Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = oleogel properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1522 KiB  
Article
Investigating the Microstructural and Textural Properties of Cookies Using Plant-Based Bigel as an Alternative to Commercial Solid Fat
by Ingrid Contardo, Sonia Millao, Eduardo Morales, Mónica Rubilar and Marcela Quilaqueo
Gels 2025, 11(8), 571; https://doi.org/10.3390/gels11080571 - 23 Jul 2025
Viewed by 309
Abstract
In response to the growing demand for improving the nutritional profile of widely consumed products, such as cookies, there has been an increasing interest in fat replacers that preserve sensory attributes and have a more positive health effect. Among the novel fat replacement [...] Read more.
In response to the growing demand for improving the nutritional profile of widely consumed products, such as cookies, there has been an increasing interest in fat replacers that preserve sensory attributes and have a more positive health effect. Among the novel fat replacement strategies, the incorporation of bigels into food formulations has been studied; however, the impact of Arabic gum hydrogel-based bigels on microstructural properties and their correlation with the texture and quality of bakery products remains underexplored. In this study, cookies were formulated using a plant-based bigel (canola oil-carnauba wax oleogel mixed with Arabic gum hydrogel) as a fat substitute, and their microstructural, textural, and quality parameters were compared with those of commercial butter-based cookies. Compared to butter (firmness of 29,102 g, spreadability of 59,624 g∙s, and adhesiveness of 2282 g), bigel exhibited a softer (firmness of 576 g), more spreadable (spreadability of 457 g∙s), and less adhesive texture (adhesiveness of 136 g), while its rheological properties showed similar behavior but at a lower magnitude. Bigel exhibited high thermal stability and good elastic and thixotropic behaviors, indicating reversible structural breakdown and recovery. Cookies prepared with bigels instead of butter exhibited a similar proximate composition, with a slight increase in lipid content (11.7%). The physical dimensions and density were similar across the formulations. However, the microstructural analysis revealed differences when bigels were incorporated into cookies, reducing porosity (55%) and increasing the mean pore size (1781 µm); in contrast, mean wall thickness remained unaffected. Despite these structural modifications, the potential of bigels as viable and nutritionally enhanced substitutes for conventional fats in bakery products was demonstrated. Full article
(This article belongs to the Special Issue Food Gels: Structure and Function)
Show Figures

Graphical abstract

29 pages, 2969 KiB  
Review
Oleogels: Uses, Applications, and Potential in the Food Industry
by Abraham A. Abe, Iolinda Aiello, Cesare Oliviero Rossi and Paolino Caputo
Gels 2025, 11(7), 563; https://doi.org/10.3390/gels11070563 - 21 Jul 2025
Viewed by 394
Abstract
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of [...] Read more.
Oleogels are a subclass of organogels that present a healthier alternative to traditional saturated and trans solid fats in food products. The unique structure and composition that oleogels possess make them able to provide desirable sensory and textural features to a range of food products, such as baked goods, processed meats, dairy products, and confectionery, while also improving the nutritional profiles of these food products. The fact that oleogels have the potential to bring about healthier food products, thereby contributing to a better diet, makes interest in the subject ever-increasing, especially due to the global issue of obesity and related health issues. Research studies have demonstrated that oleogels can effectively replace conventional fats without compromising flavor or texture. The use of plant-based gelators brings about a reduction in saturated fat content, as well as aligns with consumer demands for clean-label and sustainable food options. Oleogels minimize oil migration in foods due to their high oil-binding capacity, which in turn enhances food product shelf life and stability. Although oleogels are highly advantageous, their adoption in the food industry presents challenges, such as oil stability, sensory acceptance, and the scalability of production processes. Concerns such as mixed consumer perceptions of taste and mouthfeel and oxidative stability during processing and storage evidence the need for further research to optimize oleogel formulations. Addressing these limitations is fundamental for amplifying the use of oleogels and fulfilling their promise as a sustainable and healthier fat alternative in food products. As the oleogel industry continues to evolve, future research directions will focus on enhancing understanding of their properties, improving sensory evaluations, addressing regulatory challenges, and promoting sustainable production practices. The present report summarizes and updates the state-of-the-art about the structure, the properties, and the applications of oleogels in the food industry to highlight their full potential. Full article
(This article belongs to the Special Issue Functionality of Oleogels and Bigels in Foods)
Show Figures

Figure 1

36 pages, 8596 KiB  
Article
Optimizing Burn Wound Healing: The Critical Role of pH and Rheological Behavior in Plant-Derived Topical Formulations
by Oana-Janina Roșca, Georgeta-Hermina Coneac, Roxana Racoviceanu, Alexandru Nistor, Ioana-Viorica Olariu, Ana-Maria Cotan, Roxana Negrea-Ghiulai, Cristina Adriana Dehelean, Lavinia Lia Vlaia and Codruța Marinela Șoica
Pharmaceutics 2025, 17(7), 853; https://doi.org/10.3390/pharmaceutics17070853 - 29 Jun 2025
Viewed by 403
Abstract
Background: In burn injuries, wound healing effectiveness is complex and influenced significantly by the local biochemical environment and the physicochemical properties of topical preparations. pH lesions modulation can influence protection barrier integrity, inflammatory responses, and microbial colonization. Their antioxidant, antimicrobial, and anti-inflammatory properties, [...] Read more.
Background: In burn injuries, wound healing effectiveness is complex and influenced significantly by the local biochemical environment and the physicochemical properties of topical preparations. pH lesions modulation can influence protection barrier integrity, inflammatory responses, and microbial colonization. Their antioxidant, antimicrobial, and anti-inflammatory properties, of the topical formulations enriched with plant extracts have demonstrated promising results. Objective: The aim of the study was to develop and characterize topical oleogel and hydrogel formulations containing ethanolic and hydroalcoholic extracts of medicinal plants (Boswellia serrata, Ocimum basilicum, Sambucus nigra, and Galium verum), and to evaluate the impact of their physicochemical properties, rheological behavior, in contrast with the wound pH modulation, and healing efficacy in an experimental burn model. Methods: Second-degree burns were induced uniformly on Wistar rats using the validated RAPID-3D device. All formulations were applied daily for 21 days, and wound healing was assessed through several measurements specific to the wound surface, skin temperature, pH, and, last but not least, histological analyses. Formulations’ physicochemical and rheological properties, including pH, viscosity, and spreadability, were also analyzed and systematically characterized. Results: Oleogel formulations demonstrated superior wound healing performance compared to hydrogels. Formulations containing Boswellia serrata and Ocimum basilicum extracts significantly reduced wound size, inflammation, and melanin production by days 9 and 21 (p < 0.05). The beneficial outcomes correlated strongly with formulation acidity (pH < 6), high viscosity, and enhanced thixotropic behavior, indicating improved adherence and sustained bioactive compound release. Histological evaluations confirmed enhanced epithelialization and reduced inflammation. Conclusions: Particularly Boswellia serrata and Ocimum basilicum in oleogel formulations in ethanolic solvent effectively modulated wound pH, enhanced topical adherence, and improved burn wound healing. These findings highlight their potential clinical application and justify further clinical investigations. Full article
Show Figures

Graphical abstract

23 pages, 4522 KiB  
Article
Betulinic Acid-Loaded Oleogel as a Novel Pharmaceutical Formulation for Potential Cutaneous Applications: Development, Characterization, and Biosafety Profile
by Andreea Smeu, Daliana Minda, Casiana Boru, Lavinia Vlaia, Vicențiu Vlaia, Cristina Adriana Dehelean, Sergio Liga, George Puenea and Daniela Lucia Muntean
Life 2025, 15(6), 954; https://doi.org/10.3390/life15060954 - 13 Jun 2025
Viewed by 596
Abstract
Skin disorders constitute a persistent health problem, covering both acute and chronic conditions that manifest in patients of all ages. Betulinic acid (BA) is a triterpene previously studied as an efficient treatment of skin ailments due to its innate pharmacological properties. Nonetheless, due [...] Read more.
Skin disorders constitute a persistent health problem, covering both acute and chronic conditions that manifest in patients of all ages. Betulinic acid (BA) is a triterpene previously studied as an efficient treatment of skin ailments due to its innate pharmacological properties. Nonetheless, due to its lipophilic nature and low bioavailability, topical delivery systems are necessary for its proper administration. Oleogels are efficient carriers for the incorporation of hydrophobic biomolecules; however, their use for the delivery of BA remains scarce. Therefore, this study was designed to develop, characterize, and evaluate a BA-containing oleogel (BA-O) regarding its cutaneous safety profile as a potential pharmaceutical formulation targeting dermatologic issues. The findings illustrated the efficient formulation of BA as oleogel, the product presenting the specific conditions of topical semi-solid formulations in terms of physico-chemical characteristics and high biocompatibility in vitro and in ovo, as BA-O lacked a cytotoxic effect in HaCaT and JB6 Cl 41-5a skin cells (cell viability percentages being > 70%) and was categorized as non-irritant in EpiDerm™ tissues (viability > 80%) and on the chorioallantoic membrane (Irritation Score = 0.186). These results present the preclinical biosafety profile of BA-O with prospective potential for cutaneous applications that should be investigated in future studies. Full article
Show Figures

Figure 1

14 pages, 1799 KiB  
Review
Trends and Future Perspectives of Polysaccharide-Based Bigels from Seeds, Vegetable Oils, and Waxes: A Bibliometric Review
by Monserrat Sanpedro-Díaz, Alitzel Belem García-Hernández, Ana Luisa Gómez-Gómez, Julia Salgado-Cruz, Oswaldo Arturo Ramos-Monroy, Rubén Oliver-Espinoza, Griselda Argelia Rivera-Vargas and Ma de la Paz Salgado-Cruz
Gels 2025, 11(6), 413; https://doi.org/10.3390/gels11060413 - 30 May 2025
Cited by 1 | Viewed by 558
Abstract
Gels are semi-solid colloidal systems characterized by three-dimensional networks capable of retaining up to 99% of liquid while exhibiting both solid-like and liquid-like properties. A novel biphasic system, the bigel, consists of hydrogel and oleogel, enabling the encapsulation of hydrophilic and lipophilic compounds. [...] Read more.
Gels are semi-solid colloidal systems characterized by three-dimensional networks capable of retaining up to 99% of liquid while exhibiting both solid-like and liquid-like properties. A novel biphasic system, the bigel, consists of hydrogel and oleogel, enabling the encapsulation of hydrophilic and lipophilic compounds. Their structure and functionality are influenced by the distribution of gel phases (e.g., oleogel-in-hydrogel or hydrogel-in-oleogel). This study aims to review current trends in polysaccharide-based bigels derived from seeds, vegetable oils and waxes, highlighting their biocompatibility, sustainability and potential food applications. A bibliometric analysis of 157 documents using VOSviewer identified four key thematic clusters: structured materials, delivery systems, pharmaceutical applications, and physicochemical characterization. Principal component analysis revealed strong correlations between terms, while also highlighting emerging areas such as 3D printing. This analysis demonstrated that seed-derived polysaccharides, including chia seed mucilage and guar gum, improve bigel structure and rheological properties, offering sustainable plant-based alternatives. Additionally, innovations such as extrusion-based 3D printing, functional food design, controlled drug release, bioactive compound delivery, and fat replacement are helping to support the further development of these systems. Finally, bibliometric tools remain instrumental in identifying research gaps and guiding future directions in this field. Full article
(This article belongs to the Special Issue Functionality of Oleogels and Bigels in Foods)
Show Figures

Graphical abstract

25 pages, 6616 KiB  
Article
Optimization and Characterization of Crosslinked Chitosan-Based Oleogels Based on Mechanical Properties of Conventional Solid Fats
by Gabriela Baptista Brito, Jorge da Silva Pinho-Jr, André da Silva Guimarães, Carlos Adam Conte-Júnior, Marcio Nele, Daniel Perrone and Vanessa Naciuk Castelo-Branco
Polymers 2025, 17(11), 1526; https://doi.org/10.3390/polym17111526 - 29 May 2025
Viewed by 536
Abstract
Industrial trans and saturated fatty acids, which are key components of solid fats used in food products, should be replaced with unsaturated fatty acids from vegetable oils to reduce cardiovascular risk. However, unsaturated oils lack the structured networks required to replicate the technological [...] Read more.
Industrial trans and saturated fatty acids, which are key components of solid fats used in food products, should be replaced with unsaturated fatty acids from vegetable oils to reduce cardiovascular risk. However, unsaturated oils lack the structured networks required to replicate the technological properties of solid fats. Oleogelation, especially using polymer-based networks, offers a promising solution. This study optimized chitosan-based oleogels crosslinked with vanillin to mimic the texture of butter, partially hydrogenated fat, margarine, and palm fat while minimizing oil loss. Oleogels were prepared via the emulsion-template method and optimized through a central composite design combined with a desirability function, evaluating the effects of chitosan, vanillin, Tween® 60 concentrations, oil type (canola or soybean), and storage temperature (4 °C or 25 °C). Optimized oleogels were characterized for their rheological and microstructural properties. Chitosan concentration primarily governed oil loss, hardness, and adhesiveness of oleogels, independent of the oil phase and storage temperature. However, storage at 4 °C reduced oil loss but increased the hardness and adhesiveness compared to storage at 25 °C. The highest desirability scores (0.72 to 0.94) were achieved in soybean oil oleogels with 0.99% chitosan, 0.24–0.32% vanillin, and 0.17–0.18% Tween® 60, closely mimicking the texture of butter and margarine. These oleogels demonstrated stronger networks, enhanced gel strength, and elasticity, positioning them as viable alternatives to conventional solid fats. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

13 pages, 2982 KiB  
Article
Effect of Shear on Polymorphic Transitions in Monoglyceride Oleogels
by Kato Rondou, Fien De Witte, Koen Dewettinck and Filip Van Bockstaele
Crystals 2025, 15(6), 495; https://doi.org/10.3390/cryst15060495 - 23 May 2025
Viewed by 531
Abstract
Fat polymorphism plays a critical role in the structural and functional properties of fat-based food products. However, research on the polymorphism of monoglyceride oleogels remains limited. Previous work demonstrated the impact of composition and processing on the polymorphic transitions of monoglyceride oleogels, indicating [...] Read more.
Fat polymorphism plays a critical role in the structural and functional properties of fat-based food products. However, research on the polymorphism of monoglyceride oleogels remains limited. Previous work demonstrated the impact of composition and processing on the polymorphic transitions of monoglyceride oleogels, indicating that high shear and cooling rates accelerate β-polymorph formation. However, a detailed understanding on the effect of shear is still lacking. This research extends previous observations by using a CSS450 shear cell, allowing for precise control over cooling and shear rates. Two commercially available food-grade monoglycerides were mixed with rapeseed oil (10% w/w). Crystallization was performed with varying shear rates and analyzed with synchrotron radiation X-ray scattering techniques (SAXS and WAXS), differential scanning calorimetry and microscopy. The results showed that applying a low shear rate did not result in changes in the polymorphic transitions compared to static crystallization for both monoglyceride oleogels. However, increasing the shear rate resulted in the formation of the β-polymorph, even before the formation of the metastable sub-α polymorph. These findings provide new insights into the role of shear in monoglyceride oleogels, allowing for further optimization of fat structuring in food applications. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

25 pages, 8073 KiB  
Article
Wound Healing Properties of Plant-Based Hydrogel and Oleogel Formulations in a Rat Scald Burn Model
by Oana Janina Roșca, Alexandru Nistor, Georgeta Hermina Coneac, Ioana Viorica Olariu, Ana-Maria Cotan, Roxana Racoviceanu, Elena Rodica Heredea, Adelin Ciudoiu, Gabriela Didea, Camelia Mihaela Lupou, Florin Borcan, Teodora Hoinoiu, Cristina Adriana Dehelean, Lavinia Lia Vlaia and Codruța Marinela Șoica
Pharmaceutics 2025, 17(5), 597; https://doi.org/10.3390/pharmaceutics17050597 - 1 May 2025
Cited by 1 | Viewed by 1097
Abstract
Background: Scald burns pose significant morbidity, and effective topical treatments remain a clinical priority. Burn injuries pose a significant clinical challenge due to the prolonged inflammation and high infection risk. Traditional treatments focus on moisture retention and infection prevention, but biocompatible formulations such [...] Read more.
Background: Scald burns pose significant morbidity, and effective topical treatments remain a clinical priority. Burn injuries pose a significant clinical challenge due to the prolonged inflammation and high infection risk. Traditional treatments focus on moisture retention and infection prevention, but biocompatible formulations such as hydrogels and oleogels offer advantages. Hydrogels hydrate, cool, and promote epidermal regeneration, while oleogels form a lipid barrier that enhances the absorption of lipophilic bioactive compounds. There is an increasing demand for novel topical alternatives that can effectively improve wound healing by modulating the inflammatory cascade, accelerating epithelial and dermal regeneration, and restoring barrier function. Objective: This study aimed to determine the most effective plant-based topical formulations for enhancing second-degree scald burn wound healing. Methods: Utilizing a standardized rat model, we compared 21 distinct topical formulations, consisting of oleogel and hydrogel bases enriched with extracts from Boswellia serrata (frankincense), Ocimum basilicum (basil), Sambucus nigra flower (elderflower), and Galium verum (lady’s bedstraw). Second-degree burns were uniformly induced in 24 Wistar rats using boiling water (100 °C for 8 s) using the RAPID-3D device, a validated 3D-printed tool that ensures reproducible burns through controlled exposure to boiling water. Post-burn, rats were divided into three equal subgroups, and topical formulations were applied daily. Wound healing efficacy was evaluated through wound surface area measurements, transepidermal water loss (TEWL), skin hydration, sebum production, pigmentation, inflammation (erythema), skin perfusion, and histological parameters at multiple timepoints (days 1, 4, 9, 14, and 21 post-burn induction). Results: Statistical analyses indicated significant advantages of oleogel-based formulations over hydrogel-based formulations. Specifically, formulations containing Boswellia serrata and Ocimum basilicum extracts significantly reduced wound size and inflammation, improved skin hydration, and decreased melanin production by days 9 and 21 (p < 0.05). Conclusions: These findings underscore the potential clinical value of oleogel-based topical preparations containing specific plant extracts for improving scald burn wound healing outcomes, warranting further clinical evaluation. Full article
(This article belongs to the Special Issue Prospects of Hydrogels in Wound Healing)
Show Figures

Graphical abstract

17 pages, 10284 KiB  
Article
Phytosterol–γ-Oryzanol–Glycerol Monostearate Composite Gelators for Palm Stearin/Linseed Oil Oleogel-Based Margarine: Nutrient Enrichment, Textural Modulation, and Commercial Product Mimicry
by Jingwen Li, Yujuan Hu, Qing Ma, Dongkun Zhao, Xinjing Dou, Baocheng Xu and Lili Liu
Foods 2025, 14(7), 1206; https://doi.org/10.3390/foods14071206 - 29 Mar 2025
Viewed by 707
Abstract
This study prepared palm stearin/linseed oil-based margarines (PST/LO-BMs) and palm stearin/linseed oil oleogel-based margarines (PST/LO-OBM) by incorporating varying proportions (20–60% oil phase) of linseed oil (LO) and LO-based oleogel, respectively. By comparing PST/LO-OBMs and PST/LO-BMs, it was found that the introduction of phytosterol–γ-oryzanol [...] Read more.
This study prepared palm stearin/linseed oil-based margarines (PST/LO-BMs) and palm stearin/linseed oil oleogel-based margarines (PST/LO-OBM) by incorporating varying proportions (20–60% oil phase) of linseed oil (LO) and LO-based oleogel, respectively. By comparing PST/LO-OBMs and PST/LO-BMs, it was found that the introduction of phytosterol–γ-oryzanol (PO) complexes and glycerol monostearate (GMS) to PST/LO-OBM induced three distinct crystalline morphologies: needle-like crystals, spherical crystals, and cluster-type crystals. These crystal assemblies synergistically constructed a robust three-dimensional network, effectively entrapping both aqueous droplets and liquid oil fractions while substantially reinforcing the structural integrity of PST/LO-OBM. Notably, the incorporated gelators modified the crystallization behavior, where GMS likely served as a nucleating site promoting triglyceride crystallization. This structural modulation yielded favorable β’-form crystal polymorphism, which is critically associated with enhanced textural properties. Comparative analysis with commercial margarine revealed that the PST45/LO40-OBM formulation exhibited comparable rheological performance, crystalline type, and thermal properties, while demonstrating superior nutritional characteristics, containing elevated levels of α-linolenic acid (23.54%), phytosterol (1410 mg/100 g), and γ-oryzanol (2110 mg/100 g). These findings provide fundamental insights for margarine alternatives with nutritional attributes. Full article
(This article belongs to the Special Issue Healthy Lipids for Food Processing)
Show Figures

Figure 1

19 pages, 2247 KiB  
Article
Ultra-Long-Chain Sorbitol Esters Tailoring Thermo-Responsive Rheological Properties of Oleogels
by Marcelo Gomes Soares, Paula Kiyomi Okuro, Marcos Fellipe da Silva, Rosana Goldbeck and Rosiane Lopes Cunha
Foods 2025, 14(6), 1030; https://doi.org/10.3390/foods14061030 - 18 Mar 2025
Viewed by 584
Abstract
Oleogels must replicate the rheological behavior of saturated fats at processing and consumption temperatures to maintain their physical stability and sensory acceptance. Thus, multicomponent oleogels present a promising approach since oleogelators can exhibit structuring and melting at different temperatures. The aim of the [...] Read more.
Oleogels must replicate the rheological behavior of saturated fats at processing and consumption temperatures to maintain their physical stability and sensory acceptance. Thus, multicomponent oleogels present a promising approach since oleogelators can exhibit structuring and melting at different temperatures. The aim of the study was to produce a mixture of ultra-chain-long esters capable of structuring and modulating rheological behavior in response to temperature exposure. Therefore, enzymatic transesterification between sorbitol and fully hydrogenated crambe oil (FHCO) was performed to produce a mixture of ultra-long-chain sorbitan esters (SB) for efficient structuring of sunflower oil. SB generated in a reaction medium consisting exclusively of ethanol (60 °C, 200 rpm, 1:1 molar ratio) was selected for its high sorbitol consumption (~95%). While SB oleogels exhibited higher gel strength at 5 °C, at 25 °C, FHCO oleogels were stiffer, showing the gradual melting of SB oleogels evaluated by temperature-dependent rheological analyses and thermal properties. Oleogelation inhibited hydroperoxide formation compared to sunflower oil over 30 days. Results highlight the potential of multicomponent oleogels based on ultralong-chain esters for healthier and more stable high-lipid products. Modulating rheological thermoresponsiveness ensures physical stability under refrigeration while providing a texture similar to saturated fats during spreading and swallowing. Full article
(This article belongs to the Special Issue Food and Rheology)
Show Figures

Figure 1

13 pages, 3004 KiB  
Article
Crystallization Kinetics of Oleogels Prepared with Essential Oils from Thirteen Spices
by Wei Zhou, Lin Yu and Zihao Wei
Foods 2025, 14(3), 542; https://doi.org/10.3390/foods14030542 - 6 Feb 2025
Cited by 1 | Viewed by 1392
Abstract
In this study, corn oil and essential oils from thirteen spices were used as the oil phase, with glyceryl monostearate (GMS) serving as the gelling agent to prepare the oleogels. The effects of varying the concentrations of the gel additives (2%, 4%, 6%, [...] Read more.
In this study, corn oil and essential oils from thirteen spices were used as the oil phase, with glyceryl monostearate (GMS) serving as the gelling agent to prepare the oleogels. The effects of varying the concentrations of the gel additives (2%, 4%, 6%, and 8%) on the texture, oil retention, and rheological properties of the oleogels were investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that GMS concentration markedly influenced the structure and properties of the gel. Positive correlations were observed between GMS concentration and the results of texture analysis, oil binding capacity, and microscopic morphology of the oleogels. Analyses via DSC and XRD demonstrated that gel formation was attributable to the crystalline network induced by GMS. Rheological assessments revealed that the oleogels exhibited pseudoplastic behavior and commendable thermal sensitivity. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

22 pages, 4370 KiB  
Article
Effects of Adding Micronutrient Mixtures to a Model Dark Chocolate System and Partially Replacing the Fat Phase with a Structuring Oleogel
by Paulo Henrique Silva Santos, Cristina Kaori Suzuki and Suzana Caetano da Silva Lannes
Foods 2025, 14(3), 430; https://doi.org/10.3390/foods14030430 - 28 Jan 2025
Viewed by 1398
Abstract
Supplements improve consumers’ health and well-being. Oleogels are fat substitutes that offer nutritional and structural improvements to foods. This study aimed to formulate and observe chocolate’s structural differences and properties supplemented with different premixes for immune support and oleogel based on Brazil nut [...] Read more.
Supplements improve consumers’ health and well-being. Oleogels are fat substitutes that offer nutritional and structural improvements to foods. This study aimed to formulate and observe chocolate’s structural differences and properties supplemented with different premixes for immune support and oleogel based on Brazil nut oil. Six 60% dark chocolates were produced using oleogel as a partial substitute for cocoa butter (with and without premixes), and premix 1 (vitamin D3, vitamin C, and zinc) or premix 2 (vitamins D3, C, A, E, zinc, and selenium). Texture, rheology, thermal analysis DSC, color, water activity, moisture, pH, and fat profile were determined. The results revealed that the whiteness index was higher for the oleogel and supplemented products. The use of oleogel reduced the lipid content of the products by 5% and saturated fatty acids by 13%. DSC showed changes in the melting and crystallization profiles for the supplemented products. All samples showed thixotropy, and the yield value was significantly different (p ≤ 0.05) in only one sample. Hardness presented a lower value (±50%) for products with oleogel. In sum, replacing part of the cocoa butter with an oleogel made the products softer, improved their structural quality, and changed their melting and crystallization profiles, and the chocolates showed nutritional improvement. Full article
(This article belongs to the Special Issue Food and Rheology)
Show Figures

Figure 1

26 pages, 1316 KiB  
Review
Characteristics and Functional Properties of Bioactive Oleogels: A Current Review
by Md. Jannatul Ferdaus, Niaz Mahmud, Sudipta Talukder and Roberta Claro da Silva
Gels 2025, 11(1), 69; https://doi.org/10.3390/gels11010069 - 16 Jan 2025
Cited by 5 | Viewed by 2861
Abstract
Oleogels have been a revolutionary innovation in food science in terms of their health benefits and unique structural properties. They provide a healthier alternative to traditional solid or animal fats. They have improved oxidative stability and nutritional value to maintain the desirable sensory [...] Read more.
Oleogels have been a revolutionary innovation in food science in terms of their health benefits and unique structural properties. They provide a healthier alternative to traditional solid or animal fats. They have improved oxidative stability and nutritional value to maintain the desirable sensory qualities of lipid-based foods. Moreover, oleogels offer an ideal carrier for poorly water-soluble bioactive compounds. The three-dimensional structure of oleogels can protect and deliver bioactive compounds in functional food products. Bioactive compounds also affect the crystalline behavior of oleogelators, the physical properties of oleogels, and storage stability. Generally, different incorporation techniques are applied to entrap bioactive compounds in the oleogel matrix depending on their characteristics. These approaches enhance the bioavailability, controlled release, stability of bioactive compounds, and the shelf life of oleogels. The multifunctionality of oleogels extends their applications beyond fat replacements, e.g., food preservation, nutraceutical delivery, and even novel innovations like 3D food printing. Despite their potential, challenges such as large-scale production, cost efficiency, and consumer acceptance remain areas for further exploration. This review emphasizes the understanding of the relationship between the structure of oleogels and their functional properties to optimize their design in different food applications. It also highlights the latest advancements in bioactive oleogels, focusing on how they incorporate bioactive compounds such as polyphenols, essential oils, and flavonoids into oleogels. The impact of these compounds on the gelation process, storage stability, and overall functionality of oleogels is also critically examined. Full article
(This article belongs to the Special Issue Design, Fabrication, and Applications of Food Composite Gels)
Show Figures

Graphical abstract

16 pages, 2972 KiB  
Article
Development of an Operational Map for the 3D Printing of Phytosterol-Enriched Oleogels: Rheological Insights and Applications in Nutraceutical Design
by María Itatí De Salvo, Camila Palla and Ivana M. Cotabarren
Foods 2025, 14(2), 200; https://doi.org/10.3390/foods14020200 - 10 Jan 2025
Viewed by 1398
Abstract
Three-dimensional (3D) printing attracts significant interest in the food industry for its ability to create complex structures and customize nutritional content. Printing materials, or inks, are specially formulated for food or nutraceuticals. These inks must exhibit proper rheological properties to flow smoothly during [...] Read more.
Three-dimensional (3D) printing attracts significant interest in the food industry for its ability to create complex structures and customize nutritional content. Printing materials, or inks, are specially formulated for food or nutraceuticals. These inks must exhibit proper rheological properties to flow smoothly during printing and form stable final structures. This study evaluates the relationship between rheological properties and printability in phytosterol-enriched monoglyceride (MG) oleogel-based inks, intended for nutraceutical applications. Key rheological factors, including gelation temperature (Tg), elastic (G′) and viscous (G″) modulus, and viscosity (µ) behavior with shear rate (γ˙), were analyzed for their impact on flow behavior and post-extrusion stability. Furthermore, this study allowed the development of an operation map to predict successful printing based on material µ and Tg. Oleogels (OGs) were prepared with high-oleic sunflower oil (HOSO) and 10 wt% MG, enriched with phytosterols (PSs) at concentrations between 0 and 40 wt%. While higher PS content generally led to an increase in both Tg and µ, the 10 wt% PS mixture exhibited a different behavior, showing lower Tg and µ compared to the 0 wt% and 5 wt% PS mixtures. The optimal PS concentration was identified as 20 wt%, which exhibited optimal properties for 3D printing, with a Tg of 78.37 °C and µ values ranging from 0.013 to 0.032 Pa.s that yielded excellent flowability and adequate G′ (3.07 × 106 Pa) at room temperature for self-supporting capability. These characteristics, visualized on the operational map, suggest that 20% PS OGs meet ideal criteria for successful extrusion and layered deposition in 3D printing. Full article
Show Figures

Figure 1

14 pages, 2066 KiB  
Article
Textural, Color, and Sensory Analysis of Cookies Prepared with Hemp Oil-Based Oleogels
by Ana Leahu, Cristina Ghinea, Sorina Ropciuc and Cristina Damian
Gels 2025, 11(1), 46; https://doi.org/10.3390/gels11010046 - 7 Jan 2025
Cited by 2 | Viewed by 1736
Abstract
The amount of saturated fat in cookies can be reduced by replacing margarine with oleogel, resulting in healthier products. In this study, the rheological and textural profile of cookies formulated with oleogel as the main margarine substitute was evaluated. Hemp seed vegetable oil [...] Read more.
The amount of saturated fat in cookies can be reduced by replacing margarine with oleogel, resulting in healthier products. In this study, the rheological and textural profile of cookies formulated with oleogel as the main margarine substitute was evaluated. Hemp seed vegetable oil was oleogelized with four types of waxes: beeswax (BW), carnauba wax (CW), candelilla wax (DW), rice bran wax (RW), and three oleogeling agents, sitosterol (S), pea protein (PP), and xanthan gum (XG), respectively. The textural and rheological properties of the oleogel dough samples were analyzed using the PertenTVT-6700 texturometer (Perten Instruments, Sweden) and the Haake rheometer. The results showed an increase in the hardness of cookie doughs with oleogels. The values of the elastic component (G′) and the viscous component (G″) increased, which means that the oleogels used affected the rheological behavior at 25 °C, causing an increase in the dough consistency. Sensory attributes, texture, and color parameters of cookies with oleogels were determined. The cookies’ hardness increased significantly from 4409.83 ± 0.13 g (control sample) to 7085.33 ± 0.15 g in the cookie sample prepared with hemp oil sitosterol oleogel, whereas the sample with candelilla wax had the lowest hardness value of 4048.09 ± 0.14 g. The color of the oleogel cookies was darker than that of the control cookies. The cookie sample with hemp oil and beeswax oleogel was the most appreciated by the evaluators among the oleogel cookie samples. The findings suggest that hemp seed oil oleogel is an effective fat substitute in cookies, promoting the application of this vegetable oil in food products. Full article
Show Figures

Figure 1

Back to TopTop