Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,235)

Search Parameters:
Keywords = optical density measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5031 KB  
Article
Ultra-Compact Inverse-Designed Integrated Photonic Matrix Compute Core
by Mingzhe Li, Tong Wang, Yi Zhang, Yulin Shen, Jie Yang, Ke Zhang, Dehui Pan, Jiahui Yao and Ming Xin
Photonics 2025, 12(10), 997; https://doi.org/10.3390/photonics12100997 - 10 Oct 2025
Abstract
Leveraging our developed Global–Local Integrated Topology inverse design algorithm, we designed an efficient, compact, and symmetrical power splitter on a silicon-on-insulator platform. This device achieves a low insertion loss of 0.18 dB and a power imbalance of <0.0002 dB between its output ports [...] Read more.
Leveraging our developed Global–Local Integrated Topology inverse design algorithm, we designed an efficient, compact, and symmetrical power splitter on a silicon-on-insulator platform. This device achieves a low insertion loss of 0.18 dB and a power imbalance of <0.0002 dB between its output ports within an ultra-compact footprint of 5.5 µm × 2.5 µm. The splitter, combined with an ultra-compact 0–π phase shifter measuring only 4.5 µm × 0.9 µm on the silicon-on-insulator platform, forms an ultra-compact inverse-designed integrated photonic matrix compute core, thus enabling the function of matrix operations in optical neural networks. Through a networked cascade of power splitters and phase shifters, this silicon-based photonic matrix compute core achieves an integration density of ~26,000 computational units/mm2. Moreover, it attained 99.05% accuracy in handwritten digit recognition (0–9) and exhibited strong robustness against fabrication errors, maintaining >80% accuracy with >0.9 probability under simulated random fabrication errors. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

29 pages, 5820 KB  
Article
Abnormal Vibration Identification of Metro Tunnels on the Basis of the Spatial Correlation of Dynamic Strain from Dense Measurement Points of Distributed Sensing Optical Fibers
by Hong Han, Xiaopei Cai and Liang Gao
Sensors 2025, 25(20), 6266; https://doi.org/10.3390/s25206266 - 10 Oct 2025
Viewed by 26
Abstract
The failure to accurately identify abnormal vibrations in protected metro areas is a serious threat to the operational safety of metro tunnels and trains, and there is currently no suitable method for effectively improving the accuracy of abnormal vibration identification. To address this [...] Read more.
The failure to accurately identify abnormal vibrations in protected metro areas is a serious threat to the operational safety of metro tunnels and trains, and there is currently no suitable method for effectively improving the accuracy of abnormal vibration identification. To address this issue, an accurate method for identifying abnormal vibrations in a metro reserve based on spatially correlated dense measurement points is proposed. First, by arranging distributed optical fibers along the longitudinal length of a tunnel, dynamic strain vibration signals are extracted via phase-sensitive optical time-domain reflectometry analysis, and analysis of variance (ANOVA) and Pearson correlation analysis are used to jointly downscale the dynamic strain features. On this basis, a spatial correlation between the calculated values of the features of the target measurement points to be updated and its adjacent measurement points is constructed, and the spatial correlation credibility of the dynamic strain features between the dense measurement points and the target measurement points to be updated is calculated via quadratic function weighting and kernel density estimation methods. The weights are calculated, and the eigenvalues of the target measurement points are updated on the basis of the correlation credibility weights between the adjacent measurement points. Finally, a support vector machine (SVM) and back propagation (BP) identification model for the eigenvalues of the target measurement points are constructed to identify the dynamic strain eigenvalues of the abnormal vibrations in the underground tunnel. Numerical simulations and an experiment in an actual tunnel verify the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Distributed Fibre Optic Sensing Technologies and Applications)
Show Figures

Figure 1

13 pages, 2518 KB  
Article
Investigating Scattering Spectral Characteristics of GaAs Solar Cells by Nanosecond Pulse Laser Irradiation
by Hao Chang, Weijing Zhou, Zhilong Jian, Can Xu, Yingjie Ma and Chenyu Xiao
Aerospace 2025, 12(10), 909; https://doi.org/10.3390/aerospace12100909 - 10 Oct 2025
Viewed by 61
Abstract
Reliable power generation from solar cells is critical for spacecraft operation. High-energy laser irradiation poses a significant threat, as it can potentially cause irreversible damage to solar cells, which is difficult to detect remotely using conventional techniques such as radar or optical imaging. [...] Read more.
Reliable power generation from solar cells is critical for spacecraft operation. High-energy laser irradiation poses a significant threat, as it can potentially cause irreversible damage to solar cells, which is difficult to detect remotely using conventional techniques such as radar or optical imaging. Spectral detection offers a potential approach through unique “spectral fingerprints,” but the spectral characteristics of laser-damaged solar cells remain insufficiently documented. This study investigates the scattering spectral characteristics of triple-junction GaAs (Gallium Arsenide) solar cells subjected to nanosecond pulsed laser irradiation to establish spectral signatures for damage assessment. GaAs solar cells were irradiated at varying energy densities. Bidirectional Reflectance Distribution Function (BRDF) spectra (400–1200 nm) were measured. A thin-film interference model was used to simulate damage effects by varying layer thicknesses, thereby interpreting experimental results. The results demonstrate that as the laser energy density increases from 0.12 to 2.96 J/cm2, the number of absorption peaks in the visible range (400–750 nm) decreases from three to zero, and the oscillation in the near-infrared range vanishes completely, indicating progressive damage to the GaInP (Gallium Indium Phosphide) and GaAs layers. This study provides a spectral-based approach for remote assessment of laser-induced damage to solar cells, which is crucial for satellite health monitoring. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

18 pages, 2806 KB  
Article
Polylactide (PLA) Composites Reinforced with Natural Fibrous Filler Recovered from the Biomass of Sorghum Leaves or Stems
by Ryszard Gąsiorowski, Danuta Matykiewicz and Dominika Janiszewska-Latterini
Materials 2025, 18(19), 4634; https://doi.org/10.3390/ma18194634 - 8 Oct 2025
Viewed by 268
Abstract
In response to environmental pressures and the growing demand for sustainable materials, this study investigates the use of lignocellulosic fillers derived from sorghum (Sorghum bicolor L. Moench) biomass, specifically stems and leaves, as reinforcements in biodegradable polylactic acid (PLA) composites. The aim [...] Read more.
In response to environmental pressures and the growing demand for sustainable materials, this study investigates the use of lignocellulosic fillers derived from sorghum (Sorghum bicolor L. Moench) biomass, specifically stems and leaves, as reinforcements in biodegradable polylactic acid (PLA) composites. The aim was to assess the effect of filler type and content (5, 10, and 15 wt.%) on the physicochemical properties of the composites. Sorghum was manually harvested in Greater Poland, separated, dried, milled, and fractionated to particles <0.25 mm. Composites were produced via extrusion and injection molding, followed by characterization using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), tensile and impact testing, density measurements, optical microscopy, and scanning electron microscopy (SEM). Results showed that stem-based fillers provided a better balance between stiffness and ductility, along with improved dispersion and interfacial adhesion. In contrast, leaf-based fillers led to higher stiffness but greater brittleness and agglomeration. All composites exhibited decreased impact strength and thermal stability compared to neat PLA, with the extent of these decreases depending on the filler type and loading. The study highlights the potential of sorghum stems as a viable, renewable reinforcement in biopolymer composites, aligning with circular economy and bioeconomy strategies. Full article
(This article belongs to the Special Issue Manufacturing and Recycling of Natural Fiber-Reinforced Composites)
Show Figures

Figure 1

24 pages, 1945 KB  
Article
Effect of Circadian Blood Pressure Variations on Retinal Microvascular Structures: Optical Coherence Tomography Angiography Analysis with the Nighttime Divided into Subintervals (Retinal Dawn Pattern)
by Oğuzhan Zengin, Şule Nur Polat, Canan Satılmış, Burak Göre, Melike Yakut, İrem Aydoğmuş, Merve Çelik, Mehmet Önen and İhsan Ateş
Medicina 2025, 61(10), 1801; https://doi.org/10.3390/medicina61101801 - 6 Oct 2025
Viewed by 255
Abstract
Background and Objectives: Circadian fluctuations in blood pressure, particularly the non-dipping pattern characterized by the absence of a nocturnal decline, are associated with an increased risk of microvascular complications. The retina, as a highly sensitive microvascular tissue, offers a valuable window into systemic [...] Read more.
Background and Objectives: Circadian fluctuations in blood pressure, particularly the non-dipping pattern characterized by the absence of a nocturnal decline, are associated with an increased risk of microvascular complications. The retina, as a highly sensitive microvascular tissue, offers a valuable window into systemic hemodynamic alterations. However, the literature lacks detailed structural analyses that evaluate all retinal regions by segmenting nighttime into specific time intervals. Notably, the early morning period (04:00–08:00), during which stress hormones such as cortisol and catecholamines rise physiologically, leads to increased blood pressure that may significantly affect retinal microcirculation. This prospective study aims to assess retinal microvascular structures in dipper and non-dipper individuals using structural optical coherence tomography and to investigate their relationship with blood pressure parameters by dividing nighttime into distinct time segments. Materials and Methods: A total of 60 participants were classified as dipper (n = 26) or non-dipper (n = 34) based on 24 h ambulatory blood pressure monitoring results. Structural optical coherence tomography was used to evaluate superficial and deep capillary plexus densities in the foveal, parafoveal, and perifoveal regions, along with the area and perimeter of the foveal avascular zone (FAZ) and flow density (FD). Blood pressure values, including systolic, diastolic, mean arterial, and pulse pressure, were recorded during two nighttime intervals (00:00–04:00 and 04:00–08:00), and correlations with retinal parameters were analyzed. Results: No significant differences were observed in retinal microvascular parameters between the dipper and non-dipper groups. Deep capillary densities, particularly in the parafoveal and perifoveal regions, showed significant positive correlations with serum total protein, albumin, and very low-density lipoprotein (VLDL) levels. Furthermore, systolic and mean arterial pressures measured during the 04:00–08:00 interval demonstrated significant positive correlations with deep retinal vascular densities. The FAZ perimeter was negatively correlated with pulse pressure variability, while FD showed a negative correlation with mean arterial pressure variability. Conclusions: This prospective study is among the first to investigate the effects of circadian blood pressure patterns on retinal microvascular structures by segmenting nighttime into specific intervals and employing comprehensive structural optical coherence tomography across the entire retina. The findings suggest that retinal microvascular structure may be associated with fluctuations in blood pressure. Analyses of blood pressure measurements between 04:00 and 08:00 may offer supplementary insights into the evaluation of retinal microvascular structure. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

15 pages, 2880 KB  
Article
Double-Layered Microphysiological System Made of Polyethylene Terephthalate with Trans-Epithelial Electrical Resistance Measurement Function for Uniform Detection Sensitivity
by Naokata Kutsuzawa, Hiroko Nakamura, Laner Chen, Ryota Fujioka, Shuntaro Mori, Noriyuki Nakatani, Takahiro Yoshioka and Hiroshi Kimura
Biosensors 2025, 15(10), 663; https://doi.org/10.3390/bios15100663 (registering DOI) - 2 Oct 2025
Viewed by 235
Abstract
Microphysiological systems (MPSs) have emerged as alternatives to animal testing in drug development, following the FDA Modernization Act 2.0. Double-layer channel-type MPS chips with porous membranes are widely used for modeling various organs, including the intestines, blood–brain barrier, renal tubules, and lungs. However, [...] Read more.
Microphysiological systems (MPSs) have emerged as alternatives to animal testing in drug development, following the FDA Modernization Act 2.0. Double-layer channel-type MPS chips with porous membranes are widely used for modeling various organs, including the intestines, blood–brain barrier, renal tubules, and lungs. However, these chips faced challenges owing to optical interference caused by light scattering from the porous membrane, which hinders cell observation. Trans-epithelial electrical resistance (TEER) measurement offers a non-invasive method for assessing barrier integrity in these chips. However, existing electrode-integrated MPS chips for TEER measurement have non-uniform current densities, leading to compromised measurement accuracy. Additionally, chips made from polydimethylsiloxane have been associated with drug absorption issues. This study developed an electrode-integrated MPS chip for TEER measurement with a uniform current distribution and minimal drug absorption. Through a finite element method simulation, electrode patterns were optimized and incorporated into a polyethylene terephthalate (PET)-based chip. The device was fabricated by laminating PET films, porous membranes, and patterned gold electrodes. The chip’s performance was evaluated using a perfused Caco-2 intestinal model. TEER levels increased and peaked on day 5 when cells formed a monolayer, and then they decreased with the development of villi-like structures. Concurrently, capacitance increased, indicating microvilli formation. Exposure to staurosporine resulted in a dose-dependent reduction in TEER, which was validated by immunostaining, indicating a disruption of the tight junction. This study presents a TEER measurement MPS platform with a uniform current density and reduced drug absorption, thereby enhancing TEER measurement reliability. This system effectively monitors barrier integrity and drug responses, demonstrating its potential for non-animal drug-testing applications. Full article
Show Figures

Figure 1

19 pages, 2928 KB  
Article
Real-Time Monitoring of Particulate Matter in Indoor Sports Facilities Using Low-Cost Sensors: A Case Study in a Municipal Small-to-Medium-Sized Indoor Sport Facility
by Eleftheria Katsiri, Christos Kokkotis, Dimitrios Pantazis, Alexandra Avloniti, Dimitrios Balampanos, Maria Emmanouilidou, Maria Protopapa, Nikolaos Orestis Retzepis, Panagiotis Aggelakis, Panagiotis Foteinakis, Nikolaos Zaras, Maria Michalopoulou, Ioannis Karakasiliotis, Paschalis Steiropoulos and Athanasios Chatzinikolaou
Eng 2025, 6(10), 258; https://doi.org/10.3390/eng6100258 - 2 Oct 2025
Viewed by 212
Abstract
Indoor sports facilities present unique challenges for air quality management due to high crowd densities and limited ventilation. This study investigated air quality in a municipal athletic facility in Komotini, Greece, focusing on concentrations of airborne particulate matter (PM1.0, PM2.5 [...] Read more.
Indoor sports facilities present unique challenges for air quality management due to high crowd densities and limited ventilation. This study investigated air quality in a municipal athletic facility in Komotini, Greece, focusing on concentrations of airborne particulate matter (PM1.0, PM2.5, PM10), humidity, and temperature across spectator zones, under varying mask scenarios. Sensing devices were installed in the stands to collect high-frequency environmental data. The system, based on optical particle counters and cloud-enabled analytics, enabled real-time data capture and retrospective analysis. The main experiment investigated the impact of spectators wearing medical masks during two basketball games. The results show consistently elevated PM levels during games, often exceeding recommended international thresholds in the spectator area. Notably, the use of masks by spectators led to measurable reductions in PM1.0 and PM2.5 concentrations, because they seem to have limited the release of human-generated aerosols as well as the amount of movement among spectators, supporting their effectiveness in limiting fine particulate exposure in inadequately ventilated environments. Humidity emerged as a reliable indicator of occupancy and potential high-risk periods, making it a valuable parameter for real-time monitoring. The findings underscore the urgent need for improved ventilation strategies in small to medium-sized indoor sports facilities and support the deployment of low-cost sensor networks for actionable environmental health management. Full article
Show Figures

Figure 1

20 pages, 2230 KB  
Article
Relationship Between Parapapillary Microvasculature Dropout and Visual Field Defect in Glaucoma: A Cross-Sectional OCTA Analysis
by Fiorella Cuba-Sulluchuco and Carmen Mendez-Hernandez
J. Clin. Med. 2025, 14(19), 6936; https://doi.org/10.3390/jcm14196936 - 30 Sep 2025
Viewed by 247
Abstract
Background: Glaucoma is a multifactorial optic neuropathy and the leading cause of irreversible blindness worldwide. Vascular mechanisms, including impaired perfusion of the optic nerve head, are increasingly recognized as contributors to disease progression. Optical coherence tomography angiography (OCTA) enables non-invasive assessment of retinal [...] Read more.
Background: Glaucoma is a multifactorial optic neuropathy and the leading cause of irreversible blindness worldwide. Vascular mechanisms, including impaired perfusion of the optic nerve head, are increasingly recognized as contributors to disease progression. Optical coherence tomography angiography (OCTA) enables non-invasive assessment of retinal and choroidal microvasculature, including peripapillary microvasculature dropout (MvD), which may serve as a marker of glaucomatous damage. Methods: A cross-sectional case–control study was conducted, including patients with primary open-angle glaucoma (OAG) and healthy controls. All participants underwent a comprehensive ophthalmic evaluation and OCTA imaging using the PLEX Elite 9000 system. Peripapillary vessel density (pVD), flow index (pFI), peripapillary choroidal thickness (PCT), β-zone parapapillary atrophy (β-PPA), and choroidal vascular indices were measured. MvD was defined as the complete absence of microvasculature within the β-PPA boundary. Statistical analyses included univariate and multivariate regression models to examine variables associated with PCT and to assess the association between MvD and visual field mean defect (MD), as well as other glaucoma characteristics. ROC curve analysis was performed to evaluate the ability of MvD to discriminate between different levels of visual field defects. Results: A total of 87 eyes (41 glaucomatous, 46 controls) were analyzed. Glaucoma patients exhibited significantly lower pVD, pFI, PCT, and choroidal vascular indices compared to the controls. MvD was detected in 10 glaucomatous eyes and was associated with a larger β-PPA area, smaller choroidal luminal and stromal areas, and worse mean deviation (MD) values. Multivariate regression showed that the number of ocular hypotensive treatments and StructureIndex variables were significantly associated with PCT (adjusted R2 = 0.14). Logistic regression analysis identified MD, MD slope, and β-PPA area as variables significantly associated with the presence of MvD. ROC analysis showed that the presence of MvD had good discriminatory ability for visual field mean defects (MDs) (AUC = 0.77, 95% CI: 0.69–0.87; p = 0.005). Conclusions: Peripapillary MvD detected by OCTA is associated with reduced choroidal vascularity, increased β-PPA, and greater visual field deterioration in glaucoma patients. MvD may serve as a structural marker associated with functional deterioration in glaucoma patients. Full article
(This article belongs to the Special Issue Clinical Advances in Glaucoma: Current Status and Prospects)
Show Figures

Figure 1

13 pages, 621 KB  
Article
5-Hydroxymethylfurfural: A Particularly Harmful Molecule Inducing Toxic Lipids and Proteins?
by Joachim Greilberger, Georg Feigl, Matthias Greilberger, Simona Bystrianska and Michaela Greilberger
Molecules 2025, 30(19), 3897; https://doi.org/10.3390/molecules30193897 - 26 Sep 2025
Viewed by 304
Abstract
Introduction: 5-HMF is a molecule found in carbohydrate-rich foods that is associated not only with cancer and anaphylactic reactions, but also with anti-oxidant properties. Questions arose as to whether 5-HMF exhibited a catalytic effect in relation to lipid peroxidation and lipoprotein oxidation in [...] Read more.
Introduction: 5-HMF is a molecule found in carbohydrate-rich foods that is associated not only with cancer and anaphylactic reactions, but also with anti-oxidant properties. Questions arose as to whether 5-HMF exhibited a catalytic effect in relation to lipid peroxidation and lipoprotein oxidation in presence of metals and/or radicals. Methods: Peroxynitrite (ONOO)-induced chemiluminescence and ONOO nitration of tyrosine residues on BSA using anti-nitro-tyrosine-antibodies were used to measure the protection of 5-HMF against peroxides or nitration compared to vitamin C (VitC). The reductive potential of 5-HMF or VitC on Cu2+ or Fe3 was estimated using the bicinchoninic acid (BCA) or Fenton-complex method. Human plasma was used to measure the generation of malondialdehyde (MDA), 4-hydroxynonenal (HNE), and total thiols after Fe2+/H2O2 oxidation in the presence of different concentrations of 5-HMF or VitC. Finally, Cu2+ oxidation of LDL after 4 h was carried out with 5-HMF or VitC, measuring the concentration of MDA in LDL with the thiobarbituric assay (TBARS). Results: VitC was 4-fold more effective than 5-HMF in scavenging ONOO to nearly 91.5% at 4 mM, with the exception of 0.16 mM, where the reduction of ONOO by VitC was 3.3-fold weaker compared to 0.16 mM 5-HMF. VitC or 5-HMF at a concentration of 6 mM inhibited the nitration of tyrosine residues on BSA to nearly 90% with a similar course. While 5-HMF reduced free Fe3+ in presence of phenanthroline, forming Fe2+ (phenantroleine)3 [Fe2+(phe)3] or complexed Cu2+(BCA)4 to Cu+(BCA)4 weakly, VitC was 7- to 19-fold effective in doing so over all the used concentrations (0–25 mM). A Fe2+—H2O2 solution mixed with human plasma showed a 6–10 times higher optical density (OD) of MDA or HNE in the presence of 5-HMF compared to VitC. The level of thiols was significantly decreased in the presence of higher VitC levels (1 mM: 198.4 ± 7.7 µM; 2 mM: 160.0 ± 13.4 µM) compared to equal 5-HMF amounts (2562 ± 7.8 µM or 242.4 ± 2.5 µM), whereas the usage of lower levels at 0.25 µM 5-HMF resulted in a significant decrease in thiols (272.4 ± 4.0 µM) compared to VitC (312.3 ± 19.7 µM). Both VitC and 5-HMF accelerated copper-mediated oxidation of LDL equally: while the TBARS levels from 4 h oxidized LDL reached 137.7 ± 12.3 nmol/mg, it was 1.7-fold higher using 6 mM VitC (259.9 ± 10.4 nmol/mg) or 6 mM 5-HMF (239.3 ± 10.2 nmol/mg). Conclusions: 5-HMF appeared to have more pro-oxidative potential compared to VitC by causing lipid peroxidation as well as protein oxidation. Full article
Show Figures

Figure 1

18 pages, 494 KB  
Article
ET-1, MMPs, ZAG, and APN Link Reduced Ocular Perfusion to Glaucoma
by Maren Kasper, Kai Rothaus, Lasse Schopmeyer, Dirk Bauer, Swaantje Grisanti, Carsten Heinz, Karin Loser and Claudia Lommatzsch
Biomolecules 2025, 15(10), 1364; https://doi.org/10.3390/biom15101364 - 25 Sep 2025
Viewed by 219
Abstract
Purpose: This study sets out to analyze the correlation of ET-1, a vasoactive peptide, along with various cytokines and vascular factors, with clinical parameters and OCT/OCT-A measurements in glaucoma participants. Methods: Eyes of participants with cataract (n = 30) or glaucoma [...] Read more.
Purpose: This study sets out to analyze the correlation of ET-1, a vasoactive peptide, along with various cytokines and vascular factors, with clinical parameters and OCT/OCT-A measurements in glaucoma participants. Methods: Eyes of participants with cataract (n = 30) or glaucoma (n = 87) were examined with optical coherence tomography (OCT) and OCT angiography (OCT-A). Aqueous humor (AqH) from the examined eye and plasma were sampled during cataract or glaucoma surgery and analyzed by means of ELISA and Luminex assay to determine their levels of ET-1 and 35 proteins deemed relevant for regulation of the AqH outflow pathway, ocular perfusion (OP), and glucose metabolism. Results: Glaucomatous eyes are characterized by reductions in RNFL thickness and OP, reflected by reduced vessel density. Furthermore, significantly elevated peripheral ET-1 levels were detected in participants with glaucoma. In addition, significantly elevated AqH levels of MMP-2, MMP-3, ET-1, sEMMPRIN, ZAG, sLOX-1, follistatin, cortisol, endostatin, sTIE-2, and PDGF-BB were detected in the glaucomatous eyes, with correlation to reduced VD for APN, C3a, MMP-3, resistin, sTIE-2, and ZAG. Multivariable analysis showed a correlation of AqH APN levels with the reduced VD in glaucomatous eyes. Conclusions: The peripheral ET-1 level and the intraocular levels of APN, C3a, MMP-3, resistin, sTIE-2, and ZAG are associated with impaired OP in glaucoma. Furthermore, elevated intraocular levels of MMP-3, ZAG, and APN were identified as biomarkers for impaired perfusion in glaucoma. Full article
(This article belongs to the Topic Advances in Adiponectin)
Show Figures

Figure 1

32 pages, 33744 KB  
Article
Attention-Based Enhancement of Airborne LiDAR Across Vegetated Landscapes Using SAR and Optical Imagery Fusion
by Michael Marks, Daniel Sousa and Janet Franklin
Remote Sens. 2025, 17(19), 3278; https://doi.org/10.3390/rs17193278 - 24 Sep 2025
Viewed by 454
Abstract
Accurate and timely 3D vegetation structure information is essential for ecological modeling and land management. However, these needs often cannot be met with existing airborne LiDAR surveys, whose broad-area coverage comes with trade-offs in point density and update frequency. To address these limitations, [...] Read more.
Accurate and timely 3D vegetation structure information is essential for ecological modeling and land management. However, these needs often cannot be met with existing airborne LiDAR surveys, whose broad-area coverage comes with trade-offs in point density and update frequency. To address these limitations, this study introduces a deep learning framework built on attention mechanisms, the fundamental building block of modern large language models. The framework upsamples sparse (<22 pt/m2) airborne LiDAR point clouds by fusing them with stacks of multi-temporal optical (NAIP) and L-band quad-polarized Synthetic Aperture Radar (UAVSAR) imagery. Utilizing a novel Local–Global Point Attention Block (LG-PAB), our model directly enhances 3D point-cloud density and accuracy in vegetated landscapes by learning structure directly from the point cloud itself. Results in fire-prone Southern California foothill and montane ecosystems demonstrate that fusing both optical and radar imagery reduces reconstruction error (measured by Chamfer distance) compared to using LiDAR alone or with a single image modality. Notably, the fused model substantially mitigates errors arising from vegetation changes over time, particularly in areas of canopy loss, thereby increasing the utility of historical LiDAR archives. This research presents a novel approach for direct 3D point-cloud enhancement, moving beyond traditional raster-based methods and offering a pathway to more accurate and up-to-date vegetation structure assessments. Full article
Show Figures

Graphical abstract

20 pages, 458 KB  
Review
The Role of OCTA and Microperimetry in Revealing Retinal and Choroidal Perfusion and Functional Changes Following Silicone Oil Tamponade in Rhegmatogenous Retinal Detachment: A Narrative Review
by Dan-Grigore Dunca and Simona-Delia Nicoară
Diagnostics 2025, 15(19), 2422; https://doi.org/10.3390/diagnostics15192422 - 23 Sep 2025
Viewed by 371
Abstract
Background: Rhegmatogenous retinal detachment (RRD), the most common type of retinal detachment, requires prompt surgery to reattach the retina and avoid permanent vision loss. While surgical treatment is adapted to each individual case, one frequent option is pars plana vitrectomy (PPV) with [...] Read more.
Background: Rhegmatogenous retinal detachment (RRD), the most common type of retinal detachment, requires prompt surgery to reattach the retina and avoid permanent vision loss. While surgical treatment is adapted to each individual case, one frequent option is pars plana vitrectomy (PPV) with silicone oil (SO) tamponade. Despite achieving anatomical success (complete retinal attachment), concerns persist regarding potential microvascular alterations in the retina and choroid, with a negative impact on visual function. Optical coherence tomography angiography (OCTA) allows detailed, in-depth imaging of retinal and choroidal circulation, whereas microperimetry makes it possible to accurately assess macular function. This review aims to strengthen the existing evidence on vascular and functional alterations at the macular level after SO tamponade in cases of RRD. Methods: A narrative review was conducted using a structured approach, utilizing a PubMed search from January 2000 up to April 2025. Twenty-three studies on OCTA and microperimetry after SO tamponade for RRD were included. Data on vessel densities, choroidal vascular index (CVI), foveal avascular zone (FAZ) size, and retinal sensitivity were extracted and qualitatively analyzed. Results: Studies consistently reported a reduction in the vessel density within the superficial capillary plexus (SCP) under SO tamponade, with partial but incomplete reperfusion post-removal. Choroidal perfusion and CVI were also decreased, exhibiting a negative correlation with the duration of SO tamponade. Microperimetry demonstrated significant reductions in retinal sensitivity (~5–10 dB) during SO tamponade, which modestly improved (~1–2 dB) following removal but generally remaining below normal levels. Conclusions: SO tamponade causes substantial retinal and choroidal vascular impairment and measurable macular dysfunction, even after anatomical reattachment of the retina. It is recommended to perform early SO removal (~3–4 months) and implement routine monitoring by OCTA and microperimetry with the aim of optimizing patient outcomes. Future research should focus on investigating protective strategies and enhancing visual rehabilitation following RRD repair. Full article
(This article belongs to the Special Issue Diagnosis, Treatment and Management of Eye Diseases, Third Edition)
Show Figures

Figure 1

16 pages, 3451 KB  
Article
Characterising Ultrasint PP Nat 01 Polypropylene to Examine Its Feasibility in Powder Bed Fusion
by Fredrick Mwania, Maina Maringa and Jacobus van der Walt
Powders 2025, 4(3), 26; https://doi.org/10.3390/powders4030026 - 19 Sep 2025
Viewed by 294
Abstract
The current study examines the feasibility of Ultrasint PP nat 01 polypropylene material in powder bed fusion through powder characterisation. The results obtained are also deemed to be pertinent when developing or validating analytical and numerical models of Polymer Laser Sintering, which were [...] Read more.
The current study examines the feasibility of Ultrasint PP nat 01 polypropylene material in powder bed fusion through powder characterisation. The results obtained are also deemed to be pertinent when developing or validating analytical and numerical models of Polymer Laser Sintering, which were not within the scope of this paper. The following critical characteristics were examined: powder morphology, powder particle size distribution (PSD), bulk density, tapped density, melt flow index, thermal characteristics of the material, degree of crystallinity, and optical properties. Ultrasint PP nat 01 powder has a PSD in the range of 20–80 µm, which is within the recommended particle size distribution. The Hausner ratio, tapped density, and bulk density of the material were calculated and measured as 1.230 ± 0.05, 0.455 ± 0.02 g/cm3, and 0.370 ± 0.03 g/cm3, respectively. The melt flow index of Ultrasint PP nat 01 was measured as 15.8 g/10 min. The initial melting point of the material was determined to be 133.8 °C. The powder used had a relatively high sintering window of 30.7 °C, a degree of crystallinity of around 31.8%, and a high thermal stability of around 461.52 °C. The material was found to attain full fusion of particles at around 170 °C. Fourier Transform Infrared Spectroscopy indicated that Ultrasint PP nat 01 powder has poor radiation absorption, but high transmission properties. Full article
Show Figures

Figure 1

18 pages, 24817 KB  
Article
An Open-Source Modular Bioreactor Platform for Cultivation of Synechocystis sp. PCC 6803 and Extraction of Intracellular Glucose
by Ingie Baho, Yitong Tseo, Yuexuan Zu, Vineet Padia and Ian Hunter
Processes 2025, 13(9), 2985; https://doi.org/10.3390/pr13092985 - 18 Sep 2025
Viewed by 407
Abstract
Synechocystis sp. PCC 6803 is a photosynthetic microbe with high potential for capturing excessive atmospheric carbon while generating valuable bioproducts, like glucose. Current cultivation technologies remain expensive, closed-source, and poorly suited for downstream processing. This study presents a low-cost, open-source bioreactor platform with [...] Read more.
Synechocystis sp. PCC 6803 is a photosynthetic microbe with high potential for capturing excessive atmospheric carbon while generating valuable bioproducts, like glucose. Current cultivation technologies remain expensive, closed-source, and poorly suited for downstream processing. This study presents a low-cost, open-source bioreactor platform with integrated modules for Synechocystis cultivation and glucose extraction. The system incorporates a photobioreactor, a lysis module, and a pressure-driven filtration setup. Optical density was continuously monitored using a custom-built module, and glucose was quantified using high-performance liquid chromatography (HPLC). Under an incident light intensity of approximately 400 μmol m2 s1, cultures reached a biomass productivity of 90 mg L1 day1, with a specific growth rate of 0.166 day1 and glucose concentrations up to 5.08 mg L1. A model was developed to predict the growth based on measured environmental parameters, achieving a strong predictive accuracy with a mean absolute error and variance of 0.0009±0.0003. The system demonstrates up to 65% reduction in cost compared to commercial alternatives. This modular platform provides an accessible solution for biomanufacturing research and serves as a template for sustainable cyanobacteria-derived glucose production. Full article
Show Figures

Figure 1

22 pages, 19737 KB  
Article
Temporal Sculpting of Laser Pulses for Functional Engineering of Al2O3/AgO Films: From Structural Control to Enhanced Gas Sensing Performance
by Doaa Yaseen Doohee, Abbas Azarian and Mohammad Reza Mozaffari
Sensors 2025, 25(18), 5836; https://doi.org/10.3390/s25185836 - 18 Sep 2025
Viewed by 429
Abstract
This study examines the effects of laser pulse duration on the structural, morphological, optical, and gas-sensing characteristics of Al2O3/AgO thin films deposited on glass substrates using pulsed laser deposition (PLD). Pulse durations of 10, 8, and 6 nanoseconds were [...] Read more.
This study examines the effects of laser pulse duration on the structural, morphological, optical, and gas-sensing characteristics of Al2O3/AgO thin films deposited on glass substrates using pulsed laser deposition (PLD). Pulse durations of 10, 8, and 6 nanoseconds were achieved through optical lens modifications to control both energy density and laser spot size. X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses showed a distinct reduction in both crystallite and grain sizes with decreasing pulse width, along with significant improvements in surface morphology refinement and film compactness. Hall effect measurements revealed a transition from n-type to p-type conductivity with decreasing pulse width, demonstrating increased hole concentration and reduced carrier mobility attributed to grain boundary scattering. Furthermore, current-voltage (I-V) characteristics demonstrated improved photoconductivity under illumination, with the most pronounced enhancement observed in samples prepared using longer pulse durations. Gas sensing measurements for NO2 and H2S revealed enhanced sensitivity, improved response/recovery characteristics at 250 °C, with optimal performance achieved in films deposited using shorter pulse durations. This improvement is attributed to their larger surface area and higher density of active adsorption sites. Our results demonstrate a clear relationship between laser pulse parameters and the functional properties of Al2O3/AgO films, providing valuable insights for optimizing deposition processes to develop advanced gas sensors. Full article
(This article belongs to the Special Issue Spectroscopy Gas Sensing and Applications)
Show Figures

Figure 1

Back to TopTop