Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = optical code-division multiple-access (OCDMA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6803 KiB  
Article
Capacity Enhancement in Free-Space Optics Networks via Optimized Optical Code Division Multiple Access Image Transmission
by Somia A. Abd El-Mottaleb, Mehtab Singh, Hassan Yousif Ahmed, Median Zeghid and Maisara Mohyeldin Gasim Mohamed
Photonics 2025, 12(6), 571; https://doi.org/10.3390/photonics12060571 - 5 Jun 2025
Viewed by 446
Abstract
This paper presents a new high-speed RGB image transmission system over Free-Space Optics (FSO) channel employing Optical Code Division Multiple Access (OCDMA) with Permutation Vector (PV) codes. Four RGB images are transmitted simultaneously at 10 Gbps per image, achieving a total capacity of [...] Read more.
This paper presents a new high-speed RGB image transmission system over Free-Space Optics (FSO) channel employing Optical Code Division Multiple Access (OCDMA) with Permutation Vector (PV) codes. Four RGB images are transmitted simultaneously at 10 Gbps per image, achieving a total capacity of 40 Gbps. The system’s performance is evaluated under various atmospheric conditions, including three fog levels and real-world visibility data from Alexandria city, Egypt. Image Quality Assessment (IQA) metrics, including Signal-to-Noise Ratio (SNR), Root Mean Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR), correlation coefficients, and Structural Similarity Index Measure (SSIM), are evaluated for both unfiltered and median-filtered images. The results show significant degradation in image quality due to transmission distance and atmospheric attenuation. In Alexandria’s clear atmospheric conditions, the system achieves a maximum transmission range of 15 km with acceptable visual quality, while the range is reduced to 2.6 km, 1.6 km, and 1 km for Low Fog (LF), Medium Fog (MF), and Heavy Fog (HF), respectively. At these distances, the RGB images achieve minimum SNR, RMSE, and SSIM values of 7.27 dB, 47.66, and 0.20, respectively, with further improvements when applying median filtering. Full article
(This article belongs to the Special Issue Optical Wireless Communication in 5G and Beyond)
Show Figures

Figure 1

25 pages, 16145 KiB  
Article
Fuzzy Logic-Based Performance Enhancement of FSO Systems Under Adverse Weather Conditions
by Hassan Yousif Ahmed, Medien Zeghid, Akhtar Nawaz Khan and Somia A. Abd El-Mottaleb
Photonics 2025, 12(5), 495; https://doi.org/10.3390/photonics12050495 - 16 May 2025
Cited by 1 | Viewed by 562
Abstract
In this paper, we propose an application of fuzzy logic control (FLC) to improve the system performance of free-space optics (FSO) networks using the optical code-division multiple-access (OCDMA) technique. The primary objective is to dynamically adjust the bit error rate (BER) threshold at [...] Read more.
In this paper, we propose an application of fuzzy logic control (FLC) to improve the system performance of free-space optics (FSO) networks using the optical code-division multiple-access (OCDMA) technique. The primary objective is to dynamically adjust the bit error rate (BER) threshold at the receiver based on weather conditions (i.e., rain and fog) and the propagation distance (which significantly affects the received power). The FLC module at the receiver integrates and processes these variables to optimize the BER threshold. The FLC module operates through an algorithm comprising eight well-defined steps, ensuring robust and adaptive control of the BER. Simulation results show that the FSO-FLC-based system has significant advantages over traditional approaches. For instance, under heavy rain conditions, the FSO-FLC system supports 12 users compared to a traditional system, which supports 7 users without FLC over a distance of 2.8 km with BER 109. Similarly, under heavy fog conditions, the FSO-FLC system can support 22 users compared to a traditional system, which supports 18 users without FLC over a distance of 0.5 km with equal BER. These values show that the performance of FSO under weather conditions significantly improves when using the proposed approach. The computational efficiency and real-time feasibility of the FSO-FLC are also analyzed. The complexity of the FLC is O(1), indicating that the execution time remains constant regardless of input size. An Intel Core i7-1165G7 (2.80 GHz) using MATLAB’s fuzzy logic toolbox is used for all experiments. Results show that the proposed FLC executes up to 4 ms per decision cycle, which ensures real-time adaptability for practical FSO communication systems. Full article
Show Figures

Figure 1

20 pages, 6949 KiB  
Article
Fault Tolerant Spectral/Spatial Optical Code Division Multiple Access Passive Optical Network
by Rahat Ullah, Sibghat Ullah, Jianxin Ren, Yaya Mao, Zhipeng Qi, Jamil Hussain, Feng Wang, Faheem Khan and Waqas Ahmed Imtiaz
Sensors 2024, 24(22), 7355; https://doi.org/10.3390/s24227355 - 18 Nov 2024
Viewed by 966
Abstract
High-capacity communication networks are built to provide high throughput and low latency to accommodate the growing demand for bandwidth. However, the provision of these features is subject to a robust underlying network, which can provide high capacity with maximum reliability in terms of [...] Read more.
High-capacity communication networks are built to provide high throughput and low latency to accommodate the growing demand for bandwidth. However, the provision of these features is subject to a robust underlying network, which can provide high capacity with maximum reliability in terms of the system’s connection availability. This work optimizes an existing 2D spectral–spatial optical code division multiple access (OCDMA) passive optical network (PON) to maximize connection availability while maintaining desirable communication capacity and capital expenditure. Optimization is performed by employing ring topology at the feeder level, which is used to provide a redundant path in case of connection failures. Furthermore, high transmission capacity is ensured by utilizing a pseudo-3D double-weight zero cross-correlation (DW-ZCC) code. The analysis is performed with Optisystem simulations to observe the performance of the system in terms of bit error rate (BER), received power, and eye openings. It is observed that the introduction of ring topology at the feeder level of the PON does not impact the overall transmission capacity of the system. The system can still support maximum transmission capacity at receiver sensitivities of up to −19 dB. Reliability analysis also shows that the optimized ring-based architecture can provide desirable connection availability compared to the existing system. Full article
Show Figures

Figure 1

17 pages, 2449 KiB  
Article
Utilizing States of Polarization in One-Dimensional Corite Codes with Two-Code Keying for Optical Code-Division Multiple Access
by Bih-Chyun Yeh
Photonics 2024, 11(9), 819; https://doi.org/10.3390/photonics11090819 - 30 Aug 2024
Cited by 2 | Viewed by 1025
Abstract
We propose a novel family of codes comprising two mutually orthogonal states of polarization (SOPs) for the spectral encoding of one-dimensional (1D) Corite codes with two-code keying (TCK) for use in the spectral amplitude coding (SAC) of optical code-division multiple access (OCDMA) networks. [...] Read more.
We propose a novel family of codes comprising two mutually orthogonal states of polarization (SOPs) for the spectral encoding of one-dimensional (1D) Corite codes with two-code keying (TCK) for use in the spectral amplitude coding (SAC) of optical code-division multiple access (OCDMA) networks. We design these 1D Corite codes with TCK to create a specific code operation function, an encoding optical transmitter structure, and a decoding optical receiver structure, respectively. In the proposed system, multi-user interference (MUI) can occur due to interference from other simultaneous users. However, we have modified the cross-correlation to cancel out the MUI. Although the proposed system recovers bits successfully, it still suffers from phase-induced intensity noise (PIIN). Our numerical results demonstrate that the proposed system using 1D Corite codes with TCK can support a larger number of simultaneous users than other systems that use 1D CTP codes with TCK, 1D M3 sequence codes, 1D BIBD codes, and 1D BDS codes with TCK. Specifically, the proposed system can support up to 48 simultaneous users, which is a notable improvement. Our numerical results indicate that the proposed system using 1D Corite codes with TCK can achieve a data transmission rate of up to 2.5 Gbps, which is a significant improvement. Full article
(This article belongs to the Special Issue Optical Fiber Communication Systems and Networks)
Show Figures

Figure 1

21 pages, 6842 KiB  
Article
A 930 m/180 Gbps*User Underwater Coherent Optical Code-Division Multiple-Access Network Based on Hybrid 256-Differential Pulse Position Modulation and Weighted Modified Prime Code Sequence
by Morsy Ahmed Morsy Ismail and Khalid Saleh
Photonics 2024, 11(4), 368; https://doi.org/10.3390/photonics11040368 - 15 Apr 2024
Cited by 3 | Viewed by 1550
Abstract
Currently, there are three types of optical communication networks based on the communication channel between the transmitter and receiver: the optical fiber channel, visible light channel, and optical wireless channel networks. The last type has several advantages for underwater communication, wireless sensors, and [...] Read more.
Currently, there are three types of optical communication networks based on the communication channel between the transmitter and receiver: the optical fiber channel, visible light channel, and optical wireless channel networks. The last type has several advantages for underwater communication, wireless sensors, and military communication networks. However, this type of optical network suffers from weather conditions in free-space communications and attenuation owing to the scattering and absorption mechanisms for underwater communication. In this study, we present a new transceiver architecture of a coherent optical code-division multiple-access (OCDMA) system based on a hybrid M-ary differential pulse position modulation scheme and a spreading code sequence called weighted modified prime code for underwater communication to minimize channel dispersion, increase the transmission rate per second, enhance the network bit error rate (BER) performance, and improve network security. Using an OCDMA system, we can simultaneously expand the network coverage area and increase the number of users sharing the network over the same channel bandwidth. The simulation results in this study proved that the proposed system can accommodate 1310 active users and a network throughput of 180 Gbps*user over a transmission distance of 930 m without any repeater at a 10−9 BER performance, compared to the 45 Gbps*user network throughput and 100 m transmission distance reported in the literature. Full article
Show Figures

Figure 1

20 pages, 1243 KiB  
Article
A Secure Optical Body Area Network Based on Free Space Optics and Time-Delayed 2D-Spectral/Spatial Optical CDMA
by Firdos Kanwal, Khurram Karim Qureshi, Waqas A. Imtiaz, Anwar Ul Haq and Jawad Mirza
Appl. Sci. 2023, 13(16), 9347; https://doi.org/10.3390/app13169347 - 17 Aug 2023
Cited by 7 | Viewed by 1575
Abstract
Free space optics (FSO)-based optical body area networks (OBANs) are receiving massive attention as an opportunity to address the limitations of their radio frequency (RF)-based counterparts. This boom in research interests is primarily due to multitude of benefits, including high capacity, immunity to [...] Read more.
Free space optics (FSO)-based optical body area networks (OBANs) are receiving massive attention as an opportunity to address the limitations of their radio frequency (RF)-based counterparts. This boom in research interests is primarily due to multitude of benefits, including high capacity, immunity to electromagnetic interference (EMI), rapid installation, cost efficiency, and license-free use of spectrum. Securing the transmission of patient health data against interception in OBANs using insecure FSO channels is a challenging task. Therefore, we propose a low-cost, flexible, and secure OBAN based on FSO technology and a time-delayed two dimensional (2D) spectral/spatial optical code-division multiple access (OCDMA) system. The proposed architecture consists of eight sensors attached to the bodies of patients. The sensors operate at a rate of 50 kbps. Electrical data generated from each sensor are used to modulate an optical carrier and then encoded using 2D-spectral/spatial double weight–zero cross correlation (DW-ZCC) code. The 2D encoded optical signals are then time delayed to eliminate the multiple parallel FSO channels between the transmitter and medical center. The combined optical signal consists of eight 2D-encoded time-delayed optical signals transmitted towards a remote medical center over an FSO channel with a range of 1 km. The received signal is decoded and the data from each sensor are recovered after photodetection at the medical center for further analysis. The overall performance of the sensors is analyzed using bit-error rate (BER) and quality factor (Q-factor) plots for different weather conditions and lengths of the FSO channel, considering the log-normal channel model. The capital expenditure (CAPEX) of the proposed architecture is analyzed and compared with the conventional 2D-spectral/spatial FSO system to determine the overall impact of introducing time delay units on the cost of implementation. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

11 pages, 2371 KiB  
Article
Performance Analysis of Coherent Source SAC OCDMA in Free Space Optical Communication Systems
by Ahmed M. Alhassan, Eithar Issam, Syed Alwee Aljunid, Mohd Rashidi Che Beson, Syed Mohammad Ammar, Norshamsuri Ali and Rosdisham Endut
Symmetry 2023, 15(6), 1152; https://doi.org/10.3390/sym15061152 - 26 May 2023
Cited by 3 | Viewed by 1554
Abstract
In this paper, we investigate the performance of spectral amplitude coding optical code division multiple access (SAC OCDMA) systems under the effect of beat noise and turbulence. Three different multi-laser source configurations are considered in this analysis: shared multi-laser, separate multi-laser, and carefully [...] Read more.
In this paper, we investigate the performance of spectral amplitude coding optical code division multiple access (SAC OCDMA) systems under the effect of beat noise and turbulence. Three different multi-laser source configurations are considered in this analysis: shared multi-laser, separate multi-laser, and carefully controlled center frequency separate multi-laser. We demonstrate through Monte Carlo simulation that the gamma–gamma probability density function (pdf) cannot adequately approximate the measured intensity of overlapping lasers and that an empirical pdf is required. Results also show it is possible to achieve error-free transmission at a symmetrical data rate of 10 Gbps for all active users when only beat noise is taken into account by precisely controlling the center frequencies. However, only 30% of the active users can be supported when both beat noise and turbulence are considered. Full article
Show Figures

Figure 1

26 pages, 7451 KiB  
Article
Capacity Improvement of 3D-OCDMA-PON Hybrid System Next Generation Using Weight Zero Cross Correlation Code
by Abdelhamid Cherifi, Tarik Mohammed Chikouche, Abdullah S. Karar, Julien Moussa H. Barakat, Omar Arbouche and Iyad Dayoub
Appl. Sci. 2023, 13(10), 5869; https://doi.org/10.3390/app13105869 - 10 May 2023
Cited by 7 | Viewed by 2087
Abstract
This paper proposes a novel code for optical code division multiple access (OCDMA) systems, called the three-dimensional (3D) spectral/temporal/spatial single weight zero cross-correlation (3D-SWZCC) code. The proposed code could potentially be used in the next generation of passive optical networks (NG-PONs) to provide [...] Read more.
This paper proposes a novel code for optical code division multiple access (OCDMA) systems, called the three-dimensional (3D) spectral/temporal/spatial single weight zero cross-correlation (3D-SWZCC) code. The proposed code could potentially be used in the next generation of passive optical networks (NG-PONs) to provide a 3D-SWZCC-OCDMA-NG-PON system. The developed code has a high capacity and a zero cross-correlation property that completely suppresses the multiple access interference (MAI) effects that are a main drawback for OCDMA systems. Previously, a two-dimensional (2D) SWZCC code was proposed for two-dimensional OCDMA (2D-OCDMA) systems. It works by devoting the first and second components to spectral and spatial encodings, respectively. However, the proposed code aims to carry out encoding domains in spectral, time, and spatial aspects for the first, second, and third components, respectively. One-dimensional, 2D, and 3D systems can support up to 68, 157, and 454 active users with total code lengths equal to 68, 171, and 273, respectively. Numerical results reveal that the 3D-SWZCC code outperforms codes from previous studies, including 3D codes such as perfect difference (PD), PD/multi-diagonal (PD/MD), dynamic cyclic shift/MD (DCS/MD), and Pascal’s triangle zero cross-correlation (PTZCC), according to various metrics. The system function is provided by exhibiting the architecture of the transmitter and receiver in the PON context, where the proposed code demonstrates its effectiveness in meeting optical communication requirements based on 3D-OCDMA-PON by producing a high quality factor (Q) of 18.8 and low bit error rate (BER) of 3.48 × 10−29 over a long distance that can reach 30 Km for a data rate of 0.622 Gbps. Full article
Show Figures

Figure 1

17 pages, 3632 KiB  
Article
Wheel-Based MDM-PON System Incorporating OCDMA for Secure Network Resiliency
by Meet Kumari, Vivek Arya and Hamza Mohammed Ridha Al-Khafaji
Photonics 2023, 10(3), 329; https://doi.org/10.3390/photonics10030329 - 19 Mar 2023
Cited by 19 | Viewed by 2522
Abstract
Wheel-based network resilience passive optical network (PON) based on mode division multiplexing (MDM) can be integrated with optical code division multiple access (OCDMA) schemes efficiently for the fixed and backhaul traffic under normal and break/failure fiber operating conditions. In this work, a bidirectional [...] Read more.
Wheel-based network resilience passive optical network (PON) based on mode division multiplexing (MDM) can be integrated with optical code division multiple access (OCDMA) schemes efficiently for the fixed and backhaul traffic under normal and break/failure fiber operating conditions. In this work, a bidirectional 10/2.5 Gbit/s hybrid MDM-OCDMA-PON system using multi-weight zero cross-correlation (MWZCC) code is proposed. Donut modes 0 and 1 are incorporated by the MDM technique in the proposed system. The benefit of this work is to offer an inexpensive, high-bandwidth and advanced long-haul network with satisfactory resource utilization ability for fiber links with protection against faults and to improve the reliability along with survivability of the network. The simulation results show the successful realization of the multimode fiber (MMF) link at 1.6 km in the uplink and 1.2 km in the downlink directions under an acceptable bit error rate (BER). The minimum accepted received power of −31 dBm in uplink and −27 dBm in downlink over 1 km link at 10/2.5 Gbit/s rate is obtained. Moreover, the minimum received power of −20 dBm in uplink and −30 dBm downlink is achieved by using MWZCC code compared to other codes handling 58 simultaneous end users. Further, the influence of fiber impairments and connected devices on the proposed approach is numerically evaluated. Moreover, it is shown that the wheel based proposed approach performs well than other topologies for the bidirectional network resilience transmission. Full article
(This article belongs to the Special Issue Advances in Optical Communication and Network)
Show Figures

Figure 1

31 pages, 7424 KiB  
Article
Modeling of Satellite-to-Underwater Integrated FSO-PON System Using NOMA-VLC
by Vivek Arya, Meet Kumari, Hamza Mohammed Ridha Al-Khafaji and Syed Alwee Aljunid
Symmetry 2023, 15(3), 739; https://doi.org/10.3390/sym15030739 - 16 Mar 2023
Cited by 21 | Viewed by 3665
Abstract
In recent years, optical wireless communication has promised several benefits over radio frequency communication in atmospheric, deep space and underwater communications. Satellite-to-underwater communication technology can be applied to commercial, naval, scientific and engineering operations because of its high data rate, high security, long-reach [...] Read more.
In recent years, optical wireless communication has promised several benefits over radio frequency communication in atmospheric, deep space and underwater communications. Satellite-to-underwater communication technology can be applied to commercial, naval, scientific and engineering operations because of its high data rate, high security, long-reach and low cost. In this paper, a high-speed, long-reach integrated free space optics (FSO)-passive optical network (PON) system using non-orthogonal multiple access visible light communication (NOMA-VLC) is proposed. It poses a 10/2.5 Gbps per channel bit rate for satellite-to-underwater applications. Numerically calculated results provide the splitter power budget of −35 dBm in the downlink and −32 dBm in the uplink. Additionally, a receiver sensitivity of 23 dB in the downlink and 10 dB in the uplink direction can be obtained in the system using a modified new zero cross-correlation (MNZCC) code under clear environment conditions. Again, the simulative analyses indicate that the suggested system supports 290 underwater devices successfully and offers a high 10 dBm signal-to-noise ratio over 10 km FSO, 100 km fiber and 5 m VLC range. Moreover, it provides a signal-to-noise ratio of 39 dB, with −9 dBm received optical power at 300 fields of view under fiber-wireless channels’ impairments. We argue that the suggested system is a symmetric system adapted to different link distances and which offers improved receiver sensitivity and high received optical power at a 10−9 bit error rate (BER). The comparative analysis shows the advantages of the suggested system over previously reported works. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

14 pages, 5746 KiB  
Article
Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes
by Ammar Armghan, Meshari Alsharari, Khaled Aliqab, Mehtab Singh and Somia A. Abd El-Mottaleb
Appl. Sci. 2023, 13(5), 2860; https://doi.org/10.3390/app13052860 - 23 Feb 2023
Cited by 17 | Viewed by 2314
Abstract
The need for a high-speed transmission network has become essential due to the exponential increase in traffic. In this paper, a free-space-optics (FSO) link modelled by integrating two multiplexing techniques, i.e., spectral amplitude coding-optical code division multiple access (SAC-OCDMA) using zero cross correlation [...] Read more.
The need for a high-speed transmission network has become essential due to the exponential increase in traffic. In this paper, a free-space-optics (FSO) link modelled by integrating two multiplexing techniques, i.e., spectral amplitude coding-optical code division multiple access (SAC-OCDMA) using zero cross correlation (ZCC) codes and polarization division multiplexing (PDM), is proposed. On the X-polarization (XPolar) state, three users with three different ZCC codes are transmitted. In addition, another three users with the same ZCC codes are transmitted on the Y-polarization (YPolar) state. Each user carries 20 Gbps of information. Weather conditions, such as clear, fog, and snowfall, are considered when assessing the efficacy of our suggested model. The results exhibit 120 Gbps transmission at 10 km under clear weather. For foggy weather, the propagation range varies from 1.6 km to 0.76 km according to the density of the fog. Moreover, the system can transport information up to 1.2 km during wet snowfall, though this range decreases to 0.26 km under dry snowfall showing that the highest attenuation is caused by dry snowfall weather conditions. The achieved ranges are obtained with a bit error rate 109 and Q-factor greater than 6. Consequently, this proposed FSO model is suggested for use in 5G and 6G high speed transmission networks. Full article
Show Figures

Figure 1

17 pages, 5703 KiB  
Article
Implementation of Shared Laser–LED Sources in a Free Space Optics (FSO) Network under Environmental Impact
by Abu Sufian Abdallah Hassan, Hassan Yousif Ahmed, Hilal A. Fadhil, Medien Zeghid, Abdellah Chehri and Somia A. Abd El-Mottaleb
Electronics 2023, 12(4), 801; https://doi.org/10.3390/electronics12040801 - 6 Feb 2023
Cited by 3 | Viewed by 2223
Abstract
This paper is devoted to evaluating the combined coherent and incoherent sources (CCIS) technique for different applications in the optical domain and future optical code division multiple access (OCDMA) networks. Spectral amplitude coding (SAC) has gained significant attention in optical processing systems due [...] Read more.
This paper is devoted to evaluating the combined coherent and incoherent sources (CCIS) technique for different applications in the optical domain and future optical code division multiple access (OCDMA) networks. Spectral amplitude coding (SAC) has gained significant attention in optical processing systems due to its increased capabilities in dealing with multiple-access interference (MAI) efficiently. Fixed right shift (FRS) is adopted as a signature code in this study. Furthermore, performance analysis is studied in terms of bit error rate (BER) for the system using CCIS in both the free space optics (FSO) and sky mesh network using an aerial altitude platform system (AAPS). Simulation results confirmed that a CCIS design significantly improves system performance with moderate cost. An acceptable BER value of 109 at 1.25 Gbps data rate and 60 km, 38 km, and 6 km distances for the laser, CCIS, and LED sources, respectively, can be supported. In particular, at Q-factor ~4.5, the FSO ranges under low haze, moderate haze, and heavy haze are, respectively, 3.7 km, 2.5 km, and 1.5 km. The reason is that a CCIS design causes an increase in the effective transmitted power. It can be summarized that a CCIS design can provide reliable solutions and an affordable cost for future optical fiber and wireless network applications. Full article
Show Figures

Figure 1

9 pages, 2966 KiB  
Communication
High-Speed Spiral-Phase Donut-Modes-Based Hybrid FSO-MMF Communication System by Incorporating OCDMA Scheme
by Meet Kumari, Abhishek Sharma and Sushank Chaudhary
Photonics 2023, 10(1), 94; https://doi.org/10.3390/photonics10010094 - 15 Jan 2023
Cited by 25 | Viewed by 2419
Abstract
Hybrid free-space optics (FSO) and optical fiber have been viewed as vital transmission techniques to satisfy high bandwidth and extended transmission range requirements under adverse environment conditions in the future last-mile obstruction problem. In this investigation, 80 Gbps data is transmitted on a [...] Read more.
Hybrid free-space optics (FSO) and optical fiber have been viewed as vital transmission techniques to satisfy high bandwidth and extended transmission range requirements under adverse environment conditions in the future last-mile obstruction problem. In this investigation, 80 Gbps data is transmitted on a hybrid FSO and multimode fiber (MMF)-based network using mode division multiplexing of two donut modes, Donut mode 0 and 1, and optical code-division multiplexing (OCDMA) schemes. For the OCDMA schemes, modified new zero-cross-correlation (MNZCC) codes are used, whereas, to add the phases into donut modes, a spiral phase diffuser is used. The purpose of the investigation is to provide an economical, high-speed and advanced last-mile network with adequate resource utilization for hybrid wired/wireless-based systems. The results obtained show achievement of an acceptable BER up to a fixed 100 m FSO link, with the combination of a 385 m MMF link under clear weather conditions. In another case, when the MMF link was fixed at 100 m, an acceptable bit error rate (BER) is achieved at 2.07 km FSO link. Furthermore, the results were obtained in the presence of strong and weak turbulences. A comparison of log-normal and gamma-gamma modeling for scintillations is presented. Full article
Show Figures

Figure 1

17 pages, 8340 KiB  
Article
6G Network Architecture Using FSO-PDM/PV-OCDMA System with Weather Performance Analysis
by Mehtab Singh, Sahil Nazir Pottoo, Ammar Armghan, Khaled Aliqab, Meshari Alsharari and Somia A. Abd El-Mottaleb
Appl. Sci. 2022, 12(22), 11374; https://doi.org/10.3390/app122211374 - 9 Nov 2022
Cited by 21 | Viewed by 2471
Abstract
This paper presents a novel 160 Gbps free space optics (FSO) communication system for 6G applications. Polarization division multiplexing (PDM) is integrated with an optical code division multiple access (OCDMA) technique to form a PDM-OCDMA hybrid. There are two polarization states: one is [...] Read more.
This paper presents a novel 160 Gbps free space optics (FSO) communication system for 6G applications. Polarization division multiplexing (PDM) is integrated with an optical code division multiple access (OCDMA) technique to form a PDM-OCDMA hybrid. There are two polarization states: one is X-polarization generated from adjusting the azimuthal angle of a light source at 0° while the other is Y-polarization which is generated by adjusting the azimuthal angle of a light source at 90°. Each polarization state is used for the transmission of four independent users. Each channel is assigned by permutation vector (PV) codes and carries 20 Gbps data. Four different weather conditions are considered for evaluating the performance of our proposed model. These weather conditions are clear air (CA), foggy conditions (low fog (LF), medium fog (MF), and heavy fog (HF)), dust storms (low dust storm (LD), moderate dust storm (MD), heavy dust storm (HD)), and snowfall (wet snow (WS) and dry snow (DS)). Bit error rate (BER), Q-factors, maximum propagation range, channel capacity, and eye diagrams are used for evaluating the performance of the proposed model. Simulation results assure successful transmission of 160 Gbps overall capacity for eight channels. The longest FSO range is 7 km which occurred under CA while the minimum is achieved under HD, which is 0.112 km due to large attenuation caused by HD. Within fog conditions, the maximum propagation distances are 1.525 km in LF, 1.05 km in MF, and 0.85 km in HF. Likewise, under WS and DS, the proposed system can support transmission distances of 1.15 km and 0.28 km, respectively. All these transmission distances are achieved at BER less than 10−5. Full article
(This article belongs to the Special Issue Photonic Technologies and Systems Enabling 6G)
Show Figures

Figure 1

19 pages, 9245 KiB  
Article
Capacity Enhancement for Free Space Optics Transmission System Using Orbital Angular Momentum Optical Code Division Multiple Access in 5G and beyond Networks
by Somia A. Abd El-Mottaleb, Mehtab Singh, Abdellah Chehri, Hassan Yousif Ahmed, Medien Zeghid and Akhtar Nawaz Khan
Energies 2022, 15(19), 7100; https://doi.org/10.3390/en15197100 - 27 Sep 2022
Cited by 43 | Viewed by 3871
Abstract
This paper introduces a novel free space optics (FSO) communication system for future-generation high-speed networks. The proposed system integrates orbital angular momentum (OAM) modes with an optical code division multiple access (OCDMA) technique. Two OAM beams are used ( [...] Read more.
This paper introduces a novel free space optics (FSO) communication system for future-generation high-speed networks. The proposed system integrates orbital angular momentum (OAM) modes with an optical code division multiple access (OCDMA) technique. Two OAM beams are used (LG0,0 and LG0,10), each of which is used for transmitting three independent channels. Each channel is assigned by fixed right shift (FRS) codes and carries 10 Gbps of information data. The performance of the proposed model is evaluated under different foggy and dust storm conditions. Furthermore, the performance of two cities with different geographical locations, Alexandria city in Egypt and Srinagar city in India, is investigated to demonstrate its ability to be implemented in future generations. Bit error rate (BER), eye diagrams, received optical power (ROP), and channel capacity are used for studying the performance of the proposed system. The observed simulation results show successful transmission of 60 Gbps overall capacity with the longest propagation FSO range for Alexandria city, which is 1400 m. Because dust storms have a large attenuation when compared to different foggy conditions, the proposed model had the shortest propagation range of 315 m under low dust (LD), 105 m under moderate dust (MD), and 40 m under heavy dust (HD). Furthermore, the cloudy weather conditions that affect Srinagar city, which is considered a hilly area, make our suggested model achieve 1000 m. Full article
(This article belongs to the Special Issue Wireless Communication Technologies in 5G and 6G)
Show Figures

Figure 1

Back to TopTop