Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = optomechanical interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2557 KiB  
Article
Multiline Laser Interferometry for Non-Contact Dynamic Morphing of Hierarchical Surfaces
by Biagio Audia, Caterina Maria Tone, Pasquale Pagliusi, Alfredo Mazzulla, George Papavieros, Vassilios Constantoudis and Gabriella Cipparrone
Biomimetics 2025, 10(8), 486; https://doi.org/10.3390/biomimetics10080486 - 23 Jul 2025
Viewed by 364
Abstract
Hierarchical surface structuring is a critical aspect of advanced materials design, impacting fields ranging from optics to biomimetics. Among several laser-based methods for complex structuring of photo-responsive surfaces, the broadband vectorial interferometry proposed here offers unique performances. Such a method leverages a polychromatic [...] Read more.
Hierarchical surface structuring is a critical aspect of advanced materials design, impacting fields ranging from optics to biomimetics. Among several laser-based methods for complex structuring of photo-responsive surfaces, the broadband vectorial interferometry proposed here offers unique performances. Such a method leverages a polychromatic laser source, an unconventional choice for holographic encoding, to achieve deterministic multiscale surface structuring through interference light patterning. Azopolymer films are used as photosensitive substrates. By exploring the interaction between optomechanical stress modulations at different spatial periodicities induced within the polymer bulk, we demonstrate the emergence of hierarchical Fourier surfaces composed of multiple deterministic levels. These structures range from sub-micrometer to tens of micrometers scale, exhibiting a high degree of control over their morphology. The experimental findings reveal that the optical encoding scheme significantly influences the resulting topographies. The polarization light patterns lead to more regular and symmetric hierarchical structures compared to those obtained with intensity patterns, underscoring the role of vectorial light properties in controlling surface morphologies. The proposed method is fully scalable, compatible with more complex recording schemes (including multi-beam interference), and it is applicable to a wide range of advanced technological fields. These include optics and photonics (diffractive elements, polarimetric devices), biomimetic surfaces, topographical design, information encoding, and anti-counterfeiting, offering a rapid, reliable, and versatile strategy for high-precision surface structuring at a submicrometric scale. Full article
Show Figures

Figure 1

19 pages, 431 KiB  
Article
The Detection of a Defect in a Dual-Coupling Optomechanical System
by Zhen Li and Ya-Feng Jiao
Symmetry 2025, 17(7), 1166; https://doi.org/10.3390/sym17071166 - 21 Jul 2025
Viewed by 238
Abstract
We provide an approach to detect a nitrogen-vacancy (NV) center, which might be a defect in a diamond nanomembrane, using a dual-coupling optomechanical system. The NV center modifies the energy-level structure of a dual-coupling optomechanical system through dressed states arising from its interaction [...] Read more.
We provide an approach to detect a nitrogen-vacancy (NV) center, which might be a defect in a diamond nanomembrane, using a dual-coupling optomechanical system. The NV center modifies the energy-level structure of a dual-coupling optomechanical system through dressed states arising from its interaction with the mechanical membrane. Thus, we study the photon blockade in the cavity of a dual-coupling optomechanical system in which an NV center is embedded in a single-crystal diamond nanomembrane. The NV center significantly influences the statistical properties of the cavity field. We systematically investigate how three key NV center parameters affect photon blockade: (i) its coupling strength to the mechanical membrane, (ii) transition frequency, and (iii) decay rate. We find that the NV center can shift, give rise to a new dip, and even suppress the original dip in a bare quadratic optomechanical system. In addition, we can amplify the effect of the NV center on photon statistics by adding a gravitational potential when the NV center has little effect on photon blockade. Therefore, our study provides a method to detect diamond nanomembrane defects in a dual-coupling optomechanical system. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

21 pages, 5274 KiB  
Article
Drive-Loss Engineering and Quantum Discord Probing of Synchronized Optomechanical Squeezing
by Hugo Molinares and Vitalie Eremeev
Mathematics 2025, 13(13), 2171; https://doi.org/10.3390/math13132171 - 3 Jul 2025
Viewed by 243
Abstract
In an optomechanical system (OMS), the dynamics of quantum correlations, e.g., quantum discord, can witness synchronized squeezing between the cavity and mechanical modes. We investigate an OMS driven by two coherent fields, and demonstrate that optimal quantum correlations and squeezing synchronization can be [...] Read more.
In an optomechanical system (OMS), the dynamics of quantum correlations, e.g., quantum discord, can witness synchronized squeezing between the cavity and mechanical modes. We investigate an OMS driven by two coherent fields, and demonstrate that optimal quantum correlations and squeezing synchronization can be achieved by carefully tuning key parameters: the cavity-laser detunings, loss rates, and the effective coupling ratio between the optomechanical interaction and the amplitude drive. By employing the steady-state solution of the covariance matrix within the Lyapunov framework, we identify the conditions under which squeezing becomes stabilized. Furthermore, we demonstrate that synchronized squeezing of the cavity and mechanical modes can be effectively controlled by tuning the loss ratio between the cavity and mechanical subsystems. Alternatively, in the case where the cavity is driven by a single field, we demonstrate that synchronized squeezing in the conjugate quadratures of the cavity and mechanical modes can still be achieved, provided that the cavity is coupled to a squeezed reservoir. The presence of this engineered reservoir compensates the absent driving field, by injecting directional quantum noise, thereby enabling the emergence of steady-state squeezing correlations between the two modes. A critical aspect of our study reveals how the interplay between dissipative and driven-dispersive squeezing mechanisms governs the system’s bandwidth and robustness against decoherence. Our findings provide a versatile framework for manipulating quantum correlations and squeezing in OMS, with applications in quantum metrology, sensing, and the engineering of nonclassical states. This work advances the understanding of squeezing synchronization and offers new strategies for enhancing quantum-coherent phenomena in dissipative environments. Full article
Show Figures

Figure 1

15 pages, 2117 KiB  
Article
Enhancement of Photon Blockade Under the Joint Effect of Optical Parametric Amplification and Mechanical Squeezing
by Yue Hao, Jia-Le Tong, Suying Bai, Shao-Xiong Wu and Cheng-Hua Bai
Photonics 2025, 12(7), 628; https://doi.org/10.3390/photonics12070628 - 20 Jun 2025
Viewed by 327
Abstract
The photon blockade effect, as a quantum behavior in cavity optomechanics, has certain limitations, including stringent requirements for system parameters and technical difficulties in achieving strong nonlinear interactions. This paper proposes a novel scheme that aims to achieve strong nonlinear effects through introducing [...] Read more.
The photon blockade effect, as a quantum behavior in cavity optomechanics, has certain limitations, including stringent requirements for system parameters and technical difficulties in achieving strong nonlinear interactions. This paper proposes a novel scheme that aims to achieve strong nonlinear effects through introducing the degenerate optical parametric amplifier (OPA) and mechanical squeezing. These enhanced nonlinear effects can significantly improve the photon blockade effect, effectively overcoming the limitations of weak coupling. Our theoretical analysis demonstrates the successful realization of an ideal single-photon blockade (1PB) state through optimized parameter conditions. Additionally, this joint approach significantly enhances the two-photon blockade (2PB) effect and broadens the region where 2PB occurs. This finding helps us identify the optimal system parameters to maximize two-photon emission efficiency. By precisely controlling these parameters, a new pathway is opened for more flexible manipulation and utilization of the photon blockade effect in experiments. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

9 pages, 3584 KiB  
Article
Parameter Study of 500 nm Thick Slot-Type Photonic Crystal Cavities for Cavity Optomechanical Sensing
by Zhe Li, Jun Liu, Yi Zhang, Chenguwei Xian, Yifan Wang, Kai Chen, Gen Qiu, Guangwei Deng, Yongjun Huang and Boyu Fan
Photonics 2025, 12(6), 584; https://doi.org/10.3390/photonics12060584 - 8 Jun 2025
Viewed by 2785
Abstract
In recent years, research on light-matter interactions in silicon-based micro/nano cavity optomechanical systems demonstrates high-resolution sensing capabilities (e.g., sub-fm-level displacement sensitivity). Conventional 2D photonic crystal (PhC) cavity optomechanical sensors face inherent limitations: thin silicon layers (200–300 nm) restrict both the mass block (critical [...] Read more.
In recent years, research on light-matter interactions in silicon-based micro/nano cavity optomechanical systems demonstrates high-resolution sensing capabilities (e.g., sub-fm-level displacement sensitivity). Conventional 2D photonic crystal (PhC) cavity optomechanical sensors face inherent limitations: thin silicon layers (200–300 nm) restrict both the mass block (critical for thermal noise suppression) and optical Q-factor. Enlarging the detection mass in such thin layers exacerbates in-plane height nonuniformity, severely limiting high-precision sensing. This study proposes a 500 nm thick silicon-based 2D slot-type PhC cavity design for advanced sensing applications, fabricated on a silicon-on-insulator (SOI) substrate with optimized air slot structures. Systematic parameter optimization via finite element simulations defines structural parameters for the 1550 nm band, followed by 6 × 6 × 6 combinatorial experiments on lattice constant, air hole radius, and line-defect waveguide width. Experimental results demonstrate a loaded Q-factor of 57,000 at 510 nm lattice constant, 175 nm air hole radius, and 883 nm line-defect waveguide width (measured sidewall angle: 88.4°). The thickened silicon layer delivers dual advantages: enhanced mass block for thermal noise reduction and high Q-factor for optomechanical coupling efficiency, alongside improved ridge waveguide compatibility. This work advances the practical development of CMOS-compatible micro-opto-electromechanical systems (MOEMS). Full article
Show Figures

Figure 1

16 pages, 328 KiB  
Review
Dynamical Casimir Effect: 55 Years Later
by Viktor V. Dodonov
Physics 2025, 7(2), 10; https://doi.org/10.3390/physics7020010 - 29 Mar 2025
Viewed by 5564
Abstract
The paper represents a brief review of the publications in 2020 to 2024 related to the phenomena combined under the name of dynamical Casimir effect. Full article
19 pages, 9412 KiB  
Article
Research on Micro-Vibration Analysis of Segmented Telescope Based on Opto-Mechanical Integration
by Kangmin Wen, Lingjie Wang, Xuefeng Zeng, Yang Liu, Wenyan Li, Lianqiang Wang, Wei Sha and Di Zhou
Sensors 2025, 25(6), 1901; https://doi.org/10.3390/s25061901 - 19 Mar 2025
Viewed by 397
Abstract
Aiming at the inherent nature and complexity of the influence of in-orbit micro-vibration in the imaging quality of segmented telescopes, a dynamic full-link opto-mechanical integration analysis method is proposed. The method is based on the measured micro-vibration signals of the infrared refrigerator, using [...] Read more.
Aiming at the inherent nature and complexity of the influence of in-orbit micro-vibration in the imaging quality of segmented telescopes, a dynamic full-link opto-mechanical integration analysis method is proposed. The method is based on the measured micro-vibration signals of the infrared refrigerator, using the finite element method to perform the transient response analysis of the opto-mechanical system in Patran/Nastran software. The interface tool is written by Matlab to achieve the calculation of rigid body displacement and real-time data interaction with Zemax. The results show that when the working wavelength is 1 μm, the optical system has a wavefront error Root-Mean-Square value of less than 0.071λ in 4 s. Evaluating the effect of micro-vibration on the imaging quality of the system in terms of the peak ratio of the point spread function. When the exposure time was 2 s, the ratio maximum values of 0.4628 and 0.6207 were reached for the X-axis and Y-axis, respectively. The method provides an important reference basis for the evaluation of imaging quality of an optical system under micro-vibration environment with a long exposure time. Full article
(This article belongs to the Special Issue Sensors Technologies for Measurements and Signal Processing)
Show Figures

Figure 1

15 pages, 3589 KiB  
Article
Numerical Investigation of Localized Surface Plasmons in Gold Nano-Ridge Dimer-on-Mirror Structures
by Mohamed El Ghafiani, Adnane Noual, Madiha Amrani, Mohammed Moutaouekkil and El Houssaine El Boudouti
Photonics 2024, 11(9), 817; https://doi.org/10.3390/photonics11090817 - 30 Aug 2024
Viewed by 1525
Abstract
The study of localized surface plasmons (LSPs) in nanoscale structures is an essential step towards identifying optimal plasmonic modes that can facilitate robust optomechanical coupling and deepen our understanding of light–matter interactions at the nanoscale. This paper investigates, numerically, using the finite element [...] Read more.
The study of localized surface plasmons (LSPs) in nanoscale structures is an essential step towards identifying optimal plasmonic modes that can facilitate robust optomechanical coupling and deepen our understanding of light–matter interactions at the nanoscale. This paper investigates, numerically, using the finite element method, LSP modes in a design comprising two coupled nano-ridges deposited on a gold layer with an interposing polymer spacer layer. Such a structure, usually referred to as a particle-on-mirror structure, shows exquisite optical properties at the nanoscale. We first examine the LSP modes of a single nano-ridge through the analysis of its scattering cross-section in the visible and infrared ranges. To enhance the plasmonic response, a thin polymer layer is placed at the middle of the ridge, which introduces additional LSP modes confined within the former. Then, we extend the analysis to the dimer configuration, which exhibits more complex and enhanced plasmonic behavior compared to a single nano-ridge. In particular, the dimer configuration yields LSP resonances with a quality factor enhancement of approximately threefold relative to a single nano-ridge. Furthermore, the presence of the polymer layer within the ridges significantly improves plasmon field localization and the quality factor. These findings underscore the potential of nano-ridge-based structures in advancing optomechanical coupling and offering valuable insights for the development of high-performance acousto-plasmonic devices. In particular, the proposed device could help significantly improve the design of nano-acousto-optic modulators, operating in the visible or in the near-infrared ranges, that require an enhanced light–phonon coupling rate. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Nonlinear Photonics)
Show Figures

Figure 1

10 pages, 2342 KiB  
Article
Modulation of Second-Order Sideband Efficiency in an Atom-Assisted Optomechanical System
by Liang-Xuan Fan, Tao Shui, Ling Li and Wen-Xing Yang
Photonics 2024, 11(5), 416; https://doi.org/10.3390/photonics11050416 - 30 Apr 2024
Cited by 1 | Viewed by 1180
Abstract
We propose an efficient scheme to enhance the generation of optical second-order sidebands (OSSs) in an atom-assisted optomechanical system. The cavity field is coupled with a strong driving field and a weak probe field, and a control field is applied to the atom. [...] Read more.
We propose an efficient scheme to enhance the generation of optical second-order sidebands (OSSs) in an atom-assisted optomechanical system. The cavity field is coupled with a strong driving field and a weak probe field, and a control field is applied to the atom. We use the steady-state method to analyze the nonlinear interaction in the system, which is different from the traditional linear analysis method. The existence of an auxiliary three-level atom driven by the control field significantly enhances the generation of an OSS. It is found that the efficiency of the OSS can be effectively modulated by adjusting the Rabi frequency of the control field, optomechanical cooperativity and atomic coupling strength. Our scheme provides a promising solution for controlling light propagation and has potential application in quantum optical devices and quantum information networks. Full article
(This article belongs to the Special Issue Optics and Laser: Light Field Manipulation)
Show Figures

Figure 1

17 pages, 740 KiB  
Review
Weak Value Amplification of Photons in Optical Nonlinear Medium, Opto-Mechanical, and Spin-Mechanical Systems
by Sergio Carrasco and Miguel Orszag
Photonics 2024, 11(4), 291; https://doi.org/10.3390/photonics11040291 - 23 Mar 2024
Cited by 1 | Viewed by 1714
Abstract
A measurement of an observable A performed on a quantum system that is initially prepared in a state ρi, followed by a probabilistic procedure that leaves the system in a final state ρf, a process often referred as state [...] Read more.
A measurement of an observable A performed on a quantum system that is initially prepared in a state ρi, followed by a probabilistic procedure that leaves the system in a final state ρf, a process often referred as state postselection (or filtering process), can yield, on average, anomalous measurement results, i.e., values that may exceed the eigenvalue range of the observable being measured or be complex numbers. There is, therefore, an amplification effect of the average measurement result, i.e., the effect of the system on the measurement device is increased. When the coupling between the system and the measurement device satisfies some weakness conditions, the amplification effect occurs due to the weak value of the operator A. In this article, the amplification effect due to the postselection process is reviewed, and theoretical proposals and experiments published in the recent literature on the field are commented on. The emphasis is made on interactions occurring in optical nonlinear media and opto-mechanical and spin-mechanical systems, in which the amplification of number operators takes place. Full article
Show Figures

Figure 1

10 pages, 1056 KiB  
Article
Analysis of Interference Effect in Double Optomechanically Induced Transparency System
by Shengyan Liu, Zhengkai Han, Deen Li and Chaohua Tan
Photonics 2024, 11(4), 289; https://doi.org/10.3390/photonics11040289 - 22 Mar 2024
Cited by 3 | Viewed by 1479
Abstract
We propose a scheme to investigate the interference properties of a double optomechanically induced transparency system, which involves two charged nanomechanical resonators, coupled via Coulomb interaction. The results show that the opening of transparency windows is caused by a destructive interference effect only [...] Read more.
We propose a scheme to investigate the interference properties of a double optomechanically induced transparency system, which involves two charged nanomechanical resonators, coupled via Coulomb interaction. The results show that the opening of transparency windows is caused by a destructive interference effect only in the weak optical coupling region. For strong optical coupling, normal mode splitting dominates the transparency phenomenon. In the intermediate region, both destructive interference and normal mode splitting contribute to the transparency windows. When the Coulomb coupling is much weaker than the optical coupling, the Coulomb interaction strength linearly determines the distance between the two transparency windows, and has nearly no influence on the destructive interference effect. Otherwise, the system will work in a nonlinear region. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

13 pages, 2324 KiB  
Article
Phase-Controlled Tunable Unconventional Photon Blockade in a Single-Atom-Cavity System
by Hong Li, Ming Liu, Feng Yang, Siqi Zhang and Shengping Ruan
Micromachines 2023, 14(11), 2123; https://doi.org/10.3390/mi14112123 - 19 Nov 2023
Cited by 1 | Viewed by 1805
Abstract
In the past few years, cavity optomechanical systems have received extensive attention and research and have achieved rapid development both theoretically and experimentally. The systems play an important role in many fields, such as quantum information processing, optomechanical storage, high-precision measurement, macroscopic entanglement, [...] Read more.
In the past few years, cavity optomechanical systems have received extensive attention and research and have achieved rapid development both theoretically and experimentally. The systems play an important role in many fields, such as quantum information processing, optomechanical storage, high-precision measurement, macroscopic entanglement, ultrasensitive sensors and so on. Photon manipulation has always been one of the key tasks in quantum information science and technology. Photon blockade is an important way to realize single photon sources and plays an important role in the field of quantum information. Due to the nonlinear coupling of the optical force system, the energy level is not harmonic, resulting in a photon blockade effect. In this paper, we study the phase-controlled tunable unconventional photon blockade in a single-atom-cavity system, and the second-order nonlinear crystals are attached to the cavity. The cavity interacts with squeezed light, which results in a nonlinear process. The system is driven by a complex pulsed laser, and the strength of the coherent driving contains the phase. We want to study the effect of squeezed light and phase. We use the second-order correlation function to numerically and theoretically analyze the photon blockade effect. We show that quantum interference of two-photon excitation between three different transition pathways can cause a photon blockade effect. When there is no squeezed light, the interference pathways becomes two, but there are still photon blockade effects. We explore the influence of the tunable phase and second-order nonlinear strength on the photon blockade effect. We calculate the correlation function and compare the numerical results with the analytical results under certain parameters and find that the agreement is better. Full article
(This article belongs to the Special Issue Chip Scale Quantum Technologies)
Show Figures

Figure 1

12 pages, 1574 KiB  
Article
Generation of Stable Entanglement in an Optomechanical System with Dissipative Environment: Linear-and-Quadratic Couplings
by Mehran Rafeie and Mohammad Kazem Tavassoly
Symmetry 2023, 15(9), 1770; https://doi.org/10.3390/sym15091770 - 15 Sep 2023
Cited by 2 | Viewed by 1514
Abstract
In this paper, we present a theoretical scheme for the generation and manipulation of bipartite atom–atom entanglement in a dissipative optomechanical system containing two atoms in the presence of linear and nonlinear (quadratic) couplings. To achieve the goal of paper, we first obtain [...] Read more.
In this paper, we present a theoretical scheme for the generation and manipulation of bipartite atom–atom entanglement in a dissipative optomechanical system containing two atoms in the presence of linear and nonlinear (quadratic) couplings. To achieve the goal of paper, we first obtain the interaction Hamiltonian in the interaction picture, and then, by considering some resonance conditions and applying the rotating wave approximation, the effective Hamiltonian, which is independent of time, is derived. In the continuation, the system solution was obtained via solving the Lindblad master equation, which includes atomic, optical and mechanical dissipation effects. Finally, bipartite atom–atom entanglement is quantitatively discussed, by evaluating the negativity, which is a well-known measure of entanglement. Our numerical simulations show that a significant degree of entanglement can be reached via adjusting the system parameters. It is noticeable that the optical and mechanical decay rates play an important role in the quasi-stability and even stability of the obtained atom–atom entanglement. Full article
Show Figures

Figure 1

14 pages, 4647 KiB  
Article
Low Noise Opto-Electro-Mechanical Modulator for RF-to-Optical Transduction in Quantum Communications
by Michele Bonaldi, Antonio Borrielli, Giovanni Di Giuseppe, Nicola Malossi, Bruno Morana, Riccardo Natali, Paolo Piergentili, Pasqualina Maria Sarro, Enrico Serra and David Vitali
Entropy 2023, 25(7), 1087; https://doi.org/10.3390/e25071087 - 19 Jul 2023
Cited by 5 | Viewed by 2231
Abstract
In this work, we present an Opto-Electro-Mechanical Modulator (OEMM) for RF-to-optical transduction realized via an ultra-coherent nanomembrane resonator capacitively coupled to an rf injection circuit made of a microfabricated read-out able to improve the electro-optomechanical interaction. This device configuration can be embedded in [...] Read more.
In this work, we present an Opto-Electro-Mechanical Modulator (OEMM) for RF-to-optical transduction realized via an ultra-coherent nanomembrane resonator capacitively coupled to an rf injection circuit made of a microfabricated read-out able to improve the electro-optomechanical interaction. This device configuration can be embedded in a Fabry–Perot cavity for electromagnetic cooling of the LC circuit in a dilution refrigerator exploiting the opto-electro-mechanical interaction. To this aim, an optically measured steady-state frequency shift of 380 Hz was seen with a polarization voltage of 30 V and a Q-factor of the assembled device above 106 at room temperature. The rf-sputtered titanium nitride layer can be made superconductive to develop efficient quantum transducers. Full article
Show Figures

Figure 1

18 pages, 1359 KiB  
Article
Transfer of Quantum States and Stationary Quantum Correlations in a Hybrid Optomechanical Network
by Hugo Molinares, Bing He and Vitalie Eremeev
Mathematics 2023, 11(13), 2790; https://doi.org/10.3390/math11132790 - 21 Jun 2023
Cited by 2 | Viewed by 1992
Abstract
We present a systematic study on the effects of dynamical transfer and steady-state synchronization of quantum states in a hybrid optomechanical network consisting of two cavities, which carry atoms inside and interact via a common moving mirror such as the mechanical oscillator. It [...] Read more.
We present a systematic study on the effects of dynamical transfer and steady-state synchronization of quantum states in a hybrid optomechanical network consisting of two cavities, which carry atoms inside and interact via a common moving mirror such as the mechanical oscillator. It is found that a high fidelity transfer of Schrödinger’s cat and squeezed states between two cavities modes is possible. On the other hand, we demonstrate the synchronization effect of the cavity modes in a steady squeezed state with its high fidelity realized by the mechanical oscillator that intermediates the generation, transfer and stabilization of the squeezing. In this framework, we also study the generation and evolution of bipartite and tripartite entanglement and find its connection to the effects of quantum state transfer and synchronization. Particularly, when the transfer occurs at the maximal fidelity, any entanglement is almost zero, so the different cavity modes are disentangled. However, these modes become entangled when the two bosonic modes are synchronized in a stationary squeezed state. The results provided by the current study may find applications in quantum information technologies, in addition to the setups for metrology, where squeezed states are essential. Full article
(This article belongs to the Special Issue Advances in Quantum Optics and Quantum Information)
Show Figures

Figure 1

Back to TopTop