Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = organic thermoelectrics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2711 KiB  
Systematic Review
Electro-Composting: An Emerging Technology
by Ahmad Shabir Hozad and Christian Abendroth
Fermentation 2025, 11(7), 401; https://doi.org/10.3390/fermentation11070401 - 14 Jul 2025
Viewed by 438
Abstract
This study focuses on electrical stimulation for composting. Using the PSALSAR method, a comprehensive systematic review analysis identified 22 relevant articles. The examined studies fall into four main systems: electric field-assisted aerobic composting (EAAC), electrolytic oxygen aerobic composting (EOAC), microbial fuel cells (MFCs), [...] Read more.
This study focuses on electrical stimulation for composting. Using the PSALSAR method, a comprehensive systematic review analysis identified 22 relevant articles. The examined studies fall into four main systems: electric field-assisted aerobic composting (EAAC), electrolytic oxygen aerobic composting (EOAC), microbial fuel cells (MFCs), and thermoelectric generators (TEGs). Apart from the main systems highlighted above, bioelectrochemically assisted anaerobic composting (AnCBE, III) is discussed as an underexplored system with the potential to improve the efficiency of anaerobic degradation. Each system is described in terms of key materials, composter design, operating conditions, temperature evolution, compost maturity, microbial community, and environmental outcomes. EAAC and EOAC systems accelerate organic matter decomposition by improving oxygen distribution and microbial activity, whereas MFC and TEG systems have dual functioning due to the energy generated alongside waste degradation. These innovative systems not only significantly improve composting efficiency by speeding up organic matter breakdown and increasing oxygen supply but also support sustainable waste management by reducing greenhouse gas emissions and generating bioelectricity or heat. Together, these systems overcome the drawbacks of conventional composting systems and promote future environmental sustainability solutions. Full article
Show Figures

Figure 1

54 pages, 21776 KiB  
Review
Mechanical, Thermal, and Environmental Energy Harvesting Solutions in Fully Electric and Hybrid Vehicles: Innovative Approaches and Commercial Systems
by Giuseppe Rausa, Maurizio Calabrese, Ramiro Velazquez, Carolina Del-Valle-Soto, Roberto De Fazio and Paolo Visconti
Energies 2025, 18(8), 1970; https://doi.org/10.3390/en18081970 - 11 Apr 2025
Viewed by 1576
Abstract
Energy harvesting in the automotive sector is a rapidly growing field aimed at improving vehicle efficiency and sustainability by recovering wasted energy. Various technologies have been developed to convert mechanical, thermal, and environmental energy into electrical power, reducing dependency on traditional energy sources. [...] Read more.
Energy harvesting in the automotive sector is a rapidly growing field aimed at improving vehicle efficiency and sustainability by recovering wasted energy. Various technologies have been developed to convert mechanical, thermal, and environmental energy into electrical power, reducing dependency on traditional energy sources. This manuscript provides a comprehensive review of energy harvesting applications/methodologies, aiming to trace the research lines and future developments. This work identifies the main categories of harvesting solutions, namely mechanical, thermal, and hybrid/environmental solar–wind systems; each section includes a detailed review of the technical and scientific state of the art and a comparative analysis with detailed tables, allowing the state of the art to be mapped for identification of the strengths of each solution, as well as the challenges and future developments needed to enhance the technological level. These improvements focus on energy conversion efficiency, material innovation, vehicle integration, energy savings, and environmental sustainability. The mechanical harvesting section focuses on energy recovery from vehicle vibrations, with emphasis on regenerative suspensions and piezoelectric-based solutions. Specifically, solutions applied to suspensions with electric generators can achieve power outputs of around 1 kW, while piezoelectric-based suspension systems can generate up to tens of watts. The thermal harvesting section, instead, explores methods for converting waste heat from an internal combustion engine (ICE) into electrical power, including thermoelectric generators (TEGs) and organic Rankine cycle systems (ORC). Notably, ICEs with TEGs can recover above 1 kW of power, while ICE-based ORC systems can generate tens of watts. On the other hand, TEGs integrated into braking systems can harvest a few watts of power. Then, hybrid solutions are discussed, focusing on integrated mechanical and thermal energy recovery systems, as well as solar and wind energy harvesting. Hybrid solutions can achieve power outputs above 1 kW, with the main contribution from TEGs (≈1 kW), compared to piezoelectric systems (hundreds of W). Lastly, a section on commercial solutions highlights how current scientific research meets the automotive sector’s needs, providing significant insights for future development. For these reasons, the research results aim to be guidelines for a better understanding of where future studies should focus to improve the technological level and efficiency of energy harvesting solutions in the automotive sector. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting Systems)
Show Figures

Figure 1

13 pages, 5182 KiB  
Article
High Thermoelectric Performance of Flexible and Free-Standing Composite Films Enabled by 3D Inorganic Ag2Se Conductive Networks Filled with Organic PVDF
by Zishuo Xu, Yuejuan Hu, Yuchen Hu, Xianfeng Xiao and Qin Yao
Polymers 2025, 17(7), 972; https://doi.org/10.3390/polym17070972 - 3 Apr 2025
Viewed by 796
Abstract
Herein, a flexible and free-standing (substrate-free) PVDF/Ag2Se (Polyvinylidene fluoride) composite film was successfully fabricated through a combination of drop-casting and heat treatment. It was observed that when the drop-casted PVDF/Ag2Se composite film was heated above the melting point of [...] Read more.
Herein, a flexible and free-standing (substrate-free) PVDF/Ag2Se (Polyvinylidene fluoride) composite film was successfully fabricated through a combination of drop-casting and heat treatment. It was observed that when the drop-casted PVDF/Ag2Se composite film was heated above the melting point of PVDF, the small and separated Ag2Se crystalline grains in the composite film grow and interconnect to form a three-dimensional (3D) conductive network to increase the carrier mobility, while the molten PVDF effectively fills the network voids to enhance the flexibility and mechanical strength. As a result, both the electrical conductivity and Seebeck coefficient of the composite films were significantly enhanced after heat treatment. The power factor of the PVDF/Ag2Se composite with a mass ratio of 1:4 at room temperature reached 488.8 μW m−1 K−2, among the best level of Ag2Se- or PVDF-based flexible and free-standing composite films. Bending tests demonstrated the superior flexibility of the hybrid film, with the electrical conductivity decreasing by only 10% after 1000 bending cycles. Additionally, a five-leg thermoelectric device achieved an impressive output power density of 1.75 W m−2 at a temperature difference (∆T) of 30 K. This study proposes an innovative strategy to enhance the thermoelectric performance and free-standing capability of organic-inorganic composite films, while achieving a competitive power factor and advancing the practical application of flexible thermoelectric devices. Full article
(This article belongs to the Special Issue Conductive Polymers for Electronic Devices, Displays and Sensors)
Show Figures

Figure 1

40 pages, 7221 KiB  
Review
Advancements in Integrated Thermoelectric Power Generation and Water Desalination Technologies: A Comprehensive Review
by Oranit Traisak, Pranjal Kumar, Sara Vahaji, Yihe Zhang and Abhijit Date
Energies 2025, 18(6), 1454; https://doi.org/10.3390/en18061454 - 16 Mar 2025
Cited by 2 | Viewed by 1385
Abstract
This paper reviews recent advancements in integrated thermoelectric power generation and water desalination technologies, driven by the increasing global demand for electricity and freshwater. The growing population and reliance on fossil fuels for electricity generation pose challenges related to environmental pollution and resource [...] Read more.
This paper reviews recent advancements in integrated thermoelectric power generation and water desalination technologies, driven by the increasing global demand for electricity and freshwater. The growing population and reliance on fossil fuels for electricity generation pose challenges related to environmental pollution and resource depletion, necessitating the exploration of alternative energy sources and desalination techniques. While thermoelectric generators are capable of converting low-temperature thermal energy into electricity and desalination processes that can utilize low-temperature thermal energy, their effective integration remains largely unexplored. Currently available hybrid power and water systems, such as those combining conventional heat engine cycles (e.g., the Rankine and Kalina cycles) with reverse osmosis, multi-effect distillation, and humidification–dehumidification, are limited in effectively utilizing low-grade thermal energy for simultaneous power generation and desalination, while solid-state heat-to-work conversion technology, such as thermoelectric generators, have low heat-to-work conversion efficiency. This paper identifies a key research gap in the limited effective integration of thermoelectric generators and desalination, despite their complementary characteristics. The study highlights the potential of hybrid systems, which leverage low-grade thermal energy for simultaneous power generation and desalination. The review also explores emerging material innovations in high figure of merit thermoelectric materials and advanced MD membranes, which could significantly enhance system performance. Furthermore, hybrid power–desalination systems incorporating thermoelectric generators with concentrated photovoltaic cells, solar thermal collectors, geothermal energy, and organic Rankine cycles (ORCs) are examined to highlight their potential for sustainable energy and water production. The findings underscore the importance of optimizing material properties, system configurations, and operating conditions to maximize efficiency and output while reducing economic and environmental costs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

11 pages, 2330 KiB  
Article
Dual Roles of PTSA in Electrical Conductivity of PEDOT:PTSA with Large Seebeck Coefficient
by Hideki Arimatsu, Yuki Osada, Ryo Takagi, Yosuke Ohira, Tomoki Hijikata and Takuya Fujima
Materials 2025, 18(3), 619; https://doi.org/10.3390/ma18030619 - 29 Jan 2025
Viewed by 1228
Abstract
The electrical conduction mechanism of PEDOT:PTSA thermoelectric conversion material supported on PET fiber was investigated with varying PTSA concentrations. Raman analysis revealed that an increasing PTSA concentration promoted transformation from a benzoid to a quinoid structure in PEDOT chains, reaching saturation in higher [...] Read more.
The electrical conduction mechanism of PEDOT:PTSA thermoelectric conversion material supported on PET fiber was investigated with varying PTSA concentrations. Raman analysis revealed that an increasing PTSA concentration promoted transformation from a benzoid to a quinoid structure in PEDOT chains, reaching saturation in higher concentrations. All samples exhibited p-type behavior, with Seebeck coefficients ranging from 0.9 to 2.7 mV/K. The temperature dependence of electrical conductivity showed that conductivity and activation energy exhibited extreme values with increasing PTSA concentration, correlating with the saturation of quinoid structure transformation. This behavior suggests that PTSA serves dual roles: at lower concentrations, it enhances electrical conductivity through chemical doping, increasing carrier concentration and mobility via quinoid structure formation; at higher concentrations, excess PTSA induces carrier scattering without contributing to chemical doping, thereby reducing conductivity. These findings indicate that the thermoelectric properties of PEDOT:PTSA on PET fiber are governed by the balance between chemical doping effects and carrier scattering mechanisms, which are both influenced by PTSA concentration. Full article
Show Figures

Graphical abstract

11 pages, 2759 KiB  
Communication
Dispersion-Stable Carboxymethyl Cellulose/Single-Walled Carbon Nanotube Composite for Water-Processed Organic Thermoelectrics
by Jaehee Jang, Hyejeong Yeom, Sujong Chae and Seyoung Kee
Materials 2025, 18(2), 337; https://doi.org/10.3390/ma18020337 - 13 Jan 2025
Cited by 1 | Viewed by 1040
Abstract
Carbon nanotubes (CNTs) have drawn great attention as promising candidates for realizing next-generation printed thermoelectrics (TEs). However, the dispersion instability and resulting poor printability of CNTs have been major issues for their practical processing and device applications. In this work, we investigated the [...] Read more.
Carbon nanotubes (CNTs) have drawn great attention as promising candidates for realizing next-generation printed thermoelectrics (TEs). However, the dispersion instability and resulting poor printability of CNTs have been major issues for their practical processing and device applications. In this work, we investigated the TE characteristics of water-processable carboxymethyl cellulose (CMC) and single-walled CNT (SWCNT) composite. The microscopic analyses indicated that the CMC-incorporated SWCNT dispersions produced uniform and smooth TE films, capable of ensuring reliable TE performance. The resulting composite films provided a low temperature power factor of 73 μW m−1 K−2 with a high electrical conductivity of ≈1600 S cm−1 and a Seebeck coefficient of ≈21 µV K−1. Moreover, the composite films possessed low thermal conductivity of ≈25 W m−1 K−1, significantly lower than that of pure SWCNTs, with a maximum figure of merit of 1.54 × 10−3 at 353.15 K. Finally, we successfully demonstrated water-processed organic TEGs using CMC/SWCNT films as a p-type component. This work could offer valuable insights to support the development of printable organic-based TE materials and devices. Full article
Show Figures

Graphical abstract

14 pages, 2267 KiB  
Article
Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion
by Jie Ji, Yizhe Liu, Xiaoxiang Li, Yangzhe Xu, Ting Hu, Zhengzheng Li, Peng Tao and Tao Deng
Nanomaterials 2024, 14(24), 2047; https://doi.org/10.3390/nano14242047 - 21 Dec 2024
Viewed by 1054
Abstract
Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, [...] Read more.
Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement. Herein, this work reports the employment of hybrid expanded graphite (EG) and carbon nanotubes (CNTs) to simultaneously realize leakage-proofness, high solar absorptance, high thermal conductivity, and large latent heat storage capacity. The PCM composites were prepared by directly mixing commercial high-temperature paraffin (HPA) powders, EG, and CNTs, followed by subsequent mechanical compression molding. The HPA-EG composites loaded with 20 wt% of EG could effectively suppress melting-induced leakage. After further compounding with 1 wt% of CNTs, the form-stable HPA-EG20-CNT1 composites achieved an axial and in-plane thermal conductivity of 4.15 W/m K and 18.22 W/m K, and a melting enthalpy of 165.4 J/g, respectively. Through increasing the loading of CNTs to 10 wt% in the top thin layer, we further prepared double-layer HPA-EG-CNT composites, which have a high surface solar absorptance of 92.9% for the direct conversion of concentrated solar illumination into storable latent heat. The charged composites could be combined with a thermoelectric generator to release the stored latent heat and generate electricity, which could power up small electric devices such as light-emitting diodes. This work demonstrates the potential for employing hybrid fillers to optimize the thermophysical properties and solar thermal harvesting performances of organic PCMs. Full article
(This article belongs to the Special Issue Nano-Based Advanced Thermoelectric Design)
Show Figures

Figure 1

29 pages, 1487 KiB  
Review
Waste Heat Utilization in Marine Energy Systems for Enhanced Efficiency
by Tymoteusz Miller, Irmina Durlik, Ewelina Kostecka, Polina Kozlovska, Andrzej Jakubowski and Adrianna Łobodzińska
Energies 2024, 17(22), 5653; https://doi.org/10.3390/en17225653 - 12 Nov 2024
Cited by 5 | Viewed by 2856
Abstract
The maritime industry, central to global trade, faces critical challenges related to energy efficiency and environmental sustainability due to significant energy loss from waste heat in marine engines. This review investigates the potential of waste heat recovery (WHR) technologies to enhance operational efficiency [...] Read more.
The maritime industry, central to global trade, faces critical challenges related to energy efficiency and environmental sustainability due to significant energy loss from waste heat in marine engines. This review investigates the potential of waste heat recovery (WHR) technologies to enhance operational efficiency and reduce emissions in marine systems. By analyzing major WHR methods, such as heat exchangers, Organic Rankine Cycle (ORC) systems, thermoelectric generators, and combined heat and power (CHP) systems, this work highlights the specific advantages, limitations, and practical considerations of each approach. Unique to this review is an examination of WHR performance in confined marine spaces and compatibility with existing ship components, providing essential insights for practical implementation. Findings emphasize WHR as a viable strategy to reduce fuel consumption and meet environmental regulations, contributing to a more sustainable maritime industry. Full article
Show Figures

Figure 1

13 pages, 4110 KiB  
Article
The Influence of Molecular Weights on Dispersion and Thermoelectric Performance of Alkoxy Side-Chain Polythiophene/Carbon Nanotube Composite Materials
by Xiaogang Chen, Shihong Chen, Dagang Wang, Yongfu Qiu, Zhongming Chen, Haixin Yang, Qing Yang, Zijian Yin and Chengjun Pan
Polymers 2024, 16(17), 2444; https://doi.org/10.3390/polym16172444 - 29 Aug 2024
Cited by 1 | Viewed by 1279
Abstract
In the development of wearable electronic devices, the composite modification of conductive polymers and single-walled carbon nanotubes (SWCNTs) has become a burgeoning research area. This study presents the synthesis of a novel polythiophene derivative, poly(3-alkoxythiophene) (P3(TEG)T), with alkoxy side chains. Different molecular weight [...] Read more.
In the development of wearable electronic devices, the composite modification of conductive polymers and single-walled carbon nanotubes (SWCNTs) has become a burgeoning research area. This study presents the synthesis of a novel polythiophene derivative, poly(3-alkoxythiophene) (P3(TEG)T), with alkoxy side chains. Different molecular weight variants of P3(TEG)T (P1–P4) were prepared and combined with SWCNTs to form composite materials. Density functional theory (DFT) calculations revealed a reduced bandgap for P3(TEG)T. Raman spectroscopy demonstrated π-π interactions between P3(TEG)T and SWCNTs, facilitating the dispersion of single-walled carbon nanotubes and the formation of a continuous conductive network. Among the composite films, P4/SWCNTs-0.9 exhibited the highest thermoelectric performance, with a power factor (PF) value of 449.50 μW m−1 K−2. The fabricated flexible thermoelectric device achieved an output power of 3976.92 nW at 50 K, with a tensile strength of 59.34 MPa for P4/SWCNTs. Our findings highlight the strong interfacial interactions between P3(TEG)T and SWCNTs in the composite material, providing an effective charge transfer pathway. Furthermore, an improvement in the tensile performance was observed with an increase in the molecular weight of the polymer used in the composite, offering a viable platform for the development of high-performance flexible organic thermoelectric materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

40 pages, 11424 KiB  
Review
Modeling, Design, and Optimization of Loop Heat Pipes
by Yihang Zhao, Mingshan Wei and Dan Dan
Energies 2024, 17(16), 3971; https://doi.org/10.3390/en17163971 - 10 Aug 2024
Cited by 1 | Viewed by 3703
Abstract
Thermal management technology based on loop heat pipes (LHPs) has broad application prospects in heat transfer control for aerospace and new energy vehicles. LHPs offer excellent heat transfer performance, reliability, and flexibility, making them suitable for high-heat flux density, high-power heat dissipation, and [...] Read more.
Thermal management technology based on loop heat pipes (LHPs) has broad application prospects in heat transfer control for aerospace and new energy vehicles. LHPs offer excellent heat transfer performance, reliability, and flexibility, making them suitable for high-heat flux density, high-power heat dissipation, and complex thermal management scenarios. However, due to limitations in heat source temperature and heat transfer power range, LHP-based thermal management systems still face challenges, especially in thermohydraulic modeling, component design, and optimization. Steady-state models improve computational efficiency and accuracy, while transient models capture dynamic behavior under various conditions, aiding performance evaluation during start-up and non-steady-state scenarios. Designs for single/multi-evaporators, compensation chambers, and wick materials are also reviewed. Single-evaporator designs offer compact and efficient start-up, while multi-evaporator designs handle complex thermal environments with multiple heat sources. Innovations in wick materials, such as porous metals, composites, and 3D printing, enhance capillary driving force and heat transfer performance. A comprehensive summary of working fluid selection criteria is conducted, and the effects of selecting organic, inorganic, and nanofluid working fluids on the performance of LHPs are evaluated. The selection process should consider thermodynamic properties, safety, and environmental friendliness to ensure optimal performance. Additionally, the mechanism and optimization methods of the start-up behavior, temperature oscillation, and non-condensable gas on the operating characteristics of LHPs were summarized. Optimizing vapor/liquid distribution, heat load, and sink temperature enhances start-up efficiency and minimizes temperature overshoot. Improved capillary structures and working fluids reduce temperature oscillations. Addressing non-condensable gases with materials like titanium and thermoelectric coolers ensures long-term stability and reliability. This review comprehensively discusses the development trends and prospects of LHP technology, aiming to guide the design and optimization of LHP. Full article
Show Figures

Figure 1

36 pages, 23046 KiB  
Review
Organic Thermoelectric Materials for Wearable Electronic Devices
by Runfeng Xiao, Xiaoyan Zhou, Chan Zhang, Xi Liu, Shaobo Han and Canyan Che
Sensors 2024, 24(14), 4600; https://doi.org/10.3390/s24144600 - 16 Jul 2024
Cited by 9 | Viewed by 4671
Abstract
Wearable electronic devices have emerged as a pivotal technology in healthcare and artificial intelligence robots. Among the materials that are employed in wearable electronic devices, organic thermoelectric materials possess great application potential due to their advantages such as flexibility, easy processing ability, no [...] Read more.
Wearable electronic devices have emerged as a pivotal technology in healthcare and artificial intelligence robots. Among the materials that are employed in wearable electronic devices, organic thermoelectric materials possess great application potential due to their advantages such as flexibility, easy processing ability, no working noise, being self-powered, applicable in a wide range of scenarios, etc. However, compared with classic conductive materials and inorganic thermoelectric materials, the research on organic thermoelectric materials is still insufficient. In order to improve our understanding of the potential of organic thermoelectric materials in wearable electronic devices, this paper reviews the types of organic thermoelectric materials and composites, their assembly strategies, and their potential applications in wearable electronic devices. This review aims to guide new researchers and offer strategic insights into wearable electronic device development. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

15 pages, 2468 KiB  
Article
Raising the Drying Unit for Fruits and Vegetables Energy Efficiency by Application of Thermoelectric Heat Pump
by Dmitry Tikhomirov, Aleksei Khimenko, Aleksey Kuzmichev, Dmitry Budnikov and Vadim Bolshev
Agriculture 2024, 14(6), 922; https://doi.org/10.3390/agriculture14060922 - 11 Jun 2024
Cited by 1 | Viewed by 1883
Abstract
Drying food stuffs and other materials belongs to one of the most commonly used feedstock processing techniques, featuring rather high energy consumption. The major disadvantage of conventional electric convective-type household dryers is substantial thermal energy emission into the environment with a wet exhaust, [...] Read more.
Drying food stuffs and other materials belongs to one of the most commonly used feedstock processing techniques, featuring rather high energy consumption. The major disadvantage of conventional electric convective-type household dryers is substantial thermal energy emission into the environment with a wet exhaust, worked-out drying agent. Among other principal disadvantages common to all dryers of this type, the following have to be mentioned: spatial inhomogeneity of heating a product under processing and that of drying agent distribution due to its temperature reduction and relative humidity growth as it moves upwards. A block diagram and a breadboard model of a convective-type thermoelectric dryer employing a thermoelectric heat pump have been designed. In our approach, a product is treated with the help of a drying agent (normally, heated air) with partial exhaust-air recirculation and heat recovery. Laboratory studies of the drying process have been carried out using apple fruits as a test material in order to evaluate the power consumed for evaporation of 1 kg of water in the newly developed convective-type thermoelectric drying unit. Physical parameters of apple fruits before and after drying both in the thermoelectric drying unit and in a conventional series-produced convective-type domestic dryer have been reported. The energy efficiency of the newly designed drying unit has been compared with that of some series-produced samples. It has been found out that, unlike conventional convective-type dryers, the breadboard model of the developed thermoelectric drying unit features a smoother product drying process owing to the presence of side air channels and more effective drying agent path organization in the processing chamber. This conclusion was supported by the results of the carried out tests. Application of thermoelectric heat pumps with the function of the exhaust drying agent heat recovery will make it possible to reduce the drying agent heater installed capacity and the power consumed by the newly designed convective-type thermoelectric drying unit by up to 20% in the course of the drying process, compared to series-produced household convective-type dryers. Full article
(This article belongs to the Special Issue New Energy-Powered Agricultural Machinery and Equipment)
Show Figures

Figure 1

22 pages, 7006 KiB  
Article
4E Study and Best Performance Analysis of a Hydrogen Multi-Generation Layout by Waste Energy Recovery of Combined SOFC-GT-ORC
by Mohammad Zoghi, Nasser Hosseinzadeh, Saleh Gharaie and Ali Zare
Energies 2024, 17(11), 2791; https://doi.org/10.3390/en17112791 - 6 Jun 2024
Cited by 1 | Viewed by 1608
Abstract
Different approaches have been suggested for the waste heat recovery of high-temperature exhausted gas of a solid oxide fuel cell (SOFC). In such systems, mostly gas turbine (GT) and organic Rankine cycle (ORC) are added as bottoming systems to the SOFC (Configuration 1). [...] Read more.
Different approaches have been suggested for the waste heat recovery of high-temperature exhausted gas of a solid oxide fuel cell (SOFC). In such systems, mostly gas turbine (GT) and organic Rankine cycle (ORC) are added as bottoming systems to the SOFC (Configuration 1). However, the SOFC-GT-ORC has a considerable amount of waste energy which can be recovered. In the present research, the waste energy of ORC in the heat rejection stage and the residual exhausted gas of the system were recovered by a thermoelectric generator (TEG) and a hot water unit, respectively. Then, the extra produced power in the TEG was directed to a proton exchange membrane electrolyzer and a reverse osmosis desalination unit (RODU) for hydrogen and potable water outputs. The performance of SOFC-GT, Configuration 1, and Configuration 2 was compared through a 4E (energy, exergy, exergy-economic, and environmental) analysis. In the best performance point, the exergy efficiency and unit cost of product (UCOP) of SOFC-GT were obtained as 69.41% and USD 26.53/GJ. The exergy efficiency increased by 2.56% and 2.86%, and the UCOP rose by 0.45% and 12.25% in Configurations 1 and 2. So, the overall performance of Configuration 1 was acceptable and Configuration 2 led to the highest exergy efficiency, while its economic performance was not competitive because of the high investment cost of RODU. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

14 pages, 1012 KiB  
Article
Unveiling the Doping- and Temperature-Dependent Properties of Organic Semiconductor Orthorhombic Rubrene from First Principles
by Israel Oluwatobi Olowookere, Paul Olufunso Adebambo, Ridwan Olamide Agbaoye, Abdulrafiu Tunde Raji, Mopelola Abidemi Idowu, Stephane Kenmoe and Gboyega Augustine Adebayo
Solids 2024, 5(2), 278-291; https://doi.org/10.3390/solids5020018 - 29 May 2024
Viewed by 1624
Abstract
Due to its large hole mobility, organic rubrene (C42H28) has attracted research questions regarding its applications in electronic devices. In this work, extensive first-principles calculations are performed to predict some temperature- and doping-dependent properties of organic semiconductor rubrene. We [...] Read more.
Due to its large hole mobility, organic rubrene (C42H28) has attracted research questions regarding its applications in electronic devices. In this work, extensive first-principles calculations are performed to predict some temperature- and doping-dependent properties of organic semiconductor rubrene. We use density functional theory (DFT) to investigate the electronic structure, elastic and transport properties of the orthorhombic phase of the rubrene compound. The calculated band structure shows that the orthorhombic phase has a direct bandgap of 1.26 eV. From the Vickers hardness (1.080 GPa), our calculations show that orthorhombic rubrene is not a super hard material and can find useful application as a flexible semiconductor. The calculated transport inverse effective mass and electronic fitness function show that the orthorhombic rubrene crystal structure is a p-type thermoelectric material at high temperatures. Full article
Show Figures

Figure 1

15 pages, 3513 KiB  
Article
Multi-Objective Optimization of an Organic Rankine Cycle (ORC) for a Hybrid Solar–Waste Energy Plant
by Lina Wang, Jun Yang, Bing Qu and Chang Pang
Energies 2024, 17(8), 1810; https://doi.org/10.3390/en17081810 - 10 Apr 2024
Cited by 8 | Viewed by 1672
Abstract
In pursuit of sustainable development and mitigation of the intermittency challenge associated with solar energy, this study proposes a hybrid solar system integrating waste heat incineration alongside solar power generation and distinct heat provision. Leveraging the superior energy efficiency of the organic Rankine [...] Read more.
In pursuit of sustainable development and mitigation of the intermittency challenge associated with solar energy, this study proposes a hybrid solar system integrating waste heat incineration alongside solar power generation and distinct heat provision. Leveraging the superior energy efficiency of the organic Rankine cycle (ORC) in medium- and low-temperature scenarios, a parabolic trough collector (PTC) is selected for its cost-effectiveness and long-term operational reliability. Dowtherm A and toluene are identified as the optimal working fluids for the PTC and ORC, respectively. To optimize this complex system, a combination of artificial neural networks (ANNs) and multi-objective optimization via non-dominated sorting genetic algorithm II (NSGA-II) is employed, streamlining the optimization process. Thermal dynamic simulations are executed using Engineering Equation Solver (EES, V11) to validate the proposed system’s performance. TOPSIS is employed to identify the optimal solution from the Pareto frontier. The results indicate that the hourly cost of the system stands at USD 43.08, with an exergy efficiency of 22.98%. The economic analysis reveals that the solar collector constitutes the most significant portion of the total initial cost, representing 53.2%, followed by the turbine, thermoelectric generator (TEG), and waste heat incineration, in descending order of costliness. Full article
(This article belongs to the Special Issue Modeling Analysis and Optimization of Energy System)
Show Figures

Figure 1

Back to TopTop