Density Agrivoltaic Systems, Their Simulation and Effect on Wheat Productivity. Eur. J. Agron. 2023, 149, 126922. [Google Scholar] [CrossRef]
- Adeh, E.H.; Selker, J.S.; Higgins, C.W. Remarkable Agrivoltaic Influence on Soil Moisture, Micrometeorology and Water-Use Efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef]
- Katsikogiannis, O.A.; Ziar, H.; Isabella, O. Integration of Bifacial Photovoltaics in Agrivoltaic Systems: A Synergistic Design Approach. Appl. Energy 2022, 309, 118475. [Google Scholar] [CrossRef]
- Oleskewicz, K. The Effect of Gap Spacing Between Solar Panel Clusters on Crop Biomass Yields, Nutrients, and the Microenvironment in a Dual-Use Agrivoltaic System; University of Massachusetts Amherst: Amherst, MA, USA, 2020. [Google Scholar]
- Luo, J.; Luo, Z.; Li, W.; Shi, W.; Sui, X. The Early Effects of an Agrivoltaic System within a Different Crop Cultivation on Soil Quality in Dry–Hot Valley Eco-Fragile Areas. Agronomy 2024, 14, 584. [Google Scholar] [CrossRef]
- Cramer, M.D.; Barger, N.N.; Tschinkel, W.R. Edaphic Properties Enable Facilitative and Competitive Interactions Resulting in Fairy Circle Formation. Ecography 2017, 40, 1210–1220. [Google Scholar] [CrossRef]
- Choi, C.S.; Macknick, J.; Li, Y.; Bloom, D.; McCall, J.; Ravi, S. Environmental Co-Benefits of Maintaining Native Vegetation With Solar Photovoltaic Infrastructure. Earth’s Futur. 2023, 11, e2023EF003542. [Google Scholar] [CrossRef]
- Armstrong, A.; Ostle, N.J.; Whitaker, J. Solar Park Microclimate and Vegetation Management Effects on Grassland Carbon Cycling. Environ. Res. Lett. 2016, 11, 074016. [Google Scholar] [CrossRef]
- Borsa Merci e Prezzi. Camera di Commercio di Bologna. Available online: https://www.bo.camcom.gov.it/it/borsa-merci/home (accessed on 17 July 2025).
- Liu, L.; Cheng, J.; Liu, Y.; Sheng, J. Relationship of Productivity to Species Richness in the Xinjiang Temperate Grassland. PLoS ONE 2016, 11, e0154026. [Google Scholar] [CrossRef]
- Dal Prà, A.; Davolio, R.; Immovilli, A.; Burato, A.; Ronga, D. Plant Composition and Feed Value of First Cut Permanent Meadows. Agronomy 2023, 13, 681. [Google Scholar] [CrossRef]
- Dal Prà, A.; Bozzi, R.; Parrini, S.; Immovilli, A.; Davolio, R.; Ruozzi, F.; Fabbri, M.C. Discriminant Analysis as a Tool to Classify Farm Hay in Dairy Farms. PLoS ONE 2023, 18, e0294468. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Sehrawat, R.; Kong, Y. Oat Proteins: A Perspective on Functional Properties. LWT 2021, 152, 112307. [Google Scholar] [CrossRef]
- Singh, M.; Kukal, M.S.; Irmak, S.; Jhala, A.J. Water Use Characteristics of Weeds: A Global Review, Best Practices, and Future Directions. Front. Plant Sci. 2022, 12, 794090. [Google Scholar] [CrossRef] [PubMed]
- Sturchio, M.A.; Kannenberg, S.A.; Knapp, A.K. Agrivoltaic Arrays Can Maintain Semi-Arid Grassland Productivity and Extend the Seasonality of Forage Quality. Appl. Energy 2024, 356, 122418. [Google Scholar] [CrossRef]
- Pontes Junior, V.B.; Alberto da Silva, A.; D’Antonino, L.; Mendes, K.F.; de Paula Medeiros, B.A. Methods of Control and Integrated Management of Weeds in Agriculture. In Applied Weed and Herbicide Science; Springer: Cham, Switzerland, 2022; pp. 127–156. [Google Scholar] [CrossRef]
- Tohiran, K.A.; Nobilly, F.; Zulkifli, R.; Yahya, M.S.; Norhisham, A.R.; Rasyidi, M.Z.; Azhar, B. Multi-Species Rotational Grazing of Small Ruminants Regenerates Undergrowth Vegetation While Controlling Weeds in the Oil Palm Silvopastoral System. Agric. Syst. 2023, 210, 103720. [Google Scholar] [CrossRef]
- Confessore, A.; Aquilani, C.; Nannucci, L.; Fabbri, M.C.; Accorsi, P.A.; Dibari, C.; Argenti, G.; Pugliese, C. Application of Virtual Fencing for the Management of Limousin Cows at Pasture. Livest. Sci. 2022, 263, 105037. [Google Scholar] [CrossRef]
- Verdon, M.; Hunt, I.; Rawnsley, R. The Effectiveness of a Virtual Fencing Technology to Allocate Pasture and Herd Cows to the Milking Shed. J. Dairy Sci. 2024, 107, 6161–6177. [Google Scholar] [CrossRef]
Land Use | |||||||
---|---|---|---|---|---|---|---|
Wheat | Tomato | Rice | Grassland | Grassland | Grassland | Grassland | |
Sampling Date | 10 May | 1 July | 17 July | 10 May | 5 June | 1 July | 6 August |
Species | |||||||
Avena sativa L. | 3.8 | - | - | 8.2 | 20.1 | 0.5 | - |
Cynodon dactylon L. | - | 3.8 | 2.1 | 2.2 | 3.5 | 6.7 | 4.7 |
Digitaria sanguinalis L. | - | - | 17.6 | - | - | - | - |
Echinochloa crus-galli (L.) P. Beauv. | 19.6 | - | - | 0.3 | 0.2 | - | - |
Hordeum murinum L. | - | - | - | 1.0 | 1.3 | - | - |
Lolium multiflorum Lam. | 22.8 | - | - | 1.9 | 0.5 | - | - |
Lolium perenne L. | - | - | - | 4.3 | 1.4 | - | - |
Setaria italica (L.) P. Beauv | 5.7 | - | 35.6 | 0.3 | - | - | - |
Sorghum halepense L. | 13.3 | 7.3 | 20.5 | 1.8 | 3.4 | 1.1 | 1.1 |
Poaceae | 65.2 | 11.2 | 75.8 | 20.1 | 30.3 | 8.2 | 5.7 |
Trifolium pratense L. | 4.4 | - | - | 0.2 | - | - | - |
Trifolium repens L. | - | - | 0.3 | 0.2 | - | - | - |
Fabaceae | 4.4 | - | 0.3 | 0.4 | - | - | - |
Abutilon theophrasti Medik. | 3.8 | - | - | - | - | - | - |
Chenopodium album L. | 5.1 | - | - | - | - | - | - |
Cichorium intybus L. | - | - | - | 0.5 | 0.1 | - | - |
Cirsium arvense (L.) Scop. | 13.3 | - | 1.1 | 0.4 | 1.9 | 1.8 | 0.6 |
Convolvulus arvensis L. | - | 5.4 | - | 2.9 | 5.9 | 1.6 | 1.6 |
Crepis biennis L. | - | - | 0.3 | - | - | - | - |
Erigeron canadensis L. | - | - | 0.8 | - | - | - | - |
Euphorbia serpens Kunth | - | - | 6.9 | - | - | - | - |
Fumaria officinalis L. | 1.9 | - | - | - | - | - | - |
Plantago lanceolata L. | - | - | - | 0.3 | - | - | - |
Portulaca oleracea L. | - | 83.5 | 10.9 | - | - | - | - |
Potentilla reptans L. | - | - | 3.5 | 4.0 | 6.8 | 2.6 | - |
Ranunculus bulbosus L. | - | - | 0.3 | - | - | - | - |
Rumex spp. | 0.6 | - | - | 0.3 | - | - | - |
Solanum nigrum L. | - | - | 0.3 | - | - | - | - |
Stellaria media (L.) Vill. | 5.1 | - | - | 2.9 | 0.2 | - | - |
Taraxacum officinale Weber | 0.6 | - | - | 0.5 | 0.2 | - | - |
Other species | 30.4 | 88.8 | 23.9 | 11.8 | 15.1 | 6.0 | 2.2 |
Total amount | 100 | 100 | 100 | 32.3 | 45.5 | 14.3 | 7.9 |
Item | Wheat | Tomato | Rice | Mean | Crop p-Value | Shading p-Value | |
---|---|---|---|---|---|---|---|
Biomass (Mg of DM ha−1) | Sun | 0.71 | 0.42 | 1.06 | 0.73 | 0.010 | n.s. |
Shadow | 0.47 | 0.12 | 1.39 | 0.66 | |||
Mean | 0.59 ab | 0.28 a | 1.23 b | 0.70 | |||
Plants per plot (number) | Sun | 7.33 | 50.67 | 60.30 | 39.43 | 0.001 | n.s. |
Shadow | 10.25 | 23.59 | 65.05 | 32.96 | |||
Mean | 8.78 a | 37.14 b | 62.67 c | 36.20 | |||
Poaceae (plants per plot) | Sun | 3.17 | 3.00 | 43.00 | 10.36 | - | n.s. |
Shadow | 7.00 | 5.00 | 49.75 | 15.15 | |||
Fabaceae (plants per plot) | Sun | - | - | 0.50 | 0.09 | - | n.s. |
Shadow | 0.58 | - | - | 0.35 | |||
Other species (plants per plot) | Sun | 3.67 | 49.67 | 16.00 | 18.45 | - | n.s. |
Shadow | 2.17 | 20.50 | 14.50 | 8.30 |
Item | Cut | Grassland 1 | Grassland 2 | Grassland 3 | Mean ± s.d. | Cut p-Value |
---|---|---|---|---|---|---|
Biomass (Mg of DM ha−1) | I | 0.94 | 0.84 | 0.64 | 0.81 ± 0.52 | n.s. |
II | 1.50 | 1.85 | 1.48 | 1.61 ± 0.69 | ||
III | 0.34 | 0.36 | 2.40 | 1.03 ± 0.87 | ||
IV | 0.49 | 0.38 | 0.53 | 0.47 ± 0.78 | ||
Pastoral Value | I | 36.25 | 46.25 | 37.14 | 39.88 b ± 5.53 | 0.001 |
II | 36.36 | 32.00 | 38.00 | 35.45 b ± 3.10 | ||
III | 20.00 | 25.00 | 20.00 | 21.66 a ± 2.87 | ||
IV | 20.00 | 20.00 | 20.00 | 20.00 a ± 0 | ||
Plants per plot (number) | I | 101.00 | 122.00 | 83.00 | 102 bc ± 19.52 | 0.010 |
II | 131.00 | 204.00 | 95.00 | 143.33 c ± 55.54 | ||
III | 44.00 | 33.00 | 58.00 | 45.00 ab ± 12.53 | ||
IV | 21.00 | 26.00 | 28.00 | 25.00 a ± 3.61 | ||
Poaceae (plants per plot) | I | 52.00 | 77.00 | 61 | 63.33 bc ± 12.66 | 0.010 |
II | 75.00 | 145.00 | 67 | 95.67 c ± 42.91 | ||
III | 15.00 | 28.00 | 35 | 26.00 ab ± 10.15 | ||
IV | 14.00 | 21.00 | 19 | 18.00 a ± 3.61 | ||
Fabaceae (plants per plot) | I | - | 4.00 | - | 1.33 ± 2.31 | n.s. |
II | - | - | - | - | ||
III | - | - | - | - | ||
IV | - | - | - | - | ||
Other species (plants per plot) | I | 49.00 | 41.00 | 22.00 | 37.33 b ± 13.37 | 0.022 |
II | 56.00 | 59.00 | 28.00 | 47.67 c ± 17.10 | ||
III | 29.00 | 5.00 | 23.00 | 19.00 ab ± 12.49 | ||
IV | 7.00 | 5.00 | 9.00 | 7.00 a ± 2.00 |
Item | Unit | Sampling Dates | p-Value | |||
---|---|---|---|---|---|---|
10 May | 5 June | 1 July | 6 August | |||
Biomass | t DM ha−1 | 0.81 | 1.61 | 1.03 | 0.47 | n.s. |
DM | % | 90.55 | 91.30 | 91.37 | 91.35 | n.s. |
Ash | % of DM | 11.00 | 9.32 | 10.63 | 10.61 | n.s. |
CP | % of DM | 14.83 | 8.79 | 13.09 | 13.08 | n.s. |
Fat | % | 2.90 | 2.70 | 3.08 | 3.06 | n.s. |
ADIP | % of DM | 1.14 | 1.54 | 1.74 | 1.72 | n.s. |
SolP | % of DM | 5.22 a | 2.74 b | 2.83 b | 2.81 b | <0.001 |
NDF | % of DM | 52.85 | 62.25 | 55.29 | 55.27 | n.s. |
ADF | % of DM | 33.06 | 42.98 a | 40.07 | 40.05 | n.s. |
ADL | % of DM | 3.91 b | 6.53 a | 6.69 a | 6.67 a | 0.009 |
dNDF | % of NDF | 54.75 a | 41.43 b | 41.24 b | 41.22 b | 0.025 |
uNDF | % of NDF | 7.26 b | 21.02 a | 22.66 a | 22.64 a | <0.001 |
Starch | % of DM | 2.94 | 3.72 | 2.40 | 2.38 | n.s. |
Sugar | % of DM | 9.82 a | 6.98 b | 4.89 c | 4.87 c | <0.001 |
Ca | % of DM | 0.82 | 0.65 | 1.04 | 1.02 | n.s. |
P | % of DM | 0.44 | 0.35 | 0.38 | 0.36 | n.s. |
Mg | % of DM | 0.21 | 0.10 | 0.21 | 0.19 | n.s. |
K | % of DM | 3.23 | 2.38 | 2.84 | 2.82 | n.s. |
NEL | kcal kg DM−1 | 1353.49 a | 1114.62 b | 1166.63 b | 1166.61 b | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dainelli, R.; Santoni, M.; Maienza, A.; Remelli, S.; Menta, C.; Zanotti, D.; Ghidesi, G.; Dal Prà, A. Weed and Grassland Community Structure, Biomass and Forage Value Across Crop Types and Light Conditions in an Organic Agrivoltaic System. Sustainability 2025, 17, 8119. https://doi.org/10.3390/su17188119
Dainelli R, Santoni M, Maienza A, Remelli S, Menta C, Zanotti D, Ghidesi G, Dal Prà A. Weed and Grassland Community Structure, Biomass and Forage Value Across Crop Types and Light Conditions in an Organic Agrivoltaic System. Sustainability. 2025; 17(18):8119. https://doi.org/10.3390/su17188119
Chicago/Turabian StyleDainelli, Riccardo, Margherita Santoni, Anita Maienza, Sara Remelli, Cristina Menta, Davide Zanotti, Giancarlo Ghidesi, and Aldo Dal Prà. 2025. "Weed and Grassland Community Structure, Biomass and Forage Value Across Crop Types and Light Conditions in an Organic Agrivoltaic System" Sustainability 17, no. 18: 8119. https://doi.org/10.3390/su17188119
APA StyleDainelli, R., Santoni, M., Maienza, A., Remelli, S., Menta, C., Zanotti, D., Ghidesi, G., & Dal Prà, A. (2025). Weed and Grassland Community Structure, Biomass and Forage Value Across Crop Types and Light Conditions in an Organic Agrivoltaic System. Sustainability, 17(18), 8119. https://doi.org/10.3390/su17188119