Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = optical saturation values variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3618 KiB  
Article
Quality Assessment of Dual-Polarization C-Band SAR Data Influenced by Precipitation Based on Normalized Polarimetric Radar Vegetation Index
by Jisung Geba Chang, Simon Kraatz, Yisok Oh, Feng Gao and Martha Anderson
Remote Sens. 2025, 17(14), 2343; https://doi.org/10.3390/rs17142343 - 8 Jul 2025
Viewed by 475
Abstract
Advanced Synthetic Aperture Radar (SAR) has become an essential modality in remote sensing, offering all-weather capabilities and sensitivity to vegetation biophysical parameters and surface conditions, while effectively complementing optical sensor data. This study evaluates the impact of precipitation on the Normalized Polarimetric Radar [...] Read more.
Advanced Synthetic Aperture Radar (SAR) has become an essential modality in remote sensing, offering all-weather capabilities and sensitivity to vegetation biophysical parameters and surface conditions, while effectively complementing optical sensor data. This study evaluates the impact of precipitation on the Normalized Polarimetric Radar Vegetation Index (NPRVI) using dual-polarization Sentinel-1 C-band SAR data from agricultural fields at the Beltsville Agricultural Research Center (BARC). Field-measured precipitation and Global Precipitation Measurement (GPM) precipitation datasets were temporally aligned with Sentinel-1 acquisition times to assess the sensitivity of radar signals to precipitation events. NPRVI exhibited a strong sensitivity to precipitation, particularly within the 1 to 7 h prior to the satellite overpass, even for small amounts of precipitation. A quality assessment (QA) framework was developed to flag and correct precipitation-affected radar observations through interpolation. The adjusted NPRVI values, based on the QA framework using precipitation within a 6 h window, showed strong agreement between field- and GPM-derived data, with an RMSE of 0.09 and a relative RMSE of 19.8%, demonstrating that GPM data can serve as a viable alternative for quality adjustment despite its coarse spatial resolution. The adjusted NPRVI for both soybean and corn fields significantly improved the temporal consistency of the time series and closely followed NDVI trends, while also capturing crop-specific seasonal variations, especially during periods of NDVI saturation or limited variability. These findings underscore the value of the proposed radar-based QA framework in enhancing the interpretability of vegetation dynamics. NPRVI, when adjusted for precipitation effects, can serve as a reliable and complementary tool to optical vegetation indices in agricultural and environmental monitoring. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

16 pages, 2784 KiB  
Article
Retinal Vessel Flicker Light Responsiveness and Its Relation to Analysis Protocols and Static and Metabolic Data in Healthy Subjects
by Dmitri Artemiev, Christophe Valmaggia, Scott Tschuppert, Konstantin Kotliar, Cengiz Türksever and Margarita G. Todorova
Biomedicines 2025, 13(5), 1201; https://doi.org/10.3390/biomedicines13051201 - 15 May 2025
Viewed by 415
Abstract
Background: The aim of this study was to assess the agreement between different analysis protocols for the determination of retinal vessel dilation response to flicker light (FL) and its relation to static and metabolic parameters of retinal vessels in healthy subjects. Methods: [...] Read more.
Background: The aim of this study was to assess the agreement between different analysis protocols for the determination of retinal vessel dilation response to flicker light (FL) and its relation to static and metabolic parameters of retinal vessels in healthy subjects. Methods: In total, 24 right eyes of 24 healthy controls (mean age: 36.04 ± SD 14.4 years) who underwent dynamic and static retinal diameter and oxygen saturation measurements on a Retinal Vessel Analyzer (RVA, Imedos, Jena, Germany) were included. Using repeated video analyses, responses to FL were measured with RVA. These measurements were conducted at three specific retinal locations: within the superotemporal area—within a distance of less than one optic disk (OD) diameter to optic nerve head (ONH) (group 1); greater than one OD diameter to ONH (group 2); and areas near the ONH within the VesselMap region (group 3). For comparability, the static and oxygen saturation parameters were also calculated in the superotemporal peripapillary area using the VesselMap tool of the RVA and were evaluated in relation to the corresponding dynamic area (group 3). Results: In all groups, the vascular FL response of arteries was less pronounced compared to venules (p = 0.0014). Even though FL responses (mean ± SD: FL-A; FL-V) in group 1 were more pronounced (3.36 ± 2.31; 4.42 ± 1.69) compared to those in group 2 (2.97 ± 2.40; 4.08 ± 1.55) and group 3 (2.84 ± 2.29; 4.21 ± 2.03), they did not reach statistically significant values. The mean flicker response of venules (VDil) in all groups showed negative correlations to the corresponding static parameter: central retinal venous equivalent (CRV) (r = −0.0437; p = 0.015). The mean flicker response of arteries (ADil) in all groups showed negative correlations to the corresponding metabolic parameter: arterio-venous oxygen extraction fraction (r = −0.101; p = 0.041). Conclusions: Our study confirms that the flicker light response, despite slight variations in its duration and location, allows for reliable measurements, proving the Retinal Vessel Analyzer to be a valuable diagnostic tool. Furthermore, we were able to highlight the relationship between the dynamic and metabolic components of retinal supply, which enables early diagnosis concerning the development of diseases within this spectrum. Full article
Show Figures

Figure 1

16 pages, 3462 KiB  
Article
Response of Hydrothermal Conditions to the Saturation Values of Forest Aboveground Biomass Estimation by Remote Sensing in Yunnan Province, China
by Yong Wu, Binbing Guo, Xiaoli Zhang, Hongbin Luo, Zhibo Yu, Huipeng Li, Kaize Shi, Leiguang Wang, Weiheng Xu and Guanglong Ou
Land 2024, 13(9), 1534; https://doi.org/10.3390/land13091534 - 22 Sep 2024
Cited by 1 | Viewed by 1194
Abstract
Identifying the key climate variables affecting optical saturation values (OSVs) in forest aboveground biomass (AGB) estimation using optical remote sensing is crucial for analyzing OSV changes. This can improve AGB estimation accuracy by addressing the uncertainties associated with optical saturation. In this study, [...] Read more.
Identifying the key climate variables affecting optical saturation values (OSVs) in forest aboveground biomass (AGB) estimation using optical remote sensing is crucial for analyzing OSV changes. This can improve AGB estimation accuracy by addressing the uncertainties associated with optical saturation. In this study, Pinus yunnanensis forests and Landsat 8 OLI imagery from Yunnan were used as case studies to explain this issue. The spherical model was applied to determine the OSVs using specific spectral bands (Blue, Green, Red, Near-Infrared (NIR), and Short-Wave Infrared Band 2 (SWIR2)) derived from Landsat 8 OLI imagery. Canonical correlation analysis (CCA) uncovered the intricate relationships between climatic variables and OSV variations. The results reveal the following: (1) All Landsat 8 OLI spectral bands showed a negative correlation with the Pinus yunnanensis forest AGB, with OSVs ranging from 104.42 t/ha to 209.11 t/ha, peaking in the southwestern region and declining to the lowest levels in the southeastern region. (2) CCA effectively explained 93.2% of the OSV variations, identifying annual mean temperature (AMT) as the most influential climatic factor. Additionally, the mean temperature of the wettest quarter (MTQ) and annual precipitation (ANP) were significant secondary determinants, with higher OSV values observed in warmer, more humid areas. These findings offer important insights into climate-driven OSV variations, reducing uncertainty in forest AGB estimation and enhancing the precision of AGB estimations in future research. Full article
(This article belongs to the Special Issue Land-Based Greenhouse Gas Mitigation for Carbon Neutrality)
Show Figures

Figure 1

26 pages, 7312 KiB  
Article
Climate Interprets Saturation Value Variations Better Than Soil and Topography in Estimating Oak Forest Aboveground Biomass Using Landsat 8 OLI Imagery
by Yong Wu, Guanglong Ou, Tianbao Huang, Xiaoli Zhang, Chunxiao Liu, Zhi Liu, Zhibo Yu, Hongbin Luo, Chi Lu, Kaize Shi, Leiguang Wang and Weiheng Xu
Remote Sens. 2024, 16(8), 1338; https://doi.org/10.3390/rs16081338 - 10 Apr 2024
Cited by 3 | Viewed by 1638
Abstract
The optical saturation problem is one of the main factors causing uncertainty in aboveground biomass (AGB) estimations using optical remote sensing data. It is critical for the improvement in AGB estimation accuracy to clarify the relationships between environmental factors and the variations in [...] Read more.
The optical saturation problem is one of the main factors causing uncertainty in aboveground biomass (AGB) estimations using optical remote sensing data. It is critical for the improvement in AGB estimation accuracy to clarify the relationships between environmental factors and the variations in optical saturation values (OSVs). In this study, we obtained the OSVs for 20 districts and clarified the individual, interactive, and comprehensive effects of climate, soil, and topographical factors on the OSV variations. The results are as follows: (1) the range of the OSVs was from 104 t/hm2 to 182 t/hm2 for the 20 districts; (2) the soil factor had the greatest (−0.635) influence on the OSVs compared to climate and topography; (3) the highest interaction effect (−0.833) was between climate and soil; (4) the comprehensive effect of the three environmental factors on the OSVs was obvious, and the correlation coefficient was 0.436. Moreover, the mean temperature of the coldest quarter (MCQMean) had the highest effect on the OSVs. The results indicate that environmental factors significantly affect the variation in OSVs through their individual, interactive, and comprehensive effects. Our findings provide a valuable reference for reducing the uncertainty caused by spectral saturation in AGB estimations using optical remote sensing data. Full article
Show Figures

Graphical abstract

12 pages, 13246 KiB  
Article
Single-Image Multi-Parametric Representation of Optical Properties through Encodings to the HSV Color Space
by Verónica Mieites, José A. Gutiérrez-Gutiérrez, José M. López-Higuera and Olga M. Conde
Appl. Sci. 2024, 14(1), 155; https://doi.org/10.3390/app14010155 - 23 Dec 2023
Cited by 2 | Viewed by 1425
Abstract
The visualization of 2D clinical data often relies on color-coded images, but different colormaps can introduce cognitive biases, impacting result interpretation. Moreover, when using color for diagnosis with multiple biomarkers, the application of distinct colormaps for each parameter can hinder comparisons. Our aim [...] Read more.
The visualization of 2D clinical data often relies on color-coded images, but different colormaps can introduce cognitive biases, impacting result interpretation. Moreover, when using color for diagnosis with multiple biomarkers, the application of distinct colormaps for each parameter can hinder comparisons. Our aim was to introduce a visualization technique that utilizes the hue (H), saturation (S), and value (V) in a single image to convey multi-parametric data on various optical properties in an effective manner. To achieve this, we conducted a study involving two datasets, one comprising multi-modality measurements of the human aorta and the other featuring multiple parameters of dystrophic mice muscles. Through this analysis, we determined that H is best suited to emphasize differences related to pathology, while V highlights high-spatial-resolution data disparities, and color alterations effectively indicate changes in chemical component concentrations. Furthermore, encoding structural information as S and V within the same image assists in pinpointing the specific locations of these variations. In cases where all data are of a high resolution, H remains the optimal indicator of pathology, ensuring results’ interpretability. This approach simplifies the selection of an appropriate colormap and enhances the ability to grasp a sample’s characteristics at a single glance. Full article
(This article belongs to the Special Issue Spectroscopic Techniques in Biomedical Imaging and Analysis)
Show Figures

Figure 1

22 pages, 12975 KiB  
Article
Application of Machine Learning Algorithms for Digital Mapping of Soil Salinity Levels and Assessing Their Spatial Transferability in Arid Regions
by Magboul M. Sulieman, Fuat Kaya, Mohammed A. Elsheikh, Levent Başayiğit and Rosa Francaviglia
Land 2023, 12(9), 1680; https://doi.org/10.3390/land12091680 - 28 Aug 2023
Cited by 11 | Viewed by 2717
Abstract
A comprehensive understanding of soil salinity distribution in arid regions is essential for making informed decisions regarding agricultural suitability, water resource management, and land use planning. A methodology was developed to identify soil salinity in Sudan by utilizing optical and radar-based satellite data [...] Read more.
A comprehensive understanding of soil salinity distribution in arid regions is essential for making informed decisions regarding agricultural suitability, water resource management, and land use planning. A methodology was developed to identify soil salinity in Sudan by utilizing optical and radar-based satellite data as well as variables obtained from digital elevation models that are known to indicate variations in soil salinity. The methodology includes the transfer of models to areas where similar conditions prevail. A geographically coordinated database was established, incorporating a variety of environmental variables based on Google Earth Engine (GEE) and Electrical Conductivity (EC) measurements from the saturation extract of soil samples collected at three different depths (0–30, 30–60, and 60–90 cm). Thereafter, Multinomial Logistic Regression (MNLR) and Gradient Boosting Algorithm (GBM), were utilized to spatially classify the salinity levels in the region. To determine the applicability of the model trained at the reference site to the target area, a Multivariate Environmental Similarity Surface (MESS) analysis was conducted. The producer’s accuracy, user’s accuracy, and Tau index parameters were used to evaluate the model’s accuracy, and spatial confusion indices were computed to assess uncertainty. At different soil depths, Tau index values for the reference area ranged from 0.38 to 0.77, whereas values for target area samples ranged from 0.66 to 0.88, decreasing as the depth increased. Clay normalized ratio (CLNR), Salinity Index 1, and SAR data were important variables in the modeling. It was found that the subsoils in the middle and northwest regions of both the reference and target areas had a higher salinity level compared to the topsoil. This study highlighted the effectiveness of model transfer as a means of identifying and evaluating the management of regions facing significant salinity-related challenges. This approach can be instrumental in identifying alternative areas suitable for agricultural activities at a regional level. Full article
(This article belongs to the Special Issue Salinity Monitoring and Modelling at Different Scales)
Show Figures

Figure 1

18 pages, 8410 KiB  
Article
Copper Ferrite Nanoparticles Synthesized Using Anion-Exchange Resin: Influence of Synthesis Parameters on the Cubic Phase Stability
by Svetlana Saikova, Aleksandr Pavlikov, Denis Karpov, Aleksandr Samoilo, Sergey Kirik, Mikhail Volochaev, Tatyana Trofimova, Dmitry Velikanov and Artem Kuklin
Materials 2023, 16(6), 2318; https://doi.org/10.3390/ma16062318 - 14 Mar 2023
Cited by 10 | Viewed by 3103
Abstract
Copper ferrite is of great interest to researchers as a material with unique magnetic, optical, catalytic, and structural properties. In particular, the magnetic properties of this material are structurally sensitive and can be tuned by changing the distribution of Cu and Fe cations [...] Read more.
Copper ferrite is of great interest to researchers as a material with unique magnetic, optical, catalytic, and structural properties. In particular, the magnetic properties of this material are structurally sensitive and can be tuned by changing the distribution of Cu and Fe cations in octahedral and tetrahedral positions by controlling the synthesis parameters. In this study, we propose a new, simple, and convenient method for the synthesis of copper ferrite nanoparticles using a strongly basic anion-exchange resin in the OH form. The effect and possible mechanism of polysaccharide addition on the elemental composition, yield, and particle size of CuFe2O4 are investigated and discussed. It is shown that anion-exchange resin precipitation leads to a mixture of unstable cubic (c-CuFe2O4) phases at standard temperature and stable tetragonal (t-CuFe2O4) phases. The effect of reaction conditions on the stability of c-CuFe2O4 is studied by temperature-dependent XRD measurements and discussed in terms of cation distribution, cooperative Jahn–Teller distortion, and Cu2+ and oxygen vacancies in the copper ferrite lattice. The observed differences in the values of the saturation magnetization and coercivity of the prepared samples are explained in terms of variations in the particle size and structural properties of copper ferrite. Full article
(This article belongs to the Topic Advances in Inorganic Synthesis)
Show Figures

Figure 1

12 pages, 2129 KiB  
Article
Age-Related Variation of Pulpal Oxygen Saturation in Healthy Primary and Permanent Teeth in Children: A Clinical Study
by Andreea Igna, Darian Rusu, Emilia Ogodescu, Ștefania Dinu, Marius Boariu, Adrian Voicu and Ștefan-Ioan Stratul
J. Clin. Med. 2023, 12(1), 170; https://doi.org/10.3390/jcm12010170 - 26 Dec 2022
Cited by 4 | Viewed by 2954
Abstract
(1) Background: Pulse oximetry (PO) is an effective method of dental pulp status monitorization but still lacks practical implementation in dentistry, as well as clear reference values for different tooth types. The study’s aim was to investigate the age-related variation of blood oxygen [...] Read more.
(1) Background: Pulse oximetry (PO) is an effective method of dental pulp status monitorization but still lacks practical implementation in dentistry, as well as clear reference values for different tooth types. The study’s aim was to investigate the age-related variation of blood oxygen saturation (SpO2) from the dental pulp during different stages of tooth development in all types of primary and permanent teeth of children. (2) Methods: The pulps of 600 healthy primary and permanent teeth (incisors, canines, premolars, and molars) of patients aged 2–15 years were tested with an adapted PO device, and the results were statistically analyzed; (3) Results: Statistically significant differences (p < 0.05) were found between open-apex and closed-apex teeth and between the canines and other tooth types in both primary and permanent dentitions. (4) Conclusions: Values of SpO2 tended to decrease with age progression in both primary and permanent dentitions. Enamel and dentine thickness and their optical properties and the shape and volume of coronal pulp, which differed among tooth types, seemed to have some influence on the reading as well. The study indicates that factors such as the root development and the tooth type must be taken into account when establishing reference SpO2 values for the dental pulp. Full article
(This article belongs to the Special Issue Novel Research in Pediatric Dentistry)
Show Figures

Figure 1

13 pages, 5977 KiB  
Article
Avalanche Photodiodes with Dual Multiplication Layers for High-Speed and Wide Dynamic Range Performances
by Naseem, Zohauddin Ahmad, Yan-Min Liao, Rui-Lin Chao, Po-Shun Wang, Yi-Shan Lee, Sean Yang, Sheng-Yun Wang, Hsiang-Szu Chang, Hung-Shiang Chen, Jack Jia-Sheng Huang, Emin Chou, Yu-Heng Jan and Jin-Wei Shi
Photonics 2021, 8(4), 98; https://doi.org/10.3390/photonics8040098 - 31 Mar 2021
Cited by 11 | Viewed by 4058
Abstract
In this work, we demonstrate In0.52Al0.48As top/backside-illuminated avalanche photodiodes (APD) with dual multiplication layers for high-speed and wide dynamic range performances. Our fabricated top-illuminated APDs, with a partially depleted p-type In0.53Ga0.47As absorber layer and thin [...] Read more.
In this work, we demonstrate In0.52Al0.48As top/backside-illuminated avalanche photodiodes (APD) with dual multiplication layers for high-speed and wide dynamic range performances. Our fabricated top-illuminated APDs, with a partially depleted p-type In0.53Ga0.47As absorber layer and thin In0.52Al0.48As dual multiplication (M-) layer (60 and 88 nm), exhibit a wide optical-to-electrical bandwidth (16 GHz) with high responsivity (2.5 A/W) under strong light illumination (around 1 mW). The measured bias dependent 3-dB O-E bandwidth was pinned at 16 GHz without any serious degradation near the saturation current output. To further increase the speed, we downscaled the active diameter and adopted a back-side illuminated structure with flip-chip bonding for batter optical alignment tolerance. A significant improvement in maximum bandwidth was demonstrated (25 versus 18 GHz). On the other hand, we adopted a thick dual M-layer (200 and 300 nm) and 2 μm absorber layer in the APD design to circumvent the problem of serious bandwidth degradation under high gain (>100) and high-power operation which significantly enhanced the dynamic range. Due to dual M-layer, the carriers could be energized in the first M-layer then propagate to the second M-layer to trigger the avalanche process. In both cases, despite variation in thickness of the absorber and M-layer, the cascade avalanche process leads to values close to the ultra-high gain bandwidth product (GBP) of around 460 GHz with a responsivity of 0.4 and 1 A/W at unit gain for the thin and thick M-layer devices, respectively. We successfully achieved a good sensitivity of around −20.6 dBm optical modulation amplitude (OMA) at a data rate of 25.78 Gb/s, by packaging the fabricated APDs (thin dual M-layer (60 and 88 nm) version) with a 25 Gb/s trans-impedance amplifier in a 100 Gb/s ROSA package. The results show that, the incorporation of a dual multiplication (M) layer structure in the APD opens a new window to obtaining the higher GBP in order to meet the requirements for high-speed transmission without the need of further downscaling the multiplication layer. Full article
(This article belongs to the Special Issue Advanced Ultra High Speed Optoelectronic Devices)
Show Figures

Graphical abstract

9 pages, 1787 KiB  
Article
A Facile Fabrication Route of Poly(Ethylene Glycol Phenyl Ether Acrylate) Photopolymers with Efficient Optical Response for Holographic Storage
by Fang-Yong Lee, Xin-Jin Wang, Wei-Hung Su and Tzu-Chien Hsu
Crystals 2020, 10(10), 935; https://doi.org/10.3390/cryst10100935 - 14 Oct 2020
Viewed by 2855
Abstract
A series of photopolymers based on ethylene glycol phenyl ethyl arylate (EGPEA) monomers and poly(methyl methacrylate) (PMMA) matrix with varying initiator concentrations and sample thicknesses have been synthesized and their optical performance characterized in this study. The advantages of lowering the initiator concentration, [...] Read more.
A series of photopolymers based on ethylene glycol phenyl ethyl arylate (EGPEA) monomers and poly(methyl methacrylate) (PMMA) matrix with varying initiator concentrations and sample thicknesses have been synthesized and their optical performance characterized in this study. The advantages of lowering the initiator concentration, including a rather short initiation time within a few seconds; a sharp rising optical response; and a stable saturated diffraction efficiency are demonstrated. The variation in the diffraction efficiency and response time with the exposure energy under various sample thickness and initiator concentrations is examined; a diffraction efficiency as high as 80% and a relatively short response time of 12–39 s are attainable. The dependence of the normalized optical parameter “sensitivity” on the exposure time is depicted, and the peak value of S ranges vastly from about 0.2 to 1.2 × 104 cm/J within a period of 15 s or so, with a maximum value of nearly 1.2 × 104. Favorable evidence of low initiator concentration can further be found when the dependence of the saturated diffraction efficiency with the exposure energy is examined. The data from this study using a low initiator concentration cover a range of exposure energy from 100 to 800 mJ/cm2 and a saturated diffraction efficiency from about 15% to 80%. The successful image reconstruction of 6-membered-ring metal nuts on a hologram based on this EGPEA/PMMA photopolymer system using a reflective holographic recording setup is demonstrated to verify its applicability to holographic storage. Full article
(This article belongs to the Special Issue Volume Holographic Optical Element (VHOE))
Show Figures

Figure 1

19 pages, 6851 KiB  
Article
Estimation of Shortwave Solar Radiation on Clear-Sky Days for a Valley Glacier with Sentinel-2 Time Series
by Yanli Zhang, Xiang Qin, Xin Li, Jun Zhao and Yushuo Liu
Remote Sens. 2020, 12(6), 927; https://doi.org/10.3390/rs12060927 - 13 Mar 2020
Cited by 16 | Viewed by 4904
Abstract
Downward surface shortwave radiation (DSSR) is the main energy source for most glacial melting, and Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM) data have been used extensively in the inversion of input parameters for estimating DSSR. However, for valley glaciers [...] Read more.
Downward surface shortwave radiation (DSSR) is the main energy source for most glacial melting, and Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM) data have been used extensively in the inversion of input parameters for estimating DSSR. However, for valley glaciers under complex climatic conditions, the values of MODIS atmospheric products, especially aerosol products, are often invalid, and TM images are always saturated with snow. Furthermore, an estimation model based on optical satellite images must simultaneously consider terrain and atmospheric effects and the transient nature of ice/snow albedo. Based on a high-resolution (12 m) digital elevation model (DEM), the newly launched Sentinel-2 satellites, rather than MODIS and TM, were used to provide input data for our published mountain radiation scheme in a valley glacier. Considering Laohugou Glacier No. 12 as the study area, 62 typical Sentinel-2 scenes were selected and spatiotemporal DSSR variations on the glacier surface were obtained with a 10 m spatial resolution during a mass-balance year from September 2017 to August 2018. Ground-based measurements on 52 clear-sky days were used for validation and the mean bias error (MBE = −16.0 W/m2) and root-mean-square difference (RMSD = 73.6 W/m2) were relatively low. The results confirm that DSSR is affected mainly by the solar zenith angle and atmospheric attenuation in flat areas of valley glaciers, while in areas with complex terrain, the DSSR received by the glacier surface is affected primarily by the terrain and ice/snow albedo, which exhibits very high spatial heterogeneity. Full article
Show Figures

Graphical abstract

18 pages, 6379 KiB  
Article
Impacts of Sol-Gel Auto-Combustion and Ultrasonication Approaches on Structural, Magnetic, and Optical Properties of Sm-Tm Co-Substituted Sr0.5Ba0.5Fe12O19 Nanohexaferrites: Comparative Study
by Yassine Slimani, Munirah Abdullah Almessiere, Sadik Güner, Umran Kurtan and Abdulhadi Baykal
Nanomaterials 2020, 10(2), 272; https://doi.org/10.3390/nano10020272 - 6 Feb 2020
Cited by 24 | Viewed by 3912
Abstract
In this paper, we introduced a comparative study of Sm-Tm-substituted Sr-Ba nanohexaferrites (NHFs), Sr0.5Ba0.5TmxSmxFe12−2xO19 with x = 0.00–0.05, manufactured via both citrate sol-gel auto-combustion and ultrasonication approaches. The phase formation of [...] Read more.
In this paper, we introduced a comparative study of Sm-Tm-substituted Sr-Ba nanohexaferrites (NHFs), Sr0.5Ba0.5TmxSmxFe12−2xO19 with x = 0.00–0.05, manufactured via both citrate sol-gel auto-combustion and ultrasonication approaches. The phase formation of M-type hexaferrite (HF) for both compositions was confirmed by X-ray diffraction (XRD) powder pattern, Fourier-transform infrared (FT-IR) spectra, scanning and transmission electron microscopy (SEM and TEM) micrographs, energy dispersive X-ray (EDX) spectra, and elemental mappings. The magnetic properties at room temperature (RT) and low temperature (T = 10 K) were also investigated. M-H loops revealed ferrimagnetic nature for various prepared nanohexaferrites via sol-gel and ultrasonication routes. The Ms (saturation magnetization) and Mr (remanence) values increased with increasing Tm-Sm substituting contents. Ms and Mr reached their maximum values at x = 0.04 in the case of samples prepared using the sol-gel technique and at x = 0.03 for those prepared via ultrasonication route. M-H loops were very broad in samples prepared via ultrasonication route in comparison to those produced by means of the sol-gel approach, implying that the products synthesized via ultrasonication route have greater values of coercivity (Hc). The variations in Hc values with respect to Tm-Sm substitutions were governed by the evolutions in the magneto-crystalline anisotropy. Diffuse reflectance spectra (DRS) were employed to estimate the direct band gap of pristine and co-substituted Sr0.5Ba0.5Fe12O19 hexaferrites. Optical energy band gaps (Eg) of pristine samples were significantly tuned by co-substitution of Tm3+ and Sm3+ ions. Eg values of the Sr0.5Ba0.5Fe12O19 sample, which was synthesized using the sol-gel method, decreased almost linearly from 1.75 to 1.45 eV by increasing co-doped ion content. However, we observed a sharp drop from 1.85 eV to an average of 1.50 eV for the samples, which were synthesized using the ultrasonication approach. Full article
(This article belongs to the Special Issue Functional Nanomagnetics and Magneto-Optical Nanomaterials)
Show Figures

Figure 1

15 pages, 3452 KiB  
Protocol
Single-Grain Quartz OSL Characteristics: Testing for Correlations within and between Sites in Asia, Europe and Africa
by Yue Hu, Bo Li and Zenobia Jacobs
Methods Protoc. 2020, 3(1), 2; https://doi.org/10.3390/mps3010002 - 26 Dec 2019
Cited by 22 | Viewed by 3955
Abstract
We studied the characteristics of the optically stimulated luminescence (OSL) signal of single-grain quartz from three sites in China, Italy, and Libya, including the brightness, decay curve and dose response curve (DRC) shapes, recuperation, and reproducibility. We demonstrate the large variation in OSL [...] Read more.
We studied the characteristics of the optically stimulated luminescence (OSL) signal of single-grain quartz from three sites in China, Italy, and Libya, including the brightness, decay curve and dose response curve (DRC) shapes, recuperation, and reproducibility. We demonstrate the large variation in OSL behaviors for individual quartz grains of different samples from different regions, and show that recuperation, sensitivity change, and reproducibility are independent of the brightness and decay curve shape of the OSL signals. The single-grain DRCs can be divided into at least eight groups with different characteristic saturation doses (D0), and a standardized growth curve (SGC) can be established for each of the DRC groups. There is no distinctive difference in the shape of OSL decay curves among different DRC groups, but samples from different regions have a difference in the OSL sensitivities and decay shapes for different groups. Many of the quartz grains have low D0 values (30–50 Gy), and more than 99% of the grains have D0 values of <200 Gy. Our results raise caution against the dating of samples with equivalent dose values higher than 100 Gy, if there are many low-D0 and ‘saturated’ grains. Full article
(This article belongs to the Special Issue Methods in Dating and Other Applications using Luminescence)
Show Figures

Figure 1

16 pages, 5983 KiB  
Article
Potential of ALOS2 and NDVI to Estimate Forest Above-Ground Biomass, and Comparison with Lidar-Derived Estimates
by Gaia Vaglio Laurin, Francesco Pirotti, Mattia Callegari, Qi Chen, Giovanni Cuozzo, Emanuele Lingua, Claudia Notarnicola and Dario Papale
Remote Sens. 2017, 9(1), 18; https://doi.org/10.3390/rs9010018 - 29 Dec 2016
Cited by 64 | Viewed by 10564
Abstract
Remote sensing supports carbon estimation, allowing the upscaling of field measurements to large extents. Lidar is considered the premier instrument to estimate above ground biomass, but data are expensive and collected on-demand, with limited spatial and temporal coverage. The previous JERS and ALOS [...] Read more.
Remote sensing supports carbon estimation, allowing the upscaling of field measurements to large extents. Lidar is considered the premier instrument to estimate above ground biomass, but data are expensive and collected on-demand, with limited spatial and temporal coverage. The previous JERS and ALOS SAR satellites data were extensively employed to model forest biomass, with literature suggesting signal saturation at low-moderate biomass values, and an influence of plot size on estimates accuracy. The ALOS2 continuity mission since May 2014 produces data with improved features with respect to the former ALOS, such as increased spatial resolution and reduced revisit time. We used ALOS2 backscatter data, testing also the integration with additional features (SAR textures and NDVI from Landsat 8 data) together with ground truth, to model and map above ground biomass in two mixed forest sites: Tahoe (California) and Asiago (Alps). While texture was useful to improve the model performance, the best model was obtained using joined SAR and NDVI (R2 equal to 0.66). In this model, only a slight saturation was observed, at higher levels than what usually reported in literature for SAR; the trend requires further investigation but the model confirmed the complementarity of optical and SAR datatypes. For comparison purposes, we also generated a biomass map for Asiago using lidar data, and considered a previous lidar-based study for Tahoe; in these areas, the observed R2 were 0.92 for Tahoe and 0.75 for Asiago, respectively. The quantitative comparison of the carbon stocks obtained with the two methods allows discussion of sensor suitability. The range of local variation captured by lidar is higher than those by SAR and NDVI, with the latter showing overestimation. However, this overestimation is very limited for one of the study areas, suggesting that when the purpose is the overall quantification of the stored carbon, especially in areas with high carbon density, satellite data with lower cost and broad coverage can be as effective as lidar. Full article
(This article belongs to the Special Issue Remote Sensing of Above Ground Biomass)
Show Figures

Graphical abstract

19 pages, 759 KiB  
Article
Variation of Routine Soil Analysis When Compared with Hyperspectral Narrow Band Sensing Method
by José A. M. Demattê, Peterson R. Fiorio and Suzana R. Araújo
Remote Sens. 2010, 2(8), 1998-2016; https://doi.org/10.3390/rs2081998 - 24 Aug 2010
Cited by 16 | Viewed by 9628
Abstract
The objectives of this research were to: (i) develop hyperspectral narrow-band models to determine soil variables such as organic matter content (OM), sum of cations (SC = Ca + Mg + K), aluminum saturation (m%), cations saturation (V%), cations exchangeable capacity (CEC), silt, [...] Read more.
The objectives of this research were to: (i) develop hyperspectral narrow-band models to determine soil variables such as organic matter content (OM), sum of cations (SC = Ca + Mg + K), aluminum saturation (m%), cations saturation (V%), cations exchangeable capacity (CEC), silt, sand and clay content using visible-near infrared (Vis-NIR) diffuse reflectance spectra; (ii) compare the variations of the chemical and the spectroradiometric soil analysis (Vis-NIR). The study area is located in São Paulo State, Brazil. The soils were sampled over an area of 473 ha divided into grids (100 × 100 m) with a total of 948 soil samples georeferenced. The laboratory RS data were obtained using an IRIS (Infrared Intelligent Spectroradiometer) sensor (400–2,500 nm) with a 2-nm spectral resolution between 450 and 1,000 nm and 4-nm between 1,000 and 2,500 nm. Satellite reflectance values were sampled from corrected Landsat Thematic Mapper (TM) images. Each pixel in the image was evaluated as its vegetation index, color compositions and soil line concepts regarding certain locations of the field in the image. Chemical and physical analysis (organic matter content, sand, silt, clay, sum of cations, cations saturation, aluminum saturation and cations exchange capacity) were performed in the laboratory. Statistical analysis and multiple regression equations for soil attribute predictions using radiometric data were developed. Laboratory data used 22 bands and 13 “Reflectance Inflexion Differences, RID” from different wavelength intervals of the optical spectrum. However, for TM-Landsat six bands were used in analysis (1, 2, 3, 4, 5, and 7).Estimations of some tropical soil attributes were possible using laboratory spectral analysis. Laboratory spectral reflectance (SR) presented high correlations with traditional laboratory analyses for the soil attributes such as clay (R2 = 0.84, RMSE = 3.75) and sand (R2 = 0.85, RMSE = 3.74). The most sensitive narrow-bands in modeling (using 474 observations) these attributes were B8 (1,350–1,417 nm), B10 (1,417–1,449 nm), B11 (1,449–1,793 nm), B15 (1,927–2,102 nm), B16 (2,101–2,139 nm), and B17 (2,139–2,206 nm); B7 (975–1,350 nm), B10, B11, B16, B19 (2,206–2,258 nm) and B21 (2,258–2,389 nm) for clay and sand, respectively. The bands selected to model sand and clay, by orbital data, were 3, 5 and 7 of TM-Landsat-5 and 2, 5 and 7 sand and clay, respectively. The use of soil analysis methodology by ground remote sensing constitutes an alternative to traditional routine laboratory analysis. Full article
(This article belongs to the Special Issue Global Croplands)
Show Figures

Figure 1

Back to TopTop