Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = on board acoustic measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2253 KiB  
Article
Robust Underwater Vehicle Pose Estimation via Convex Optimization Using Range-Only Remote Sensing Data
by Sai Krishna Kanth Hari, Kaarthik Sundar, José Braga, João Teixeira, Swaroop Darbha and João Sousa
Remote Sens. 2025, 17(15), 2637; https://doi.org/10.3390/rs17152637 - 29 Jul 2025
Viewed by 225
Abstract
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board [...] Read more.
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board receivers. The proposed framework integrates three key components, each formulated as a convex optimization problem. First, we introduce a robust calibration function that unifies multiple sources of measurement error—such as range-dependent degradation, variable sound speed, and latency—by modeling them through a monotonic function. This function bounds the true distance and defines a convex feasible set for each receiver location. Next, we estimate the receiver positions as the center of this feasible region, using two notions of centrality: the Chebyshev center and the maximum volume inscribed ellipsoid (MVE), both formulated as convex programs. Finally, we recover the vehicle’s full 6-DOF pose by enforcing rigid-body constraints on the estimated receiver positions. To do this, we leverage the known geometric configuration of the receivers in the vehicle and solve the Orthogonal Procrustes Problem to compute the rotation matrix that best aligns the estimated and known configurations, thereby correcting the position estimates and determining the vehicle orientation. We evaluate the proposed method through both numerical simulations and field experiments. To further enhance robustness under real-world conditions, we model beacon-location uncertainty—due to mooring slack and water currents—as bounded spherical regions around nominal beacon positions. We then mitigate the uncertainty by integrating the modified range constraints into the MVE position estimation formulation, ensuring reliable localization even under infrastructure drift. Full article
Show Figures

Figure 1

21 pages, 2572 KiB  
Article
Acoustic Measurements and Simulations on Yachts: An Evaluation of Airborne Sound Insulation
by Michele Rocca, Francesca Di Puccio, Paola Forte, Francesco Fidecaro, Francesco Artuso, Simon Kanka and Francesco Leccese
J. Mar. Sci. Eng. 2025, 13(5), 988; https://doi.org/10.3390/jmse13050988 - 20 May 2025
Cited by 1 | Viewed by 504
Abstract
The perceived acoustic comfort on board modern yachts has recently been the subject of specific attention by the most important classification societies, which have issued new guidelines and regulations for the evaluation of noise and vibrations. The evaluation of the acoustic insulation performance [...] Read more.
The perceived acoustic comfort on board modern yachts has recently been the subject of specific attention by the most important classification societies, which have issued new guidelines and regulations for the evaluation of noise and vibrations. The evaluation of the acoustic insulation performance of the internal partitions of yachts is, therefore, a very current topic. The estimation of the acoustic performance of internal partitions can be very complex; on the one hand, on-board measurements can be extremely difficult, but on the other hand, manual or software calculation is extremely complex or potentially affected by non-negligible errors, which is also due to the high amount of highly detailed information required. This paper explores the possibility of using simplified models, commonly used in building construction, to determine the acoustic insulation of the internal partitions of yachts in the design phase, without having to resort, even from the beginning, to very advanced calculation tools such as those based on the Finite Elements Method or Statistical Energy Analysis. Using a 44 m yacht as a case study, this paper presents the results of a series of acoustic simulations of single partitions and compares them with the results of an on-board measurement campaign. From the comparison of the obtained results, it was possible to state that the simulations of single partitions (therefore, those not of the whole vessel) can be useful in the design phase to verify compliance with the acoustic requirements requested by the classification societies. Considering that the propagation of sound and vibrations through the structures is a determining factor for the correct acoustic design of the vessel and therefore for the achievement of adequate levels of acoustic comfort, the analysis with simplified models (which consider the single partition) can be extremely useful in the preliminary phase of the design process. Subsequently, starting from the data acquired in the first simulation phase, it is possible to proceed with more complex simulations of specific situations and of the whole vessel. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 10117 KiB  
Article
Noise Exposure and Mitigation on High-Speed Craft: Assessing Acoustic Environment and Regulatory Compliance
by Luis Alfonso Díaz-Secades, Rebeca Bouzón Otero, Yolanda Amado-Sánchez and Fernando Crestelo Moreno
J. Mar. Sci. Eng. 2024, 12(12), 2329; https://doi.org/10.3390/jmse12122329 - 19 Dec 2024
Viewed by 1405
Abstract
High-speed craft (HSC) present unique challenges regarding on-board noise levels, affecting crew safety, comfort, and operational efficiency. This study investigates noise exposure and mitigation strategies aboard three Ro-Pax HSC vessels operating in southern Spain, with a focus on noise sources, regulatory compliance, and [...] Read more.
High-speed craft (HSC) present unique challenges regarding on-board noise levels, affecting crew safety, comfort, and operational efficiency. This study investigates noise exposure and mitigation strategies aboard three Ro-Pax HSC vessels operating in southern Spain, with a focus on noise sources, regulatory compliance, and crew health. Full-scale experimental measurements were conducted in critical on-board locations, and noise maps were developed to identify areas where sound levels exceed International Maritime Organization (IMO) and European Directive 2003/10/EC thresholds. Results highlight that engine rooms and propulsion systems are the primary sources of excessive noise, with significant transmission to passenger and crew accommodation areas. Noise exposure calculations reveal that several crew roles, particularly engineers and deckhands, face exposure to hazardous noise levels during routine operations. Mitigation strategies, including improved insulation, noise mapping, and the implementation of hearing protection, are recommended to enhance on-board acoustic conditions. This research contributes to a deeper understanding of noise pollution on HSC vessels and proposes practical interventions to reduce exposure, improving overall maritime safety and occupational health. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 2330 KiB  
Article
Convolutional Neural Networks for Real Time Classification of Beehive Acoustic Patterns on Constrained Devices
by Antonio Robles-Guerrero, Salvador Gómez-Jiménez, Tonatiuh Saucedo-Anaya, Daniela López-Betancur, David Navarro-Solís and Carlos Guerrero-Méndez
Sensors 2024, 24(19), 6384; https://doi.org/10.3390/s24196384 - 2 Oct 2024
Cited by 2 | Viewed by 1945
Abstract
Recent research has demonstrated the effectiveness of convolutional neural networks (CNN) in assessing the health status of bee colonies by classifying acoustic patterns. However, developing a monitoring system using CNNs compared to conventional machine learning models can result in higher computation costs, greater [...] Read more.
Recent research has demonstrated the effectiveness of convolutional neural networks (CNN) in assessing the health status of bee colonies by classifying acoustic patterns. However, developing a monitoring system using CNNs compared to conventional machine learning models can result in higher computation costs, greater energy demand, and longer inference times. This study examines the potential of CNN architectures in developing a monitoring system based on constrained hardware. The experimentation involved testing ten CNN architectures from the PyTorch and Torchvision libraries on single-board computers: an Nvidia Jetson Nano (NJN), a Raspberry Pi 5 (RPi5), and an Orange Pi 5 (OPi5). The CNN architectures were trained using four datasets containing spectrograms of acoustic samples of different durations (30, 10, 5, or 1 s) to analyze their impact on performance. The hyperparameter search was conducted using the Optuna framework, and the CNN models were validated using k-fold cross-validation. The inference time and power consumption were measured to compare the performance of the CNN models and the SBCs. The aim is to provide a basis for developing a monitoring system for precision applications in apiculture based on constrained devices and CNNs. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

15 pages, 3651 KiB  
Article
Experimental Analysis of Noise Characteristics on Different Types of Pavements inside and outside Highway Tunnels
by Wanyan Ren, Yi Zhang, Minmin Yuan and Jun Li
Coatings 2024, 14(9), 1213; https://doi.org/10.3390/coatings14091213 - 20 Sep 2024
Viewed by 1204
Abstract
Aiming to reduce noise pollution and optimize the acoustic quality in highway tunnels, the noise characteristics on different types of pavements were analyzed and compared in this research, based on the on-site noise measurement in two tunnels with the free fields as a [...] Read more.
Aiming to reduce noise pollution and optimize the acoustic quality in highway tunnels, the noise characteristics on different types of pavements were analyzed and compared in this research, based on the on-site noise measurement in two tunnels with the free fields as a control group. Specifically, the noise characteristics include two aspects: various noise and noise time attenuation performance. Various noise includes on-board sound intensity (OBSI) noise and cabin noise. The noise time attenuation performance uses the indicator of reverberation time. Three types of pavements were measured, including dense-graded asphalt concrete (DAC) and single-layered and double-layered porous asphalt (PA) pavement. The results showed that, for the same type of pavement, compared with the free fields, the difference in OBSI noise in tunnels was within a range of less than 1 dBA; the cabin noise increased by 3.4 dBA~6.6 dBA. The noise level in tunnels was greater than that outside tunnels, and the longer tunnel exhibited higher traffic noise and worse noise time attenuation performances. For the same tunnel, PA pavement could reduce the cabin noise by 3.8 dBA~6.7 dBA. PA pavement also exhibited shorter reverberation time. The application of PA pavement could effectively improve the acoustic quality in the tunnel. This research contributes to noise pollution abatement and the improvement of the comfort and safety of drivers in tunnels. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

15 pages, 9001 KiB  
Article
Novel Water Probe for High-Frequency Focused Transducer Applied to Scanning Acoustic Microscopy System: Simulation and Experimental Investigation
by Van Hiep Pham, Le Hai Tran, Jaeyeop Choi, Hoanh-Son Truong, Tan Hung Vo, Dinh Dat Vu, Sumin Park and Junghwan Oh
Sensors 2024, 24(16), 5179; https://doi.org/10.3390/s24165179 - 10 Aug 2024
Cited by 1 | Viewed by 1912
Abstract
A scanning acoustic microscopy (SAM) system is a common non-destructive instrument which is used to evaluate the material quality in scientific and industrial applications. Technically, the tested sample is immersed in water during the scanning process. Therefore, a robot arm is incorporated into [...] Read more.
A scanning acoustic microscopy (SAM) system is a common non-destructive instrument which is used to evaluate the material quality in scientific and industrial applications. Technically, the tested sample is immersed in water during the scanning process. Therefore, a robot arm is incorporated into the SAM system to transfer the sample for in-line inspection, which makes the system complex and increases time consumption. The main aim of this study is to develop a novel water probe for the SAM system, that is, a waterstream. During the scanning process, water was supplied using a waterstream instead of immersing the sample in the water, which leads to a simple design of an automotive SAM system and a reduction in time consumption. In addition, using a waterstream in the SAM system can avoid contamination of the sample due to immersion in water for long-time scanning. Waterstream was designed based on the measured focal length calculation of the transducer and simulated to investigate the internal flow characteristics. To validate the simulation results, the waterstream was prototyped and applied to the TSAM-400 and W-FSAM traditional and fast SAM systems to successfully image some samples such as carbon fiber-reinforced polymers, a printed circuit board, and a 6-inch wafer. These results demonstrate the design method of the water probe applied to the SAM system. Full article
Show Figures

Figure 1

14 pages, 5751 KiB  
Article
Study of Acoustic Prototypes Based on Plastic Cap Waste
by Romina Del Rey, José Enrique Crespo Amorós, Joan Escales Tur and Jesús Alba
Buildings 2024, 14(6), 1652; https://doi.org/10.3390/buildings14061652 - 4 Jun 2024
Cited by 1 | Viewed by 1899
Abstract
This paper presents the initial prototypes of solutions designed using plastic caps, seeking acoustic applications for both airborne sound insulation and the acoustic conditioning of rooms. Plastic caps are a waste product from the packaging sector and they constitute a major waste problem, [...] Read more.
This paper presents the initial prototypes of solutions designed using plastic caps, seeking acoustic applications for both airborne sound insulation and the acoustic conditioning of rooms. Plastic caps are a waste product from the packaging sector and they constitute a major waste problem, given that, if they are not attached to the packaging, they get lost during the recycling cycle and end up in landfill. Finding an application for this waste that can provide acoustic improvements is a sustainable alternative. This paper shows the results of airborne sound insulation measurements obtained in a scaled transmission chamber and sound absorption measurements obtained in a scaled reverberation chamber for different combinations of single and double plastic caps and combinations with thin sheets of sustainable materials, such as jute weaving, textile waste, hemp felt and cork board. Tests have shown that obtaining sound reduction index values of up to 20 dB is possible with plastic cap configurations, or even up to 30 dB is possible at some frequencies with combinations of caps and certain eco-materials. With regard to the sound absorption coefficient tests, close to unity absorption values have been achieved with the appropriate configuration at frequencies that can also be selected. The results indicate that these panels can be eco-solutions for airborne sound insulation as lightweight elements, or they can be used for the conditioning of rooms, tailoring the sound absorption maximums to the desired frequencies. Full article
Show Figures

Figure 1

14 pages, 3667 KiB  
Communication
Wireless Temperature Measurement for Curved Surfaces Based on AlN Surface Acoustic Wave Resonators
by Huali Liu, Zhixin Zhou and Liang Lou
Micromachines 2024, 15(5), 562; https://doi.org/10.3390/mi15050562 - 25 Apr 2024
Cited by 4 | Viewed by 1508
Abstract
In this paper, we propose a novel method for temperature measurement using surface acoustic wave (SAW) temperature sensors on curved or irregular surfaces. We integrate SAW resonators onto flexible printed circuit boards (FPCBs) to ensure better conformity of the temperature sensor with the [...] Read more.
In this paper, we propose a novel method for temperature measurement using surface acoustic wave (SAW) temperature sensors on curved or irregular surfaces. We integrate SAW resonators onto flexible printed circuit boards (FPCBs) to ensure better conformity of the temperature sensor with the surface of the object under test. Compared to traditional rigid PCBs, FPCBs offer greater dynamic flexibility, lighter weight, and thinner thickness, which make them an ideal choice for making SAW devices working for temperature measurements under curved surfaces. We design a temperature sensor array consisting of three devices with different operating frequencies to measure the temperature at multiple points on the surface of the object. To distinguish between different target points in the sensor array, each sensor operates at a different frequency, and the operating frequency bands do not overlap. This differentiation is achieved using Frequency Division Multiple Access (FDMA) technology. Experimental results indicate that the frequency temperature coefficients of these sensors are −30.248 ppm/°C, −30.195 ppm/°C, and −30.115 ppm/°C, respectively. In addition, the sensor array enables wireless communication via antenna and transceiver circuits. This innovation heralds enhanced adaptability and applicability for SAW temperature sensor applications. Full article
(This article belongs to the Special Issue Micro/Nano Sensors: Fabrication and Applications)
Show Figures

Figure 1

21 pages, 6932 KiB  
Article
Experimental Research and Transfer Matrix Method for Analysis of Transmission Loss in Multilayer Constructions with Devulcanized Waste Rubber
by Tomas Vilniškis and Tomas Januševičius
Sustainability 2023, 15(17), 12774; https://doi.org/10.3390/su151712774 - 23 Aug 2023
Viewed by 1440
Abstract
According to circular economy principles, the recycling and reuse of tyre rubber waste are among the most advanced and ecological waste disposal technologies. Each year, about 19 million tons of tyres are produced, and this number increases every year. One of the most [...] Read more.
According to circular economy principles, the recycling and reuse of tyre rubber waste are among the most advanced and ecological waste disposal technologies. Each year, about 19 million tons of tyres are produced, and this number increases every year. One of the most innovative ways to recycle rubber waste is devulcanization. There are many methods of rubber devulcanization, but the most popular is chemical devulcanization. Also, pre-process treatment is important before devulcanization. In this article, devulcanized rubber granules were used for the preparation of rubber samples. Two of the samples were obtained via the grinding method and one via chemical devulcanization. In total, 15 different rubber samples were produced for experimental measurements. Multilayer constructions, with two solid layers of plasterboard on both sides (GKB (a standard gypsum board) and GKFI (an enhanced-strength and surface-hardness gypsum board)) and the porous acoustic material of the rubber sample inside, were produced. Measurements were made in an impedance tube and compared with the results of a transfer matrix method (TMM) analysis. The same trends of resonant frequencies were determined. According to the results, the resonant frequencies depended on the thickness of the material, since transmission loss (TL) values depended on the mass of the construction. According to the test results of transmission loss, constructions with 50 mm thick rubber samples had results that were, on average, 3 dB better than those of structures with 25 mm thick samples and 5 dB better than those of structures with 12 mm thick rubber samples. In addition, it was found that higher-density plasterboards (GKFI) increased the overall transmission loss value of the structure by 5 dB. The same trends were determined using the TMM method. The test results showed that multilayered constructions with devulcanized waste rubber had high transmission loss results and could be used for sound-insulating structures. Full article
Show Figures

Figure 1

17 pages, 5429 KiB  
Article
Experimental Analysis of Lightweight Fire-Rated Board on Fire Resistance, Mechanical, and Acoustic Properties
by Ming Chian Yew, Ming Kun Yew and Richard Kwok Kit Yuen
Fire 2023, 6(6), 221; https://doi.org/10.3390/fire6060221 - 31 May 2023
Cited by 7 | Viewed by 2808
Abstract
Using lightweight fire-rated board (LFRB) presents cost-effective opportunities for various passive fire protection measures. The aim of the project is to develop an LFRB with enhanced fire resistance, acoustic properties, and mechanical properties. These properties were determined using a Bunsen burner, furnace, energy-dispersive [...] Read more.
Using lightweight fire-rated board (LFRB) presents cost-effective opportunities for various passive fire protection measures. The aim of the project is to develop an LFRB with enhanced fire resistance, acoustic properties, and mechanical properties. These properties were determined using a Bunsen burner, furnace, energy-dispersive X-ray, impedance tube instrument, and Instron universal testing machine. To fabricate the LFRBs, vermiculite and perlite were blended with flame-retardant binders, and four types of LFRBs were produced. A fire test was conducted to compare the fire-resistance performance of the LFRBs with a commercially available flame-retardant board. The B2 prototype showed exceptional fire-resistant properties, with a temperature reduction of up to 73.0 °C, as compared to the commercially available fire-rated magnesium board. Incorporating nano chicken eggshell into the specially formulated flame-retardant binder preserved the LFRBs’ structural integrity, enabling them to withstand fire for up to 120 min with an equilibrium temperature of 92.6 °C. This approach also provided an absorption coefficient of α = 2.0, a high flexural strength of 3.54 MPa, and effective flame-retardancy properties with a low oxygen/carbon ratio of 2.60. These results make the LFRBs valuable for passive fire protection applications in the construction and building materials industry. Full article
(This article belongs to the Special Issue Fire Performance Materials and Structure)
Show Figures

Figure 1

21 pages, 6386 KiB  
Article
Low-Cost Online Partial Discharge Monitoring System for Power Transformers
by Wojciech Sikorski and Artur Wielewski
Sensors 2023, 23(7), 3405; https://doi.org/10.3390/s23073405 - 23 Mar 2023
Cited by 17 | Viewed by 6274
Abstract
The article presents in detail the construction of a low-cost, portable online PD monitoring system based on the acoustic emission (AE) technique. A highly sensitive piezoelectric transducer was used as the PD detector, whose frequency response characteristics were optimized to the frequency of [...] Read more.
The article presents in detail the construction of a low-cost, portable online PD monitoring system based on the acoustic emission (AE) technique. A highly sensitive piezoelectric transducer was used as the PD detector, whose frequency response characteristics were optimized to the frequency of AE waves generated by discharges in oil–paper insulation. The popular and inexpensive Teensy 3.2 development board featuring a 32-bit MK20DX256 microcontroller with the ARM Cortex-M4 core was used to count the AE pulses. The advantage of the system is its small dimensions and weight, easy and quick installation on the transformer tank, storage of measurement data on a memory card, battery power supply, and immediate readiness for operation without the need to configure. This system may contribute to promoting the idea of short-term (several days or weeks) PD monitoring, especially in developing countries where, with the dynamically growing demand for electricity, the need for inexpensive transformer diagnostics systems is also increasing. Another area of application is medium-power transformers (up to 100 MVA), where temporary PD monitoring using complex measurement systems requiring additional infrastructure (e.g., control cabinet, cable ducts for power supply, and data transmission) and qualified staff is economically unjustified. Full article
Show Figures

Figure 1

19 pages, 11278 KiB  
Article
Assessment of Novel Modal Testing Methods for Structures Rotating in Water
by Rafel Roig, Xavier Sánchez-Botello and Xavier Escaler
Appl. Sci. 2023, 13(5), 2895; https://doi.org/10.3390/app13052895 - 23 Feb 2023
Cited by 5 | Viewed by 2315
Abstract
The current paper presents an investigation into novel modal testing methods applied to a disk–shaft structure at different rotating speeds in air and water. The structure was excited using three different methods: an instrumented hammer, a piezoelectric PZT patch glued on the disk [...] Read more.
The current paper presents an investigation into novel modal testing methods applied to a disk–shaft structure at different rotating speeds in air and water. The structure was excited using three different methods: an instrumented hammer, a piezoelectric PZT patch glued on the disk and a transient ramp-up. The structural response was measured using an accelerometer and strain gauges mounted on board as well as accelerometers and displacement lasers mounted off board. The potential to excite the natural frequencies using each excitation method and to detect natural frequencies with each sensor was analyzed and compared. Numerical structural and acoustic–structural modal and harmonic analyses of the non-rotating disk in air and water were also performed, taking into consideration the PZT patch. The numerical results showed a close agreement with the experimental ones in both air and water. It was found that the rotating speed of the disk modified the detected natural frequencies, depending on the frame of reference of the sensor. Finally, the PZT patch and the transient ramp-up were proven to be reliable methods to excite the natural frequencies of the current test rig and to be potentially applicable in full-scale hydraulic turbines under operating conditions. Full article
(This article belongs to the Special Issue Alternative Techniques in Vibration Measurement and Analysis)
Show Figures

Figure 1

18 pages, 5421 KiB  
Article
Design and Manufacture of an Optimised Side-Shifted PPM EMAT Array for Use in Mobile Robotic Localisation
by Ross McMillan, Rory Hampson, Morteza Tabatabaeipour, William Jackson, Dayi Zhang, Konstantinos Tzaferis and Gordon Dobie
Sensors 2023, 23(4), 2012; https://doi.org/10.3390/s23042012 - 10 Feb 2023
Cited by 6 | Viewed by 2462
Abstract
Guided wave Electro Magnetic Acoustic Transducers (EMATs) offer an elegant method for structural inspection and localisation relative to geometric features, such as welds. This paper presents a Lorentz force EMAT construction framework, where a numerical model has been developed for optimising Printed Circuit [...] Read more.
Guided wave Electro Magnetic Acoustic Transducers (EMATs) offer an elegant method for structural inspection and localisation relative to geometric features, such as welds. This paper presents a Lorentz force EMAT construction framework, where a numerical model has been developed for optimising Printed Circuit Board (PCB) coil parameters as well as a methodology for optimising magnet array parameters to a user’s needs. This framework was validated experimentally to show its effectiveness through comparison to an industry built EMAT. The framework was then used to design and manufacture a Side-Shifted Unidirectional Periodic Permanent Magnet (PPM) EMAT for use on a mobile robotic system, which uses guided waves for ranging to build internal maps of a given subject, identifying welded sections, defects and other structural elements. The unidirectional transducer setup was shown to operate in simulation and was then manufactured to compare to the bidirectional transmitter and two-receiver configurations on a localisation system. The unidirectional setup was shown to have clear benefits over the bidirectional setup for mapping an unknown environment using guided waves as there were no dead spots of mapping where signal direction could not be interpreted. Additionally, overall package size was significantly reduced, which in turn allows more measurements to be taken within confined spaces and increases robotic crawler mobility. Full article
Show Figures

Figure 1

11 pages, 2384 KiB  
Article
Thermal, Acoustic, and Hygrothermal Properties of Recycled Bovine Leather Cutting Waste-Based Panels with Different Compositions
by Francesca Merli, Costanza Vittoria Fiorini, Marco Barbanera, Giorgia Pietroni, Francesco Spaccini and Cinzia Buratti
Sustainability 2023, 15(3), 1779; https://doi.org/10.3390/su15031779 - 17 Jan 2023
Cited by 6 | Viewed by 2493
Abstract
This study aims to investigate the thermo-acoustic and hygrothermal properties of innovative panels made of leather waste produced by a bag factory from a circular economy perspective. Their performance was compared with other residual-based insulation panels. The leather scraps were chipped and three [...] Read more.
This study aims to investigate the thermo-acoustic and hygrothermal properties of innovative panels made of leather waste produced by a bag factory from a circular economy perspective. Their performance was compared with other residual-based insulation panels. The leather scraps were chipped and three boards were fabricated by means of a mold with different compositions, adding adhesive glue. In order to improve the sustainability aspects, a sample was assembled by using a water-based polyurethane glue, in addition to the two panels with vinyl glue. Panels were tested for thermal, acoustic, and hygrothermal performance. Thermal conductivity values in the range of 0.064–0.078 W/mK at 10 °C were measured depending on the composition and the adhesive. A slight thermal performance deterioration occurs when using the natural water-based glue. The samples were characterized by good performance both in terms of sound absorption coefficient (Noise Reduction Coefficient NRC = 0.21–0.28) and Transmission Loss, up to 59 dB values. Water vapor resistance factor values in the 35–48 range were obtained, close to the values of standard materials, such as expanded polystyrene and polyurethane. Full article
(This article belongs to the Special Issue Built Environment and Sustainability)
Show Figures

Figure 1

12 pages, 8535 KiB  
Article
Through-Silicon via Device Non-Destructive Defect Evaluation Using Ultra-High-Resolution Acoustic Microscopy System
by Tae Hyeong Kim, Dongchan Kang, Jeong Nyeon Kim and Ik Keun Park
Materials 2023, 16(2), 860; https://doi.org/10.3390/ma16020860 - 16 Jan 2023
Viewed by 2506
Abstract
In this study, an ultra-high-resolution acoustic microscopy system capable of non-destructively evaluating defects that may occur in thin film structures was fabricated. It is an integrated system of the control module, activation module, and data acquisition system, in which an integrated control software [...] Read more.
In this study, an ultra-high-resolution acoustic microscopy system capable of non-destructively evaluating defects that may occur in thin film structures was fabricated. It is an integrated system of the control module, activation module, and data acquisition system, in which an integrated control software for controlling each module was developed. The control module includes the mechanical, control, and ultrasonic parts. The activation module was composed of the pulser/receiver, and the data acquisition system included an A/D board. In addition, the integrated control software performs system operation and material measurement and includes an analysis program to analyze the obtained A-Scan signals in various ways. A through-silicon via (TSV) device, which is a semiconductor structure, was prepared to verify the performance of the developed system. The TSV device was analyzed using an ultra-high-resolution acoustic microscope. When the C-Scan images were analyzed, void defects with a size of 20 μm were detected at a depth of approximately 32.5 μm. A similar result could be confirmed when the cross section was measured using focused ion beam (FIB) microscopy. Full article
Show Figures

Figure 1

Back to TopTop