The Role of OCTA and Microperimetry in Revealing Retinal and Choroidal Perfusion and Functional Changes Following Silicone Oil Tamponade in Rhegmatogenous Retinal Detachment: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Eligibility Criteria
2.3. Quality Assessment and Data Extraction
3. Results
3.1. Macular Retinal Vascular Changes
3.1.1. Superficial Capillary Plexus Vessel Density Changes
3.1.2. Deep Capillary Plexus Vessel Density Changes
3.1.3. FAZ Metrics
3.1.4. Retinal Thickness
3.2. Peripapillary Vascular Changes
3.3. Choroidal Vascular Changes
3.4. Functional Retinal Changes Evaluated by Microperimetry
3.5. Potential Recovery After Silicone Oil Removal
3.6. Quality Assessment of Included Studies
Study (Ref) | Design | N (Eyes) | Macular Status | Device and Scan Size | FAZ | SCP VD | DCP VD | Retinal Thickness | Control vs | Follow-Up | Correlation with Recovery |
---|---|---|---|---|---|---|---|---|---|---|---|
Jiang et al. [22] | Retrospective | 19 | Mac-off | Optovue 6 × 6 mm | ↔ | ↓ at 2 w, ↔ at 12 w, ↓ at 16 w | ↓ at 2–8 w, ↔ at 12 w, ↓ at 16 w | FMT ↓ from 4 to 16 w | Fellow eye | 16 wks | No significant recovery |
Lee & Park [28] | Retrospective | 48 | Mac-on/off | Topcon SS-OCTA 4.5 × 4.5 mm | ↑ | SCP ↔ (nasal ↓) | DCP ↓ (average, nasal, temporal) | Not evaluated | Fellow eye | 6 mo | SO duration correlated with BCVA |
Lee et al. [27] | Retrospective | 38 | Mac-on/off | Zeiss PLEX Elite SS-OCTA 3 × 3 mm | ↑ DCP/SCP | SCP ↔ | DCP ↓ | IR thickness ↓ | Fellow eye | 3 mo | DCP FAZ correlated (longer SO worse) |
Liu et al. [24] | Retrospective | 17 (SO) | Mac-on | Optovue 3 × 3 + 6 × 6 mm | ↔ | SCP ↓ | DCP ↔ | IR thickness ↓ | Fellow eye and gas | ≥30 mo | — |
Nassar et al. [20] | Prospective | 30 | Mac-off | Optovue 6 × 6 mm | ↔ | SCP ↔ | DCP ↔ | CFT ↑ post-SOR | Baseline (pre vs. post-SOR) | 1 mo | Positive functional recovery |
Roohipoor et al. [30] | Prospective | 45 | Mac-off | Optovue 3 × 3 mm | ↔ | SCP ↓ early, partial ↑ later (still < fellow) | DCP ↓ foveal 1–3 m | CFT ↓, partial ↑ later | Fellow eye | 3 mo | Partial (foveal DCP mild recovery) |
Salehi et al. [26] | Prospective | 43 | Mac-off | Optovue 6 × 6 mm | ↔ | SCP ↔ | DCP ↔ (temporal deficit) | Stable | Fellow eye | 3 mo post-SOR | No significant recovery |
Fang et al. [25] | Prospective | 29 (20 SO, 9 air) | Mac-off | Optovue 3 × 3 mm | ↔ | SCP ↓ SO vs. air (1 m, 3 m); ↔ within SO | DCP ↔ | PFRT ↓ in SO vs. air | Gas (external control) + within-SO | 3 mo | Limited (SCP only) |
Ya et al. [29] | Retrospective | 7 | Mac-off | Optovue 6 × 6 mm | ↔ | SCP ↓ | DCP ↔ | Not evaluated | Fellow eye | ~3 mo | — |
Hou et al. [18] | Prospective | 50 | Mac-off | Zeiss AngioPlex 6 × 6 mm | — | SCP ↓ during SO, ↑ after SOR | DCP ↔ | CRT ↑ post-SOR | Gas controls + fellow + baseline | 3 mo post-SOR | Improvement (macular only) |
Gironi et al. [23] | Retrospective | 82 | Mac-on/off | Canon OCT-HS100 3 × 3 mm | — | SCP ↓ & VLD ↓ (esp. Mac-off) | DCP ↔ | CMT ↑, CME ↑ | Fellow eye + gas | 12 mo post-SOR | SO duration inversely correlated with SCP VD |
Study (Ref) | Design | N (Eyes) | Tamponade | Macular Status | OCT/OCTA Characteristics | Follow-Up | Main Changes Observed | Control vs | Correlation with SO Duration/Recovery |
---|---|---|---|---|---|---|---|---|---|
Chen et al. [32] | Retrospective | 36 | SO 5000–5400 cSt | Mac-on/off | Heidelberg Spectralis EDI-OCT, CVI (luminal, stromal, total area), CT | Pre-SOR vs. ≥2 mo post-SOR | ↓ CVI (p < 0.001), ↓ luminal area; ↔ stromal/total area, ↔ CT; partial CVI recovery post-SOR | Fellow eye + baseline (pre vs. post-SOR) | Longer SO → greater CVI reduction |
Karasu et al. [33] | Prospective | 70 | SO 5000 cSt | Mac-off | Heidelberg Spectralis EDI-OCT, SFCT | 3 mo post-SOR | ↓ SFCT (p = 0.004), proportional to SO duration; partial ↑ post-SOR | Baseline (pre vs. post-SOR) | SO > 9 mo → significant SFCT thinning |
Karimi et al. [34] | Retrospective | 60 (all pseudophakic) | SO 5700 cSt | Mac-off | Heidelberg Spectralis EDI-OCT, SFCT | 3 mo post-SOR | ↓ SFCT (p < 0.001), more pronounced in prolonged SO (>6 mo); minimal recovery (~2 µm) | Fellow eye + baseline (pre vs. post-SOR) | Longer SO (>6 mo) → less SFCT recovery |
Mirza et al. [35] | Prospective | 24 (19 analyzed) | SO 1000 cSt | Mac-off | Heidelberg Spectralis EDI-OCT, SFCT | 2 wks, 3 mo (SO in situ) + 1 mo post-SOR | SFCT: ↔ at 2 w and 3 m during SO (p = 0.96); ↓ at 1 m post-SOR (p = 0.03 vs. baseline) | Fellow eye + baseline (pre vs. post-SOR) | ΔSFCT% correlated with SO duration (rho = 0.537, p = 0.032) |
Prasuhn et al. [36] | Retrospective before–after | 19 (all pseudophakic) | SO 5000 cSt | Mac-off | Zeiss Cirrus AngioPlex 6 × 6 mm OCTA + EDI-OCT | 4 wks post-SOR | ↑ CCP perfusion (p = 0.0013); ↓ Sattler’s (p = 0.034) & Haller’s (p = 0.0402); ↔ SFCT | Baseline (pre vs. post-SOR) | Redistribution of choroidal perfusion after SOR |
Study (Ref) | Study Design | Phase | N (Eyes) | Macular Status | Functional Modality (Device/Parameters) | Follow-Up | Main Functional Changes | Control vs | Quality/Reliability Reporting | Correlation with Recovery Potential |
---|---|---|---|---|---|---|---|---|---|---|
Delolme et al. [37] | Observational case series | Post-op (≥6 mo after RRD repair; PPV/SB; small SO subgroup) | 30 | Mac-off | Microperimetry (Spectral OCT/SLO, ~28 points, ~11–12°); BCVA | Mean 23.1 ± 10.3 mo (7–37) | RS ↓ in eyes with IS/OS disruption; foveal RS ↓ with PROS thinning; BCVA not strongly associated with lesion type | Fellow eye | Clear media; OCT reviewed by two graders; fixation tracked | RS associated with IS/OS integrity and PROS thickness |
Dou et al. [38] | Retrospective cohort | Post-SOR | 48 | Mac-off | Microperimetry (Nidek MP-3, 45 points, 12°); BCVA logMAR | Pre-SOR vs. 3 mo post-SOR | RS ↑ (2° and 6°, both p < 0.05); fixation rate ↑; BCVA ↔ | Baseline (pre vs. post-SOR) | OCTA SSI >6; poor images excluded; central fixation required | RS/FR improvement despite DCP VD ↔; SCP VD ↑ and RNFLT ↑ post-SOR |
Nagpal et al. [39] | Prospective interventional | Post-SOR | 20 | Mac-off | Microperimetry (Nidek MP-3, 37 stimuli, 12°); BCVA logMAR | Pre-SOR vs. 1 mo post-SOR | RS ↑ in 100% of eyes (p < 0.0001); BCVA ↔ | Baseline (pre vs. post-SOR) | MP reliability criteria (<15% false answers); dark room; eye-tracking | Functional gain without BCVA change; early recovery signal |
Nassar et al., 2024 [20] | Prospective case series | Post-SOR | 30 | Mac-off | Microperimetry (Optos SLO, 28 points, 11°); BCVA logMAR | Pre-SOR vs. 1 mo post-SOR | RS ↑ (p < 0.001); BCVA ↑ (p < 0.001) | Baseline (pre vs. post-SOR) | OCTA SSI > 6; poor images excluded; standardized SLO grid | ONH/RPC VD ↑ post-SOR while macular VD ↔ → function may recover independently of macular perfusion |
Nassar et al., 2019 [21] | Prospective comparative cohort | Post-SOR | 22 | Mac-off | Microperimetry (Optos SLO, 28 points, 11°); BCVA logMAR | 1 day pre-SOR vs. 1 mo post-SOR (<3 mo SO vs. 3–6 mo SO) | RS ↑ in both groups (p ≤ 0.008); BCVA ↑ (p ≤ 0.007) | Baseline (pre vs. post-SOR; two SO-duration subgroups) | MP reliability criteria; dark room; fellow eye occluded | RS gain independent of SO duration (≤6 mo) |
Scheerlinck et al., 2016 [40] | Retrospective cohort | During SO and post-SOR (2 mo) | 193 (SO subset 37; MP subset ~10) | Mac-on | Microperimetry (Optos OCT/SLO, 21 points, 11°); BCVA | ~2 mo post-SOR; extended follow-up in subset | Distinct central 2° scotoma in eyes with unexplained VL; RS severely ↓; BCVA ↓ in VL eyes | Gas controls + baseline (pre vs. post-SOR) | OCT SSI ≥7; poor scans excluded | SO duration = only significant risk factor for unexplained VL |
Scheerlinck et al., 2018 [19] | Prospective observational cohort | Post-SOR (SO) vs. post-op (gas) | 40 (10/group) | Mixed (Mac-on/off) | Microperimetry (Optos OCT/SLO, 25 stimuli, 11°); BCVA | 2 mo post-op | RS ↓ in SO vs. gas (Mac-on: 11.8 vs. 15.6 dB, p = 0.003; Mac-off: 11.6 vs. 15.0 dB, p = 0.037); small central scotomas only in SO groups | Gas controls | Reliability checked; poor MP scans excluded | Functional sensitivity disadvantage with SO vs. gas at 2 mo |
4. Discussion
4.1. Interpretation of Key Results
4.2. Integration with Existing Literature
4.3. Structure–Function Relationships and Perfusion Correlations
4.4. Clinical Significance
4.5. Sources of Heterogeneity and Inconsistent Findings
4.6. Limitations of Current Evidence
4.7. Recommendations for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RRD | Rhegmatogenous retinal detachment |
SO | Silicone oil |
OCTA | Optical coherence tomography angiography |
FAZ | Foveal avascular zone |
VD | Vessel density |
SCP | Superficial capillary plexus |
DCP | Deep capillary plexus |
CFT | Central foveal thickness |
SFCT | Subfoveal choroidal thickness |
CVI | Choroidal vascularity index |
SVD | Superficial vessel density |
SPD | Superficial perfusion density |
GCL-IPL | Ganglion cell layer–inner plexiform layer |
Temp/Inf | Temporal/inferior |
dB | Decibel (unit for retinal sensitivity in microperimetry) |
mo | Months |
w | Weeks |
References
- Kuhn, F.; Aylward, B. Rhegmatogenous retinal detachment: A reappraisal of its pathophysiology and treatment. Ophthalmic Res. 2014, 51, 15–31. [Google Scholar] [CrossRef]
- D’Amico, D.J. Clinical practice: Primary retinal detachment. N. Engl. J. Med. 2008, 359, 2346–2354. [Google Scholar] [CrossRef]
- Christou, E.E.; Stavrakas, P.; Batsos, G.; Christodoulou, E.; Stefaniotou, M. Association of OCT-A characteristics with postoperative visual acuity after rhegmatogenous retinal detachment surgery: A review of the literature. Int. Ophthalmol. 2021, 41, 2283–2292. [Google Scholar] [CrossRef]
- Mitry, D.; Charteris, D.G.; Yorston, D.; Siddiqui, M.A.; Campbell, H.; Murphy, A.L.; Fleck, B.W.; Wright, A.F.; Singh, J.; Scottish RD Study Group. The epidemiology and socioeconomic associations of retinal detachment in Scotland: A two-year prospective population-based study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4963–4968. [Google Scholar] [CrossRef]
- van de Put, M.A.J.; Hooymans, J.M.M.; Los, L.I.; Dutch Rhegmatogenous Retinal Detachment Study Group. The incidence of rhegmatogenous retinal detachment in The Netherlands. Ophthalmology 2013, 120, 616–622. [Google Scholar] [CrossRef]
- Feltgen, N.; Walter, P. Rhegmatogenous retinal detachment–an ophthalmologic emergency. Dtsch. Arztebl. Int. 2014, 111, 12–21. [Google Scholar] [CrossRef]
- Pastor, J.C.; Rojas, J.; Pastor-Idoate, S.; Di Lauro, S.; Gonzalez-Buendia, L.; Delgado-Tirado, S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog. Retin. Eye Res. 2016, 51, 125–155. [Google Scholar] [CrossRef] [PubMed]
- Ang, G.S.; Townend, J.; Lois, N. Epidemiology of giant retinal tears in the United Kingdom: The British Giant Retinal Tear Epidemiology Eye Study (BGEES). Investig. Ophthalmol. Vis. Sci. 2010, 51, 4781–4787. [Google Scholar] [CrossRef] [PubMed]
- Al-Jazzaf, A.M.; Netland, P.A.; Charles, S. Incidence and management of elevated intraocular pressure after silicone oil injection. J. Glaucoma 2005, 14, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Barca, F.; Caporossi, T.; Rizzo, S. Silicone oil: Different physical proprieties and clinical applications. Biomed. Res. Int. 2014, 2014, 502143. [Google Scholar] [CrossRef]
- Shah, R.; Byanju, R.; Pradhan, S. Outcomes of silicone oil removal in complex retinal detachment. Nepal J. Ophthalmol. 2018, 10, 124–129. [Google Scholar] [CrossRef]
- Lina, G.; Xuemin, Q.; Qinmei, W.; Lijun, S. Vision-related quality of life, metamorphopsia, and stereopsis after successful surgery for rhegmatogenous retinal detachment. Eye 2016, 30, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, F.; Murakami, T.; Morikawa, S.; Sugiura, Y.; Hiraoka, T.; Oshika, T. Vision-related parameters affecting stereopsis after retinal detachment surgery. J. Clin. Med. 2023, 12, 1527. [Google Scholar] [CrossRef]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical coherence tomography angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Yau, C.W.L.; Sim, S.S.; Cheung, C.M.G. Editorial: Application of optical coherence tomography angiography in retinal and optic nerve disorders. Front. Neurol. 2021, 12, 777156. [Google Scholar] [CrossRef]
- Díaz-Barreda, M.D.; Boned-Murillo, A.; Bartolomé-Sesé, I.; Sopeña-Pinilla, M.; Orduna-Hospital, E.; Fernández-Espinosa, G.; Pinilla, I. Impact of rhegmatogenous retinal detachment on macular vascular and functional integrity. Biomedicines 2024, 12, 2911. [Google Scholar] [CrossRef]
- Ooshiro, T.; Iijima, H. Postoperative recovery of light sensitivity in eyes with rhegmatogenous retinal detachment. Ophthalmologica 2017, 238, 52–58. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, L.; Wang, G.; Xie, J.; Wang, Y. Early vascular changes after silicone oil removal using optical coherence tomography angiography. BMC Ophthalmol. 2023, 23, 128. [Google Scholar] [CrossRef]
- Scheerlinck, L.M.; Schellekens, P.A.; Liem, A.T.; Steijns, D.; van Leeuwen, R. Retinal sensitivity following intraocular silicone oil and gas tamponade for rhegmatogenous retinal detachment. Acta Ophthalmol. 2018, 96, 641–647. [Google Scholar] [CrossRef]
- Nassar, G.A.; Makled, H.S.; Youssef, M.M.; Hassan, L.M. Functional and perfusion changes associated with silicone oil tamponade after macula-off rhegmatogenous retinal detachment surgery: An optical coherence tomography angiography/microperimetry study. Int. Ophthalmol. 2024, 44, 107. [Google Scholar] [CrossRef] [PubMed]
- Nassar, G.A.; Youssef, M.M.; Hassan, L.M.; Makled, H.S. Retinal sensitivity before and after silicone oil removal using microperimetry. J. Ophthalmol. 2019, 2019, 2723491. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chen, S.; Jia, Y.D.; Li, R.; Zhou, J.X.; Li, R.M. Evaluation of macular vessel density changes after vitrectomy with silicone oil tamponade in patients with rhegmatogenous retinal detachment. Int. J. Ophthalmol. 2021, 14, 881–886. [Google Scholar] [CrossRef]
- Gironi, M.; D’Aloisio, R.; Verdina, T.; Vivarelli, C.; Leonelli, R.; Kaleci, S.; Toto, L.; Mastropasqua, R. Long-term macular vascular changes after primary rhegmatogenous retinal detachment surgery resolved with different tamponade or different surgical techniques. Life 2022, 12, 1525. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lei, B.; Jiang, R.; Huang, X.; Zhou, M.; Xu, G. Changes of macular vessel density and thickness in gas and silicone oil tamponades after vitrectomy for macula-on rhegmatogenous retinal detachment. BMC Ophthalmol. 2021, 21, 392. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zhai, J.; Mao, J.B.; Li, H.D.; Qian, Z.B.; Chen, C.Q.; Xu, J.H.; Shen, L.J.; Chen, Y.Q. A decrease in macular microvascular perfusion after retinal detachment repair with silicone oil. Int. J. Ophthalmol. 2021, 14, 875–880. [Google Scholar] [CrossRef]
- Salehi, A.; Malekahmadi, M.; Karimi, A.; Beni, A.N. Retinal vascular changes after silicone oil removal in the eye with rhegmatogenous retinal detachment. Int. J. Retin. Vitr. 2024, 10, 68. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, J.Y.; Lee, S.Y.; Jeong, J.H.; Lee, E.K. Foveal microvascular structures in eyes with silicone oil tamponade for rhegmatogenous retinal detachment: A swept-source optical coherence tomography angiography study. Sci. Rep. 2020, 10, 2555. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, Y.G. Microvascular changes on optical coherence tomography angiography after rhegmatogenous retinal detachment vitrectomy with silicone tamponade. PLoS ONE 2021, 16, e0248433. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, X.Q.; Peng, X.Y. Macular perfusion changes and ganglion cell complex loss in patients with silicone oil-related visual loss. Biomed. Environ. Sci. 2020, 33, 151–157. [Google Scholar] [CrossRef]
- Roohipoor, R.; Tayebi, F.; Riazi-Esfahani, H.; Khodabandeh, A.; Karkhaneh, R.; Davoudi, S.; Khurshid, G.S.; Momenaei, B.; Ebrahimiadib, N.; Modjtahedi, B.S.; et al. Optical coherence tomography angiography changes in macula-off rhegmatogenous retinal detachments repaired with silicone oil. Int. Ophthalmol. 2020, 40, 3295–3302. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, R.; Zhou, J.X.; Li, R.M.; Wang, R.H.; Wang, X.P.; Dou, R.; Jia, Y.D.; Li, S.N.; Chen, S.; et al. Peripapillary changes after vitrectomy and silicone oil tamponade for rhegmatogenous retinal detachment. Indian J. Ophthalmol. 2021, 69, 3579–3583. [Google Scholar] [CrossRef]
- Chen, J.; Guan, L.; Liu, Y.; Song, Y.; Tang, Y.; Cao, Y.; Li, M.; Sheng, A.; Zhang, Z.; Liu, H.; et al. Choroidal vascular changes in silicone oil-filled eyes after vitrectomy for rhegmatogenous retinal detachments. BMC Ophthalmol. 2023, 23, 442. [Google Scholar] [CrossRef]
- Karasu, B.; Erıs, E.; Sonmez, O.; Bekmez, S. The effect of silicone oil presence time on macular and choroidal thickness with macula-off rhegmatogenous retinal detachment. J. Fr. Ophtalmol. 2020, 43, 626–634. [Google Scholar] [CrossRef]
- Karimi, S.; Entezari, M.; Nikkhah, H.; Esfandiari, H.; Darvishpoor, T.; Tavakoli, M.; Safi, S. Effects of intravitreal silicone oil on subfoveal choroidal thickness. Ophthalmologica 2018, 239, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Mirza, E.; Şatırtav, G.; Oltulu, R.; Kerimoğlu, H.; Gündüz, M.K. Subfoveal choroidal thickness change following pars plana vitrectomy with silicone oil endotamponade for rhegmatogenous retinal detachment. Int. Ophthalmol. 2019, 39, 1717–1722. [Google Scholar] [CrossRef]
- Prasuhn, M.; Rommel, F.; Mohi, A.; Grisanti, S.; Ranjbar, M. Impact of silicone oil removal on macular perfusion. Tomography 2022, 8, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Delolme, M.P.; Dugas, B.; Nicot, F.; Muselier, A.; Bron, A.M.; Creuzot-Garcher, C. Anatomical and functional macular changes after rhegmatogenous retinal detachment with macula off. Am. J. Ophthalmol. 2012, 153, 128–136. [Google Scholar] [CrossRef]
- Dou, R.; Li, R.; Li, R.C.; Yu, Y.R.; Zhou, J.X.; Li, R.M.; Wang, X.P.; Zhang, D.C.; Jiang, J.; Chen, S.; et al. Evaluation of retinal structural and functional changes after silicone oil removal in patients with rhegmatogenous retinal detachment: A retrospective study. Int. J. Retin. Vitr. 2024, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, M.; Khandelwal, J.; Eltayib, A.; Mehrotra, N.; Juneja, R. Preoperative and postoperative macular sensitivity assessment using microperimetry in eyes undergoing silicone oil removal. Retina 2020, 40, 1574–1578. [Google Scholar] [CrossRef]
- Scheerlinck, L.M.; Schellekens, P.A.; Liem, A.T.; Steijns, D.; van Leeuwen, R. Incidence, risk factors, and clinical characteristics of unexplained visual loss after intraocular silicone oil for macula-on retinal detachment. Retina 2016, 36, 342–350. [Google Scholar] [CrossRef]
- Ferrara, M.; Coco, G.; Sorrentino, T.; Jasani, K.M.; Moussa, G.; Morescalchi, F.; Dhawahir-Scala, F.; Semeraro, F.; Steel, D.H.W.; Romano, V.; et al. Retinal and corneal changes associated with intraocular silicone oil tamponade. J. Clin. Med. 2022, 11, 5234. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, W.; Jin, X.; Zhang, Y.; Li, R.; Liu, T. Macular microcirculation changes after repair of rhegmatogenous retinal detachment assessed with optical coherence tomography angiography: A systematic review and meta-analysis. Front. Physiol. 2022, 13, 995353. [Google Scholar] [CrossRef] [PubMed]
- Januschowski, K.; Rickmann, A.; Smith, J.; Pastor-Idoate, S.; Pastor, J.C. Vision loss associated with silicone oil endotamponade in vitreoretinal surgery—A review. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 3453–3463. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunca, D.-G.; Nicoară, S.-D. The Role of OCTA and Microperimetry in Revealing Retinal and Choroidal Perfusion and Functional Changes Following Silicone Oil Tamponade in Rhegmatogenous Retinal Detachment: A Narrative Review. Diagnostics 2025, 15, 2422. https://doi.org/10.3390/diagnostics15192422
Dunca D-G, Nicoară S-D. The Role of OCTA and Microperimetry in Revealing Retinal and Choroidal Perfusion and Functional Changes Following Silicone Oil Tamponade in Rhegmatogenous Retinal Detachment: A Narrative Review. Diagnostics. 2025; 15(19):2422. https://doi.org/10.3390/diagnostics15192422
Chicago/Turabian StyleDunca, Dan-Grigore, and Simona-Delia Nicoară. 2025. "The Role of OCTA and Microperimetry in Revealing Retinal and Choroidal Perfusion and Functional Changes Following Silicone Oil Tamponade in Rhegmatogenous Retinal Detachment: A Narrative Review" Diagnostics 15, no. 19: 2422. https://doi.org/10.3390/diagnostics15192422
APA StyleDunca, D.-G., & Nicoară, S.-D. (2025). The Role of OCTA and Microperimetry in Revealing Retinal and Choroidal Perfusion and Functional Changes Following Silicone Oil Tamponade in Rhegmatogenous Retinal Detachment: A Narrative Review. Diagnostics, 15(19), 2422. https://doi.org/10.3390/diagnostics15192422