6G Network Architecture Using FSO-PDM/PV-OCDMA System with Weather Performance Analysis
Abstract
:1. Introduction
2. PV Code Construction
3. FSO-PDM/PV-OCDMA System Description
4. Performance Analysis
5. Simulation Results
5.1. Effect of Clear Air on FSO-PDM/PV-OCDMA System
5.2. Effect of Fog Weather Conditions on FSO-PDM/PV-OCDMA System
5.3. Effect of Dust Storms Conditions on FSO-PDM/PV-OCDMA System
5.4. Effect of Wet and Dry Snow on FSO-PDM/PV-OCDMA System
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dat, P.T.; Kanno, A.; Yamamoto, N.; Kawanishi, T. Seamless Convergence of Fiber and Wireless Systems for 5G and Beyond Networks. J. Light. Technol. 2018, 37, 592–605. [Google Scholar] [CrossRef]
- Kanno, A.; Inagaki, K.; Morohashi, I.; Sakamoto, T.; Kuri, T.; Hosako, I.; Kawanishi, T.; Yoshida, Y.; Kitayama, K.-I. 40 Gb/s W-band (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission. Opt. Express 2011, 19, 56–63. [Google Scholar] [CrossRef]
- Pottoo, S.N.; Goyal, R.; Gupta, A. Performance investigation of optical communication system using FSO and OWC channel. In Proceedings of the 2020 Indo–Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN), Rajpura, India, 7–15 February 2020; pp. 176–180. [Google Scholar]
- Tang, X.; Ghassemlooy, Z.; Rajbhandari, S.; Popoola, W.O.; Lee, C.G. Coherent Heterodyne Multilevel Polarization Shift Keying With Spatial Diversity in a Free-Space Optical Turbulence Channel. J. Light. Technol. 2012, 30, 2689–2695. [Google Scholar] [CrossRef]
- Karpagarajesh, G.; Krishnan, R.S.; Robinson, Y.H.; Vimal, S.; Kadry, S.; Nam, Y. Investigation of digital video broadcasting application employing the modulation formats like QAM and PSK using OWC, FSO, and LOS-FSO channels. Alex. Eng. J. 2022, 61, 647–657. [Google Scholar] [CrossRef]
- Sarangal, H.; Singh, A.; Malhotra, J.; Thapar, S.S. Performance Investigation of PM-ZCC Code in Hybrid SAC-OCDMA System through Inter-Satellite OWC Channel. Wirel. Pers. Commun. 2021, 120, 3329–3341. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Pottoo, S.N.; Goyal, R.; Gupta, A. Development of 32-GBaud DP-QPSK free space optical transceiver using homodyne detection and advanced digital signal processing for future optical networks. Opt. Quantum Electron. 2020, 52, 496. [Google Scholar] [CrossRef]
- Chaudhary, S.; Choudhary, S.; Tang, X.; Wei, X. Empirical Evaluation of High-speed Cost-effective Ro-FSO System by Incorporating OCDMA-PDM Scheme under the Presence of Fog. J. Opt. Commun. 2020, 39, 1–4. [Google Scholar] [CrossRef]
- Esmail, M.A.; Fathallah, H.; Alouini, M. Effect of dust storms on FSO communications links. In Proceedings of the 2016 4th International Conference on Control Engineering & Information Technology (CEIT), Hammamet, Tunisia, 16–18 December 2016; pp. 1–6. [Google Scholar]
- Wang, Z.; Chowdhury, A.; Prucnal, P.R. Optical CDMA Code Wavelength Conversion Using PPLN to Improve Transmission Security. IEEE Photonics Technol. Lett. 2009, 21, 383–385. [Google Scholar] [CrossRef]
- El-Mottaleb, S.A.A.; Métwalli, A.; Hassib, M.; Alfikky, A.A.; Fayed, H.A.; Aly, M.H. SAC-OCDMA-FSO communication system under different weather conditions: Performance enhancement. Opt. Quantum Electron. 2021, 53, 616. [Google Scholar] [CrossRef]
- Palais, J.C. Fiber Optic Communications, 5th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Singh, M.; Aly, M.H.; El-Mottaleb, S.A.A. Performance analysis of 6 × 10 Gbps PDM-SAC-OCDMA-based FSO transmission using EDW codes with SPD detection. Optik 2022, 264, 169415. [Google Scholar] [CrossRef]
- Ahmed, H.Y.; Zeghid, M.; Imtiaz, W.A.; Sharma, T.; Chehri, A. An efficient 2D encoding/decoding technique for optical communication system based on permutation vectors theory. Multimed. Syst. 2021, 27, 691–707. [Google Scholar] [CrossRef]
- Singh, M.; Atieh, A.; Aly, M.H.; El-Mottaleb, S.A.A. 120 Gbps SAC-OCDMA-OAM-based FSO transmission system: Performance evaluation under different weather conditions. Alex. Eng. J. 2022, 61, 10407–10418. [Google Scholar] [CrossRef]
- Chaudhary, S.; Amphawan, A.; Nisar, K. Realization of free space optics with OFDM under atmospheric turbulence. Optik 2014, 125, 5196–5198. [Google Scholar] [CrossRef]
- Rashidi, F.; He, J.; Chen, L. Spectrum slicing WDM for FSO communication systems under the heavy rain weather. Opt. Commun. 2017, 387, 296–302. [Google Scholar] [CrossRef]
- Zhou, X.; Huo, J.; Zhong, K.; Long, K.; Lü, C. Polarization division multiplexing system with direct decision for short reach optical communications. J. Beijing Univ. Posts Telecommun. 2017, 40, 21–28. [Google Scholar]
- Upadhyay, K.K.; Srivastava, S.; Shukla, N.K.; Chaudhary, S. High-Speed 120 Gbps AMI-WDM-PDM Free Space Optical Transmission System. J. Opt. Commun. 2019, 40, 429–433. [Google Scholar] [CrossRef]
- Chaudhary, S.; Sharma, A.; Tang, X.; Wei, X.; Sood, P. A Cost Effective 100 Gbps FSO System Under the Impact of Fog by Incorporating OCDMA-PDM Scheme. Wirel. Pers. Commun. 2020, 116, 2159–2168. [Google Scholar] [CrossRef]
- Kim, I.I.; McArthur, B.; Korevaar, E.J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In Proceedings of the Optical Wireless Communications III, Boston, MA, USA, 6–7 November 2000; SPIE: Bellingham, WA, USA, 2001; Volume 4214, pp. 26–37. [Google Scholar]
- Singh, M.; Atieh, A.; Grover, A.; Barukab, O. Performance analysis of 40 Gb/s free space optics transmission based on orbital angular momentum multiplexed beams. Alex. Eng. J. 2022, 61, 5203–5212. [Google Scholar] [CrossRef]
- Nadeem, F.; Leitgeb, E.; Awan, M.S.; Kandus, G. Comparing the Snow Effects on Hybrid Network Using Optical Wireless and GHz Links. In Proceeding of the 2009 International Workshop on Satellite and Space Communications, Tuscany, Italy, 9–11 September 2009; pp. 171–175. [Google Scholar]
- Moghaddasi, M.; Mamdoohi, G.; Noor, A.S.M.; Mahdi, M.A.; Anas, S.B.A. Development of SAC–OCDMA in FSO with multi-wavelength laser source. Opt. Commun. 2015, 356, 282–289. [Google Scholar] [CrossRef]
- Anuar, M.; AlJunid, S.; Arief, A.; Junita, M.; Saad, N. PIN versus Avalanche photodiode gain optimization in zero cross correlation optical code division multiple access system. Optik 2013, 124, 371–375. [Google Scholar] [CrossRef]
- Ahmed, H.Y.; Zeghid, M.; Bouallegue, B.; Chehri, A.; El-Mottaleb, S.A.A. Reduction of Complexity Design of SAC OCDMA Systems by Utilizing Diagonal Permutation Shift (DPS) Codes with Single Photodiode (SPD) Detection Technique. Electronics 2022, 11, 1224. [Google Scholar] [CrossRef]
- Al-Khafaji, H.M.R.; Aljunid, S.A.; Amphawan, A.; Fadhil, H.A.; Safar, A.M. Reducing BER of spectral-amplitude coding optical code-division multiple-access systems by single photodiode detection technique. J. Eur. Opt. Soc. Publ. 2013, 8, 13022. [Google Scholar] [CrossRef] [Green Version]
- Kakati, D.; Arya, S.C. Performance of 120 Gbps single channel coherent DP-16-QAM in terrestrial FSO link under different weather conditions. Optik 2019, 178, 1230–1239. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, P.; Nebhen, J.; Chaudhary, S.; Sharma, A.; Malhotra, J.; Sharma, B. Performance analysis of mode division multiplexing-based free space optical systems for healthcare infrastructure’s. Opt. Quantum Electron. 2021, 53, 635. [Google Scholar] [CrossRef]
- Salamah, S.; Alsubaie, M.A.; Alhajri, M.; Alnaser, M.; Abdalla, A.M. The Effects of Power Control on Free-Space Optical Communications during Snowfall and Rainfall. Int. J. Commun. Netw. Syst. Sci. 2018, 11, 216–227. [Google Scholar] [CrossRef]
Channels/Wavelengths | 1550 | 1550.8 | 1551.6 | 1552.4 | 1553.2 | 1554 | 1554.8 | 1555.6 |
---|---|---|---|---|---|---|---|---|
Channels 1, 4 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Channels 2, 5 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Channels 3, 6 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Channels 4, 8 | 0 | 0 | 0 | 0 | 0 | 0 |
Symbol/Parameter | Value |
---|---|
(dBm): CW laser source input power | 15 |
Laser linewidth | 10 MHz |
(Gbps): bit rate per channel | 20 |
Number of channels | 8 |
(Hz): electrical bandwidth | 0.75 × Bit rate |
Divergence angle | 1 mrad |
(cm): receiver aperture diameter | 10 |
(cm): transmitter aperture diameter | 20 |
(A/W): PD responsivity | 1 |
Thermal noise power density | W/Hz |
T (K): receiver noise temperature | 300 |
: receiver load resistance |
Channels | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Polarization signal | x-polarization | y-polarization | ||||||
Log (BER) | −5.91 | −5.64 | −6.14 | −6.39 | −5.87 | −5.3 | −6.74 | −6.38 |
Channels | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
Polarization signal | x-polarization | y-polarization | |||||||
Log (BER) | under LF (1.525 km) | −6.7 | −6.23 | −7 | −6.7 | −6.39 | −6.41 | −6.66 | −6.91 |
Q-factor | 5.07 | 4.86 | 5.21 | 5.07 | 4.93 | 4.94 | 5.05 | 5.16 | |
Log (BER) | under MF (1.05 km) | −6.87 | −6.55 | −6.57 | −6.98 | −6.61 | −6.18 | −6.87 | −7.54 |
Q-factor | 5.14 | 5 | 5.01 | 5.19 | 5.03 | 4.83 | 5.14 | 5.42 | |
Log (BER) | under HF (0.85 km) | −6.59 | −6.18 | −6.55 | −6.25 | −6.29 | −5.7 | −6.25 | −6.42 |
Q-factor | 5.02 | 4.83 | 5 | 4.86 | 4.88 | 4.61 | 4.86 | 4.94 |
Channels | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
Polarization signal | x-polarization | y-polarization | |||||||
Log (BER) | under LD (0.775 km) | −6.74 | −5.49 | −6.06 | −6.56 | −6.44 | −5.59 | −6.66 | −6.62 |
Q-factor | 5.08 | 4.51 | 4.78 | 5 | 4.95 | 4.56 | 5.05 | 5.03 | |
Log (BER) | under MD (0.26 km) | −6.65 | −6 | −6.73 | −7.02 | −6.21 | −5.99 | −6.88 | −6.87 |
Q-factor | 5.04 | 4.75 | 5.08 | 5.2 | 4.84 | 7.75 | 5.14 | 5.14 | |
Log (BER) | under HD (0.112 km) | −7.4 | −5.74 | −7 | −7.31 | −6.95 | −6.63 | −7.48 | −7.1 |
Q-factor | 5.36 | 4.62 | 5.19 | 5.32 | 5.18 | 5.04 | 5.4 | 5.24 |
Channels | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
Polarization signal | x-polarization | y-polarization | |||||||
Log (BER) | under WS (1.15 km) | −7.59 | −6.54 | −7.9 | −7.46 | −7.47 | −6.91 | −7.49 | −7.48 |
Q-factor | 5.44 | 4.99 | 5.57 | 5.39 | 5.4 | 5.16 | 5.4 | 5.4 | |
Log (BER) | under DS (0.28 km) | −7.76 | −6.35 | −7.61 | −7.11 | −6.79 | −6.7 | −7.32 | −7.36 |
Q-factor | 5.51 | 4.91 | 5.45 | 5.24 | 5.11 | 5.07 | 5.33 | 5.35 |
Reference | The Technique Used in FSO System | Number of Channels | Overall Capacity | Weather Conditions |
---|---|---|---|---|
[17] | OFDM | 1 | 10 Gbps | CA |
[16] | OAM-OCDMA using EDW code | 12 | 120 Gbps | CA, fog, haze, and rain |
[14] | PDM-OCDMA using EDW code | 6 | 60 Gbps | CA, fog, haze, and rain |
[21] | PDM-OCDMA using RD code | 10 | 100 Gbps | Fog |
Present work | PDM-OCDMA using PV code | 8 | 160 Gbps | CA, fog, dust storms, snowfall |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, M.; Pottoo, S.N.; Armghan, A.; Aliqab, K.; Alsharari, M.; Abd El-Mottaleb, S.A. 6G Network Architecture Using FSO-PDM/PV-OCDMA System with Weather Performance Analysis. Appl. Sci. 2022, 12, 11374. https://doi.org/10.3390/app122211374
Singh M, Pottoo SN, Armghan A, Aliqab K, Alsharari M, Abd El-Mottaleb SA. 6G Network Architecture Using FSO-PDM/PV-OCDMA System with Weather Performance Analysis. Applied Sciences. 2022; 12(22):11374. https://doi.org/10.3390/app122211374
Chicago/Turabian StyleSingh, Mehtab, Sahil Nazir Pottoo, Ammar Armghan, Khaled Aliqab, Meshari Alsharari, and Somia A. Abd El-Mottaleb. 2022. "6G Network Architecture Using FSO-PDM/PV-OCDMA System with Weather Performance Analysis" Applied Sciences 12, no. 22: 11374. https://doi.org/10.3390/app122211374
APA StyleSingh, M., Pottoo, S. N., Armghan, A., Aliqab, K., Alsharari, M., & Abd El-Mottaleb, S. A. (2022). 6G Network Architecture Using FSO-PDM/PV-OCDMA System with Weather Performance Analysis. Applied Sciences, 12(22), 11374. https://doi.org/10.3390/app122211374