Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,721)

Search Parameters:
Keywords = operating equipment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2057 KiB  
Article
Design and Fabrication of a Cost-Effective, Remote-Controlled, Variable-Rate Sprayer Mounted on an Autonomous Tractor, Specifically Integrating Multiple Advanced Technologies for Application in Sugarcane Fields
by Pongpith Tuenpusa, Kiattisak Sangpradit, Mano Suwannakam, Jaturong Langkapin, Alongklod Tanomtong and Grianggai Samseemoung
AgriEngineering 2025, 7(8), 249; https://doi.org/10.3390/agriengineering7080249 - 5 Aug 2025
Abstract
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a [...] Read more.
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a low-cost, variable-rate, remote-controlled sprayer specifically for use in sugarcane fields. The primary method involves the modification of a 15-horsepower tractor, which will be equipped with a remote-control system to manage both the driving and steering functions. A foldable remote-controlled spraying arm is installed at the rear of the unmanned tractor. The system operates by using a webcam mounted on the spraying arm to capture high-angle images above the sugarcane canopy. These images are recorded and processed, and the data is relayed to the spraying control system. As a result, chemicals can be sprayed on the sugarcane accurately and efficiently based on the insights gained from image processing. Tests were conducted at various nozzle heights of 0.25 m, 0.5 m, and 0.75 m. The average system efficiency was found to be 85.30% at a pressure of 1 bar, with a chemical spraying rate of 36 L per hour and a working capacity of 0.975 hectares per hour. The energy consumption recorded was 0.161 kWh, while fuel consumption was measured at 6.807 L per hour. In conclusion, the development of the remote-controlled variable rate sprayer mounted on an unmanned tractor enables immediate and precise chemical application through remote control. This results in high-precision spraying and uniform distribution, ultimately leading to cost savings, particularly by allowing for adjustments in nozzle height from a minimum of 0.25 m to a maximum of 0.75 m from the target. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
15 pages, 630 KiB  
Article
Application of a Low-Cost Electronic Nose to Differentiate Between Soils Polluted by Standard and Biodegradable Hydraulic Oils
by Piotr Borowik, Przemysław Pluta, Miłosz Tkaczyk, Krzysztof Sztabkowski, Rafał Tarakowski and Tomasz Oszako
Chemosensors 2025, 13(8), 290; https://doi.org/10.3390/chemosensors13080290 - 5 Aug 2025
Abstract
Detection of soil pollution by petroleum products is necessary to remedy threats to economic and human health. Pollution by hydraulic oil often occurs through leaks from forestry machinery such as harvesters. Electronic noses equipped with gas sensor arrays are promising tools for applications [...] Read more.
Detection of soil pollution by petroleum products is necessary to remedy threats to economic and human health. Pollution by hydraulic oil often occurs through leaks from forestry machinery such as harvesters. Electronic noses equipped with gas sensor arrays are promising tools for applications of pollution detection and monitoring. A self-made, low-cost electronic nose was used for differentiation between clean and polluted samples, with two types of oils and three levels of pollution severity. An electronic nose uses the TGS series of gas sensors, manufactured by Figaro Inc. Sensor responses to changes in environmental conditions from clean air to measured odor, as well as responses to changes in sensor operation temperature, were used for analysis. Statistically significant response results allowed for the detection of pollution by biodegradable oil, while standard mineral oil was difficult to detect. It was demonstrated that the TGS 2602 gas sensor is most suitable for the studied application. LDA analysis demonstrated multidimensional data patterns allowing differentiation between sample categories and pollution severity levels. Full article
(This article belongs to the Special Issue Electronic Nose and Electronic Tongue for Substance Analysis)
Show Figures

Figure 1

22 pages, 6187 KiB  
Article
Device Modeling Method for the Entire Process of Energy-Saving Retrofit of a Refrigeration Plant
by Xuanru Xu, Lun Zhang, Jun Chen, Qingbin Lin and Junjie Chen
Energies 2025, 18(15), 4147; https://doi.org/10.3390/en18154147 - 5 Aug 2025
Abstract
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the [...] Read more.
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the equipment within the chiller plants of central air-conditioning systems. Traditional modeling approaches have been static and have focused on modeling within narrow time frames when a certain amount of equipment operating data has accumulated, thus prioritizing the precision of the model itself while overlooking the fact that energy-saving retrofits are a long-term process. This study proposes a modeling scheme for the equipment within chiller plants throughout the energy-saving retrofit process. Based on the differences in the amount of available operating data for the equipment and the progress of retrofit implementation, the retrofit process was divided into three stages, each employing different modeling techniques and ensuring smooth transitions between the stages. The equipment within the chiller plants is categorized into two types based on the clarity of their operating characteristics, and two modeling schemes are proposed accordingly. Based on the proposed modeling scheme, chillers and chilled-water pumps were selected to represent the two types of equipment. Real operating data from actual retrofit projects was used to model the equipment and evaluate the accuracy of the model predictions. The results indicate that the models established by the proposed modeling scheme exhibit good accuracy at each stage of the retrofit, with the coefficients of variation (CV) remaining below 6.88%. Furthermore, the prediction accuracy improved as the retrofitting process progressed. The modeling scheme performs better on equipment with simpler and clearer operating characteristics, with a CV as low as 0.67% during normal operation stages. This underscores the potential application of the proposed modeling scheme throughout the energy-saving retrofit process and provides a model foundation for the subsequent optimization of the refrigeration system. Full article
Show Figures

Figure 1

21 pages, 3283 KiB  
Article
Atypical Pressure Dependent Structural Phonon and Thermodynamic Characteristics of Zinc Blende BeO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(15), 3671; https://doi.org/10.3390/ma18153671 - 5 Aug 2025
Abstract
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, [...] Read more.
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, flexible, transparent, nano-electronic and nanophotonic modules. BeO-based ultraviolet photodetectors and biosensors are playing important roles in providing safety and efficiency to nuclear reactors for their optimum operations. In thermal management, BeO epifilms have also been used for many high-tech devices including medical equipment. Phonon characteristics of zb BeO at ambient and high-pressure P ≠ 0 GPa are required in the development of electronics that demand enhanced heat dissipation for improving heat sink performance to lower the operating temperature. Here, we have reported methodical simulations to comprehend P-dependent structural, phonon and thermodynamical properties by using a realistic rigid-ion model (RIM). Unlike zb ZnO, the study of the Grüneisen parameter γ(T) and thermal expansion coefficient α(T) in zb BeO has revealed atypical behavior. Possible reasons for such peculiar trends are attributed to the combined effect of the short bond length and strong localization of electron charge close to the small core size Be atom in BeO. Results of RIM calculations are compared/contrasted against the limited experimental and first-principle data. Full article
(This article belongs to the Special Issue The Heat Equation: The Theoretical Basis for Materials Processing)
Show Figures

Figure 1

18 pages, 1259 KiB  
Article
Artificial Neural Network-Based Prediction of Clogging Duration to Support Backwashing Requirement in a Horizontal Roughing Filter: Enhancing Maintenance Efficiency
by Sphesihle Mtsweni, Babatunde Femi Bakare and Sudesh Rathilal
Water 2025, 17(15), 2319; https://doi.org/10.3390/w17152319 - 4 Aug 2025
Abstract
While horizontal roughing filters (HRFs) remain widely acclaimed for their exceptional efficiency in water treatment, especially in developing countries, they are inherently susceptible to clogging, which necessitates timely maintenance interventions. Conventional methods for managing clogging in HRFs typically involve evaluating filter head loss [...] Read more.
While horizontal roughing filters (HRFs) remain widely acclaimed for their exceptional efficiency in water treatment, especially in developing countries, they are inherently susceptible to clogging, which necessitates timely maintenance interventions. Conventional methods for managing clogging in HRFs typically involve evaluating filter head loss coefficients against established water quality standards. This study utilizes artificial neural network (ANN) for the prediction of clogging duration and effluent turbidity in HRF equipment. The ANN was configured with two outputs, the clogging duration and effluent turbidity, which were predicted concurrently. Effluent turbidity was modeled to enhance the network’s learning process and improve the accuracy of clogging prediction. The network steps of the iterative training process of ANN used different types of input parameters, such as influent turbidity, filtration rate, pH, conductivity, and effluent turbidity. The training, in addition, optimized network parameters such as learning rate, momentum, and calibration of neurons in the hidden layer. The quantities of the dataset accounted for up to 70% for training and 30% for testing and validation. The optimized structure of ANN configured in a 4-8-2 topology and trained using the Levenberg–Marquardt (LM) algorithm achieved a mean square error (MSE) of less than 0.001 and R-coefficients exceeding 0.999 across training, validation, testing, and the entire dataset. This ANN surpassed models of scaled conjugate gradient (SCG) and obtained a percentage of average absolute deviation (%AAD) of 9.5. This optimal structure of ANN proved to be a robust tool for tracking the filter clogging duration in HRF equipment. This approach supports proactive maintenance and operational planning in HRFs, including data-driven scheduling of backwashing based on predicted clogging trends. Full article
(This article belongs to the Special Issue Advanced Technologies on Water and Wastewater Treatment)
Show Figures

Figure 1

28 pages, 2340 KiB  
Article
Determining the Operating Performance of an Isolated, High-Power, Photovoltaic Pumping System Through Sensor Measurements
by Florin Dragan, Dorin Bordeasu and Ioan Filip
Appl. Sci. 2025, 15(15), 8639; https://doi.org/10.3390/app15158639 (registering DOI) - 4 Aug 2025
Abstract
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically [...] Read more.
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically aligns with peak irrigation periods. Despite this potential, photovoltaic pumping systems (PVPSs) often face reliability issues due to fluctuations in solar irradiance, resulting in frequent start/stop cycles and premature equipment wear. The IEC 62253 standard establishes procedures for evaluating PVPS performance but primarily addresses steady-state conditions, neglecting transient regimes. As the main contribution, the current paper proposes a non-intrusive, high-resolution monitoring system and a methodology to assess the performance of an isolated, high-power PVPS, considering also transient regimes. The system records critical electrical, hydraulic and environmental parameters every second, enabling in-depth analysis under various weather conditions. Two performance indicators, pumped volume efficiency and equivalent operating time, were used to evaluate the system’s performance. The results indicate that near-optimal performance is only achievable under clear sky conditions. Under the appearance of clouds, control strategies designed to protect the system reduce overall efficiency. The proposed methodology enables detailed performance diagnostics and supports the development of more robust PVPSs. Full article
(This article belongs to the Special Issue New Trends in Renewable Energy and Power Systems)
Show Figures

Figure 1

11 pages, 258 KiB  
Article
Occupational and Nonoccupational Chainsaw Injuries in the United States: 2018–2022
by Judd H. Michael and Serap Gorucu
Safety 2025, 11(3), 75; https://doi.org/10.3390/safety11030075 (registering DOI) - 4 Aug 2025
Abstract
Chainsaws are widely used in various occupational settings, including forestry, landscaping, farming, and by homeowners for tasks like tree felling, brush clearing, and firewood cutting. However, the use of chainsaws poses significant risks to operators and bystanders. This research quantified and compared occupational [...] Read more.
Chainsaws are widely used in various occupational settings, including forestry, landscaping, farming, and by homeowners for tasks like tree felling, brush clearing, and firewood cutting. However, the use of chainsaws poses significant risks to operators and bystanders. This research quantified and compared occupational and nonoccupational injuries caused by contact with chainsaws and related objects during the period from 2018 to 2022. The emergency department and OSHA (Occupational Safety and Health Administration) data were used to characterize the cause and nature of the injuries. Results suggest that for this five-year period an estimated 127,944 people were treated in U.S. emergency departments for chainsaw-related injuries. More than 200 non-fatal and 57 fatal occupational chainsaw-involved injuries were found during the same period. Landscaping and forestry were the two industries where most of the occupational victims were employed. Upper and lower extremities were the most likely injured body parts, with open wounds from cuts being the most common injury type. The majority of fatal injuries were caused by falling objects such as trees and tree limbs while using a chainsaw. Our suggestions to reduce injuries include proper training and wearing personal protective equipment, as well as making sure any bystanders are kept in a safety zone away from trees being cut. Full article
Show Figures

Figure 1

23 pages, 1517 KiB  
Article
Physics-Informed Neural Network Enhanced CFD Simulation of Two-Dimensional Green Ammonia Synthesis Reactor
by Ran Xu, Shibin Zhang, Fengwei Rong, Wei Fan, Xiaomeng Zhang, Yunlong Wang, Liang Zan, Xu Ji and Ge He
Processes 2025, 13(8), 2457; https://doi.org/10.3390/pr13082457 - 3 Aug 2025
Viewed by 54
Abstract
The synthesis of “green ammonia” from “green hydrogen” represents a critical pathway for renewable energy integration and industrial decarbonization. This study investigates the green ammonia synthesis process using an axial–radial fixed-bed reactor equipped with three catalyst layers. A simplified two-dimensional physical model was [...] Read more.
The synthesis of “green ammonia” from “green hydrogen” represents a critical pathway for renewable energy integration and industrial decarbonization. This study investigates the green ammonia synthesis process using an axial–radial fixed-bed reactor equipped with three catalyst layers. A simplified two-dimensional physical model was developed, and a multiscale simulation approach combining computational fluid dynamics (CFD) with physics-informed neural networks (PINNs) employed. The simulation results demonstrate that the majority of fluid flows axially through the catalyst beds, leading to significantly higher temperatures in the upper bed regions. The reactor exhibits excellent heat exchange performance, ensuring effective preheating of the feed gas. High-pressure zones are concentrated near the top and bottom gas outlets, while the ammonia mole fraction approaches 100% near the bottom outlet, confirming superior conversion efficiency. By integrating PINNs, the prediction accuracy was substantially improved, with flow field errors in the catalyst beds below 4.5% and ammonia concentration prediction accuracy above 97.2%. Key reaction kinetic parameters (pre-exponential factor k0 and activation energy Ea) were successfully inverted with errors within 7%, while computational efficiency increased by 200 times compared to traditional CFD. The proposed CFD–PINN integrated framework provides a high-fidelity and computationally efficient simulation tool for green ammonia reactor design, particularly suitable for scenarios with fluctuating hydrogen supply. The reactor design reduces energy per unit ammonia and improves conversion efficiency. Its radial flow configuration enhances operational stability by damping feed fluctuations, thereby accelerating green hydrogen adoption. By reducing fossil fuel dependence, it promotes industrial decarbonization. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

20 pages, 4961 KiB  
Article
Optimization of Thermal Conductivity of Bismaleimide/h-BN Composite Materials Based on Molecular Structure Design
by Weizhuo Li, Run Gu, Xuan Wang, Chenglong Wang, Mingzhe Qu, Xiaoming Wang and Jiahao Shi
Polymers 2025, 17(15), 2133; https://doi.org/10.3390/polym17152133 - 3 Aug 2025
Viewed by 65
Abstract
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate [...] Read more.
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate at high power, the electronic components generate a large amount of integrated heat. Due to the limitations of existing heat dissipation channels, the current heat dissipation performance of electronic packaging materials is struggling to meet practical needs, resulting in heat accumulation and high temperatures inside the equipment, seriously affecting operational stability. For electronic devices that require high energy density and fast signal transmission, improving the heat dissipation capability of electronic packaging materials can significantly enhance their application prospects. In order to improve the thermal conductivity of composite materials, hexagonal boron nitride (h-BN) was selected as the thermal filling material in this paper. The BMI resin was structurally modified through molecular structure design. The results showed that the micro-branched structure and h-BN synergistically improved the thermal conductivity and insulation performance of the composite material, with a thermal conductivity coefficient of 1.51 W/(m·K) and a significant improvement in insulation performance. The core mechanism is the optimization of the dispersion state of h-BN filler in the matrix resin through the free volume in the micro-branched structure, which improves the thermal conductivity of the composite material while maintaining high insulation. Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

23 pages, 2497 KiB  
Article
Biosphere Reserves in Spain: A Holistic Commitment to Environmental and Cultural Heritage Within the 2030 Agenda
by Juan José Maldonado-Briegas, María Isabel Sánchez-Hernández and José María Corrales-Vázquez
Heritage 2025, 8(8), 309; https://doi.org/10.3390/heritage8080309 - 2 Aug 2025
Viewed by 143
Abstract
Biosphere Reserves (BRs), designated by UNESCO, are uniquely positioned to serve as model territories for sustainable development, as they aim to harmonize biodiversity conservation with the socio-economic vitality and cultural identity of local communities. This work examines the commitment of the Spanish Network [...] Read more.
Biosphere Reserves (BRs), designated by UNESCO, are uniquely positioned to serve as model territories for sustainable development, as they aim to harmonize biodiversity conservation with the socio-economic vitality and cultural identity of local communities. This work examines the commitment of the Spanish Network of Biosphere Reserves to the United Nations 2030 Agenda and the Sustainable Development Goals (SDGs). Using a survey-based research design, this study assesses the extent to which the reserves have integrated the SDGs into their strategic frameworks and operational practices. It also identifies and analyses successful initiatives and best practices implemented across Spain that exemplify this integration. The findings highlight the need for enhanced awareness and understanding of the 2030 Agenda among stakeholders, alongside stronger mechanisms for participation, cooperation, and governance. The conclusion emphasises the importance of equipping all reserves with strategic planning tools and robust systems for monitoring, evaluation, and accountability. Moreover, the analysis of exemplary cases reveals the transformative potential of sustainability-oriented projects—not only in advancing environmental goals but also in revitalizing local economies and reinforcing cultural heritage. These insights contribute to a broader understanding of how BRs can act as dynamic laboratories for sustainable development and heritage preservation. Full article
(This article belongs to the Section Biological and Natural Heritage)
Show Figures

Figure 1

27 pages, 5743 KiB  
Article
In-Field Load Acquisitions on a Variable Chamber Round Baler Using Instrumented Hub Carriers and a Dynamometric Towing Pin
by Filippo Coppola, Andrea Ruffin and Giovanni Meneghetti
Appl. Sci. 2025, 15(15), 8579; https://doi.org/10.3390/app15158579 (registering DOI) - 1 Aug 2025
Viewed by 105
Abstract
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately [...] Read more.
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately calibrated strain gauge bridges. Similarly, the baler was equipped with a dynamometric towing pin, instrumented with strain gauge sensors and calibrated in the laboratory, which replaced the original pin connecting the baler and the tractor during the in-field load acquisitions. In both cases, the calibration tests returned the relationship between applied forces and output signals of the strain gauge bridges. Multiple in-field load acquisitions were carried out under typical maneuvers and operating conditions. The synchronous acquisition of a video via an onboard camera and Global Positioning System (GPS) signal allowed to observe the behaviour of the baler in correspondence of particular trends of the vertical and horizontal loads and to point out the most demanding maneuver in view of the fatigue resistance of the baler. Finally, through the application of a rainflow cycle counting algorithm according to ASTM E1049-85, the load spectrum for each maneuver was derived. Full article
(This article belongs to the Section Mechanical Engineering)
23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 - 1 Aug 2025
Viewed by 209
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 2698 KiB  
Article
Study of the Stress–Strain State of the Structure of the GP-50 Support Bushing Manufactured by 3D Printing from PLA Plastic
by Almat Sagitov, Karibek Sherov, Didar Berdimuratova, Ainur Turusbekova, Saule Mendaliyeva, Dinara Kossatbekova, Medgat Mussayev, Balgali Myrzakhmet and Sabit Magavin
J. Compos. Sci. 2025, 9(8), 408; https://doi.org/10.3390/jcs9080408 - 1 Aug 2025
Viewed by 172
Abstract
This article analyzes statistics on the failure of technological equipment, assemblies, and mechanisms of agricultural (and other) machines associated with the breakdown or failure of gear pumps. It was found that the leading causes of gear pump failures are the opening of gear [...] Read more.
This article analyzes statistics on the failure of technological equipment, assemblies, and mechanisms of agricultural (and other) machines associated with the breakdown or failure of gear pumps. It was found that the leading causes of gear pump failures are the opening of gear teeth contact during pump operation, poor assembly, wear of bushings, thrust washers, and gear teeth. It has also been found that there is a problem related to the restoration, repair, and manufacture of parts in the conditions of enterprises serving the agro-industrial complex of the Republic of Kazakhstan (AIC RK). This is due to the lack of necessary technological equipment, tools, and instruments, as well as centralized repair and restoration bases equipped with the required equipment. This work proposes to solve this problem by applying AM technologies to the repair and manufacture of parts for agricultural machinery and equipment. The study results on the stress–strain state of support bushings under various pressures are presented, showing that a fully filled bushing has the lowest stresses and strains. It was also found that bushings with 50% filling and fully filled bushings have similar stress and strain values under the same pressure. The difference between them is insignificant, especially when compared to bushings with lower filling. This means that filling the bushing by more than 50% does not provide a significant additional reduction in stresses. In terms of material and printing time savings, 50% filling may also be the optimal option. Full article
Show Figures

Figure 1

17 pages, 2920 KiB  
Article
Device Reliability Analysis of NNBI Beam Source System Based on Fault Tree
by Qian Cao and Lizhen Liang
Appl. Sci. 2025, 15(15), 8556; https://doi.org/10.3390/app15158556 (registering DOI) - 1 Aug 2025
Viewed by 129
Abstract
Negative Ion Source Neutral beam Injection (NNBI), as a critical auxiliary heating system for magnetic confinement fusion devices, directly affects the plasma heating efficiency of tokamak devices through the reliability of its beam source system. The single-shot experiment constitutes a significant experimental program [...] Read more.
Negative Ion Source Neutral beam Injection (NNBI), as a critical auxiliary heating system for magnetic confinement fusion devices, directly affects the plasma heating efficiency of tokamak devices through the reliability of its beam source system. The single-shot experiment constitutes a significant experimental program for NNBI. This study addresses the frequent equipment failures encountered by the NNBI beam source system during a cycle of experiments, employing fault tree analysis (FTA) to conduct a systematic reliability assessment. Utilizing the AutoFTA 3.9 software platform, a fault tree model of the beam source system was established. Minimal cut set analysis was performed to identify the system’s weak points. The research employed AutoFTA 3.9 for both qualitative analysis and quantitative calculations, obtaining the failure probabilities of critical components. Furthermore, the F-V importance measure and mean time between failures (MTBF) were applied to analyze the system. This provides a theoretical basis and practical engineering guidance for enhancing the operational reliability of the NNBI system. The evaluation methodology developed in this study can be extended and applied to the reliability analysis of other high-power particle acceleration systems. Full article
Show Figures

Figure 1

19 pages, 4612 KiB  
Article
User-Centered Design of a Computer Vision System for Monitoring PPE Compliance in Manufacturing
by Luis Alberto Trujillo-Lopez, Rodrigo Alejandro Raymundo-Guevara and Juan Carlos Morales-Arevalo
Computers 2025, 14(8), 312; https://doi.org/10.3390/computers14080312 - 1 Aug 2025
Viewed by 129
Abstract
In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on addressing this deficiency [...] Read more.
In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on addressing this deficiency by designing a computer vision desktop application for automated monitoring of PPE use. This system uses lightweight YOLOv8 models, developed to run on the local system and operate even in industrial locations with limited network connectivity. Using a Lean UX approach, the development of the system involved creating empathy maps, assumptions, product backlog, followed by high-fidelity prototype interface components. C4 and physical diagrams helped define the system architecture to facilitate modifiability, scalability, and maintainability. Usability was verified using the System Usability Scale (SUS), with a score of 87.6/100 indicating “excellent” usability. The findings demonstrate that a user-centered design approach, considering user experience and technical flexibility, can significantly advance the utility and adoption of AI-based safety tools, especially in small- and medium-sized manufacturing operations. This article delivers a validated and user-centered design solution for implementing machine vision systems into manufacturing safety processes, simplifying the complexities of utilizing advanced AI technologies and their practical application in resource-limited environments. Full article
Show Figures

Figure 1

Back to TopTop