Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes
Abstract
1. Introduction
2. Literature Review
3. Weather Conditions and OCDMA Code
3.1. Attenuation Caused by Fog and Snowfall Conditions
3.2. ZCC Code Construction
4. PDM-SAC-OCDMA-Enabled FSO System Description
5. Performance Analysis
6. Simulation Results
6.1. Impact of Clear Weather on PDM-SAC-OCDMA-Enabled FSO System
6.2. Impact of LF, MF, and HF on PDM-SAC-OCDMA-Enabled FSO System
6.3. Impact of WSF and DSF on PDM-SAC-OCDMA-Enabled FSO Transmission
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghafouri-Shiraz, H.; Karbassian, M.M. Optical CDMA Networks: Principles, Analysis and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2012; ISBN 978-1-119 94133-0. [Google Scholar]
- Cherifi, A.; Jellali, N.; Najjar, M.; Aljunid, S.A.; Bouazza, B.S. Development of a Novel Two-Dimensional-SWZCC—Code for Spectral/Spatial Optical CDMA System. Opt. Laser Technol. 2019, 109, 233–240. [Google Scholar] [CrossRef]
- Mrabet, H.; Cherifi, A.; Raddo, T.; Dayoub, I.; Haxha, S. A Comparative Study of Asynchronous and Synchronous OCDMA Systems. IEEE Syst. J. 2020, 15, 3642–3653. [Google Scholar] [CrossRef]
- Abd El-Mottaleb, S.A.; Métwalli, A.; Hassib, M.; Alfikky, A.A.; Fayed, H.A.; Aly, M.H. SAC-OCDMA-FSO communication system under different weather conditions: Performance enhancement. Opt. Quantum Electron. 2021, 53, 616–633. [Google Scholar] [CrossRef]
- Al-Khafaji, H.M.R.; Aljunid, S.A.; Amphawan, A.; Fadhil, H.A.; Safar, A.M. Reducing BER of spectral-amplitude coding optical code-division multiple-access systems by single photodiode detection technique. J. Eur. Opt. Soc. Publ. 2013, 8, 13022–13026. [Google Scholar] [CrossRef]
- Al-Khafaji, H.M.R.; Aljundi, S.A.; Fadhil, H.A. Improved BER based on intensity noise alleviation using developed detection technique for incoherent SAC-OCDMA systems. J. Mod. Opt. 2012, 59, 878–886. [Google Scholar] [CrossRef]
- Dat, P.T.; Kanno, A.; Yamamoto, N.; Kawanishi, T. Seamless Convergence of Fiber and Wireless Systems for 5G and Beyond Networks. J. Light. Technol. 2018, 37, 592–605. [Google Scholar] [CrossRef]
- Kanno, A.; Inagaki, K.; Morohashi, I.; Sakamoto, T.; Kuri, T.; Hosako, I.; Kawanishi, T.; Yoshida, Y.; Kitayama, K. 40 Gb/s Wband (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission. Opt. Express 2011, 19, 56–63. [Google Scholar] [CrossRef]
- Mostafa, S.; Mohamed, A.E.-N.A.; El-Samie, F.E.A.; Rashed, A.N.Z. Performance evaluation of SAC-OCDMA system in free space optics and optical fiber system based on different types of codes. Wirel. Pers. Commun. 2017, 96, 2843–2861. [Google Scholar] [CrossRef]
- Pottoo, S.N.; Goyal, R.; Gupta, A. Performance investigation of optical communication system using FSO and OWC channel. In Proceedings of the 2020 Indo–Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN), Rajpura, India, 7–15 February 2020; pp. 176–180. [Google Scholar]
- Tang, X.; Ghassemlooy, Z.; Rajbhandari, S.; Popoola, W.O.; Lee, C.G. Coherent heterodyne multilevel polarization shift keying with spatial diversity in a free-space optical turbulence channel. J. Light. Technol. 2012, 30, 2689–2695. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communication: System and Channel Modelling with Matlab; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Kim, I.I.; McArthur, B.; Korevaar, E.J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In Optical Wireless Communications III; SPIE: Bellingham, WA, USA, 2001; Volume 4214, pp. 26–37. [Google Scholar]
- Singh, M.; Kříž, J.; Kamruzzaman, M.M.; Dhasarathan, V.; Sharma, A.; El-Mottaleb, A.; Somia, A. Design of a high-speed-OFDM-SAC-OCDMA-based FSO system using EDW codes for supporting 5G data services and smart city applications. Front. Phys. 2022, 10, 934848. [Google Scholar] [CrossRef]
- Singh, M.; Aly, M.H.; Abd El-Mottaleb, S.A. Performance analysis of 6×10 Gbps PDM-SAC-OCDMA-based FSO transmission using EDW codes with SPD detection. Optik 2022, 264, 169415. [Google Scholar] [CrossRef]
- Chaudhary, S.; Sharma, A.; Tang, X.; Wei, X.; Sood, P. A cost effective 100 Gbps FSO system under the impact of fog by incorporating OCDMA-PDM scheme. Wirel. Pers. Commun. 2020, 116, 2159–2168. [Google Scholar] [CrossRef]
- El-Mottaleb, S.A.A.; Singh, M.; Chehri, A.; Ahmed, H.Y.; Zeghid, M.; Khan, A.N. Capacity Enhancement for Free Space Optics Transmission System Using Orbital Angular Momentum Optical Code Division Multiple Access in 5G and beyond Networks. Energies 2022, 15, 7100. [Google Scholar] [CrossRef]
- Chaudhary, S.; Amphawan, A.; Nisar, K. Realization of free space optics with OFDM under atmospheric turbulence. Optik 2014, 125, 5196–5198. [Google Scholar] [CrossRef]
- Singh, M.; Pottoo, S.N.; Armghan, A.; Aliqab, K.; Alsharari, M.; Abd El-Mottaleb, S.A. 6G Network Architecture Using FSO-PDM/PV-OCDMA System with Weather Performance Analysis. Appl. Sci. 2022, 12, 11374. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, S.; Chaudhary, S. Performance analysis of 320 Gbps DWDM-FSO system under the effect of different atmospheric conditions. Opt. Quantum Electron. 2021, 53, 239–247. [Google Scholar] [CrossRef]
- Prabu, K.; Charanya, S.; Jain, M.; Guha, D. BER analysis of SS-WDM based FSO system for Vellore weather conditions. Opt. Commun. 2017, 403, 73–80. [Google Scholar] [CrossRef]
- Abd El-Mottaleb, S.A.; Me twalli, A.; ElDallal, T.A.; Hassib, M.; Fayed, H.A.; Aly, M.H. Performance evaluation of PDM/SAC-OCDMA-FSO communication system using DPS code under fog, dust and rain. Opt. Quantum Electron. 2022, 54, 750. [Google Scholar] [CrossRef]
- Armghan, A.; Singh, M.; Aliqab, K.; Alenezi, F.; Alsharari, M.; Ali, F.; Abd El-Mottaleb, S.A. Performance analysis of high-speed integrated OAM-OCDMA transmission in FSO communication link:Impact of weather attenuation. Opt. Quantum Electron. 2023, 55, 245. [Google Scholar] [CrossRef]
- Chaudhary, S.; Choudhary, S.; Tang, X.; Wei, X. Empirical evaluation of high-speed cost-effective Ro-FSO system by incorporating OCDMA-PDM scheme under the presence of fog. J. Opt. Commun. 2020, 39, 1–4. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, P.; Nebhen, J.; Chaudhary, S.; Sharma, A.; Malhotra, J.; Sharma, B. Performance analysis of mode division multiplexing-based free space optical systems for healthcare infrastructure’s. Opt. Quantum Electron. 2021, 53, 635–648. [Google Scholar] [CrossRef]
- Jeyaseelan, J.; Kumar, S.; Caroline, B. Performance analysis of free space optical communication system employing WDM-PoISK under turbulent weather conditions. J. Optoelectron. Adv. Mater. 2018, 20, 506–514. [Google Scholar]
- Upadhyay, K.K.; Srivastava, S.; Shukla, N.K.; Chaudhary, S. High-speed 120 Gbps AMI-WDM-PDM free space optical transmission system. J. Opt. Commun. 2019, 40, 429–443. [Google Scholar] [CrossRef]
- Singh, M.; Atieh, A.; Aly, M.H.; Abd El-Mottaleb, S.A. 120 Gbps SAC-OCDMA-OAM-based FSO transmission system: Performance evaluation under different weather conditions. Alex. Eng. J. 2022, 61, 10407–10418. [Google Scholar] [CrossRef]
- Muhammad, S.S.; Kohldorfer, P.; Leitgeb, E. Channel modeling for terrestrial free space optical links. In Proceedings of the 2005 7th International Conference Transparent Optical Networks, Barcelona, Spain, 3–7 July 2005; Volume 1, pp. 407–410. [Google Scholar]
- Nadeem, F.; Leitgeb, E.; Awan, M.S. Comparing the Snow Effects on Hybrid Network Using Optical Wireless and GHz Links. In Proceedings of the 2009 International Workshop on Satellite and Space Communications, Siena-Tuscany, Italy, 9–11 September 2009; pp. 171–175. [Google Scholar]
- Anuar, M.S.; Aljunid, S.A.; Saad, N.M.; Mohammed, A.; Babekir, E.I. Development of a zero cross-correlation code for spectral-amplitude coding optical code division multiple access (OCDMA). Int. J. Comput. Sci. Netw. Secur. 2006, 6, 180–184. [Google Scholar]
- Ahmed, G.; Djebbari, A. New Technique for Construction of a Zero Cross Correlation Code. Optik 2012, 123, 1382–1384. [Google Scholar] [CrossRef]
- Moghaddasi, M.; Mamdoohi, G.; Noor, A.S.M.; Mahdi, M.A.; Anas, S.B.A. Development of SAC-OCDMA in FSO with multi-wavelength laser source. Opt. Commun. 2015, 356, 282–289. [Google Scholar] [CrossRef]
- Anuar, M.S.; AlJunid, S.A.; Arief, A.R.; Junita, M.N.; Saad, N.M. PIN versus Avalanche photodiode gain optimization in zero cross correlation optical code division multiple access system. Optik 2013, 124, 371–375. [Google Scholar] [CrossRef]
Fog Conditions | LF | MF | HF |
---|---|---|---|
Attenuation coefficient (dB/km) | 10 | 18 | 27 |
Type of Snowfall | WSF | DSF |
---|---|---|
Attenuation coefficient (dB/km) | 13.73 | 96.8 |
Users | Wavelengths (nm) | |||||
---|---|---|---|---|---|---|
1550 | 1550.8 | 1551.6 | 1552.4 | 1553.2 | 1554 | |
Users 1, 4 | 0 | 0 | 0 | |||
Users 2, 5 | 0 | 0 | 0 | 0 | ||
Users 3, 6 | 0 | 0 | 0 | 0 |
Parameter | Value |
---|---|
Bit rate | 20 Gbps per user |
Number of users | 3 on and 3 on |
Electrical-Bandwidth | 15 Gbps |
CWL source transmit power | 15 dBm |
CWL source linewidth | 10 MHz |
Transmitter aperture diameter | 10 cm |
Receiver aperture diameter | 20 cm |
FSO range | CW: from 4 to 10 km LF: from 1 to 1.6 km MF: from 0.7 to 1 km HF: from 0.58 to 0.76 km WSF: from 1.05 to 1.2 km DSF: from 0.20 to 0.26 km |
PIN photodetector responsivity | 1 A/W |
Thermal noise power density | W/Hz |
Absolute temperature | 300 K |
Receiver load resistance | 1030 |
Users | Log(BER) | Q-Factor |
---|---|---|
1 on | −9.24 | 6.09 |
2 on | −11.22 | 6.77 |
3 on | −11.79 | 6.96 |
4 on | −10.09 | 6.39 |
5 on | −11.19 | 6.77 |
6 on | −12.55 | 7.21 |
Users | Log(BER) | Q-Factor (dB) | ||||
---|---|---|---|---|---|---|
LF (1.6 km) | MF (1 km) | HF (0.75 km) | LF (1.6 km) | MF (1 km) | HF (0.75 km) | |
1 on | −9.26 | −10.15 | −10.22 | 6.09 | 6.41 | 6.44 |
2 on | −10.69 | −11.30 | −11.11 | 6.60 | 6.80 | 6.74 |
3 on | −11.78 | −14.54 | −13.56 | 6.96 | 7.81 | 7.52 |
4 on | −9.18 | −10.63 | −9.83 | 6.06 | 6.58 | 6.30 |
5 on | −11.03 | −12 | −11.83 | 6.71 | 7.03 | 6.99 |
6 on | −12.07 | −14.43 | −12.40 | 7.05 | 7.77 | 7.16 |
Users | Log(BER) | Q-Factor | ||
---|---|---|---|---|
WSF (1.2 km) | DSF (0.26 km) | WSF (1.2 km) | DSF (0.26 km) | |
1 on | −10.99 | −9.70 | 6.70 | 6.25 |
2 on | −12.49 | −10.88 | 7.19 | 6.66 |
3 on | −14.43 | −13.61 | 7.77 | 7.53 |
4 on | −10.74 | −9.84 | 6.62 | 6.30 |
5 on | −12.40 | −11.12 | 7.16 | 6.74 |
6 on | −15.59 | −12.44 | 8.10 | 7.17 |
Ref. | Code Used in SAC-OCDMA with PDM | Code Property | Overall Transmission Capacity |
---|---|---|---|
[15] | EDW | Code weight any odd number >1 and unity cross-correlation which lead to the existence of MAI. | 60 Gbps |
[16] | RD | Code weight any real number >1, unity cross-correlation which lead to the existence of MAI and long code length that needs more components to implement | 100 Gbps |
Present work | ZCC | Code weight any real number >1, zero-cross correlation where no MAI exists, and can be easily implemented. | 120 Gbps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armghan, A.; Alsharari, M.; Aliqab, K.; Singh, M.; Abd El-Mottaleb, S.A. Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes. Appl. Sci. 2023, 13, 2860. https://doi.org/10.3390/app13052860
Armghan A, Alsharari M, Aliqab K, Singh M, Abd El-Mottaleb SA. Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes. Applied Sciences. 2023; 13(5):2860. https://doi.org/10.3390/app13052860
Chicago/Turabian StyleArmghan, Ammar, Meshari Alsharari, Khaled Aliqab, Mehtab Singh, and Somia A. Abd El-Mottaleb. 2023. "Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes" Applied Sciences 13, no. 5: 2860. https://doi.org/10.3390/app13052860
APA StyleArmghan, A., Alsharari, M., Aliqab, K., Singh, M., & Abd El-Mottaleb, S. A. (2023). Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes. Applied Sciences, 13(5), 2860. https://doi.org/10.3390/app13052860