Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (173)

Search Parameters:
Keywords = olefine oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4619 KiB  
Article
Modeling and Optimization of Natural Gas Non-Catalytic Partial Oxidation with Hierarchical-Integrated Mechanism
by Wanqiu Yu, Haotian Ye, Wei Liu, Qiyao Wang and Hongguang Dong
Processes 2025, 13(7), 2287; https://doi.org/10.3390/pr13072287 - 17 Jul 2025
Viewed by 405
Abstract
Non-catalytic partial oxidation (POX) of natural gas is gaining importance in low-carbon energy systems for methane conversion to acetylene, syngas, and olefins. However, uncontrolled polycyclic aromatic hydrocarbons (PAHs) and soot formation remain challenges. This work developed a Hierarchical-Integrated Mechanism (HI-Mechanism) by constructing detailed [...] Read more.
Non-catalytic partial oxidation (POX) of natural gas is gaining importance in low-carbon energy systems for methane conversion to acetylene, syngas, and olefins. However, uncontrolled polycyclic aromatic hydrocarbons (PAHs) and soot formation remain challenges. This work developed a Hierarchical-Integrated Mechanism (HI-Mechanism) by constructing detailed C0-C6, C5-C15 and C16 mechanisms, and then hierarchically simplifying C5-C15 subsystems, ultimately integrating them into a final mechanism with 397 species and 5135 reactions. The HI-Mechanism accurately predicted shock tube ignition delays and major species concentrations. Microkinetic analyses, including production rates and reaction sensitivity, revealed key pathways and enabled reliable product distribution prediction. The HI-Mechanism provides theoretical guidance for optimizing POX of natural gas processes and can be extended to complex systems like heavy oil cracking, supporting clean energy technology development. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

25 pages, 3599 KiB  
Article
Sustainable Production of Eco-Friendly, Low-Carbon, High-Octane Gasoline Biofuels Through a Synergistic Approach for Cleaner Transportation
by Tamer M. M. Abdellatief, Ahmad Mustafa, Mohamed Koraiem M. Handawy, Muhammad Bakr Abdelghany and Xiongbo Duan
Fuels 2025, 6(3), 49; https://doi.org/10.3390/fuels6030049 - 23 Jun 2025
Viewed by 533
Abstract
This research work seeks to introduce eco-friendly, low-carbon, and high-octane biofuel gasoline production using a synergistic approach. Four types of high-octane gasoline, including SynergyFuel-92, SynergyFuel-95, SynergyFuel-98, and SynergyFuel-100, were generated, emphasizing the deliberate combination of petroleum-derived gasoline fractions using reformate, isomerate, and delayed [...] Read more.
This research work seeks to introduce eco-friendly, low-carbon, and high-octane biofuel gasoline production using a synergistic approach. Four types of high-octane gasoline, including SynergyFuel-92, SynergyFuel-95, SynergyFuel-98, and SynergyFuel-100, were generated, emphasizing the deliberate combination of petroleum-derived gasoline fractions using reformate, isomerate, and delayed coking (DC) naphtha with octane-boosting compounds—bio-methanol and bio-ethanol. A set of tests have been performed to examine the effects of antiknock properties, density, oxidation stability, distillation range characteristics, hydrocarbon composition, vapor pressure, and the volatility index on gasoline blends. The experimental results indicated that the gasoline blends made from biofuel (SynergyFuel-92, -95, -98, and 100) showed adherence to important fuel quality criteria in the USA, Europe, and China. These blends had good characteristics, such as low quantities of benzene and sulfur, regulated levels of olefins and aromatics, and good distillation qualities. By fulfilling these strict regulations, Synergy Fuel is positioned as a competitive and eco-friendly substitute for traditional gasoline. The results reported that SynergyFuel-100 demonstrated the strongest hot-fuel-handling qualities and resistance to vapor lock among all the mentioned Synergy Fuels. Finally, the emergence of eco-friendly, low-carbon, and high-octane biofuel gasoline production with synergistic benefits is a big step in the direction of sustainable transportation. Full article
(This article belongs to the Special Issue Sustainability Assessment of Renewable Fuels Production)
Show Figures

Graphical abstract

19 pages, 2074 KiB  
Review
Biphasic Catalytic Conversion of Olefins in Aqueous Media: A Systematic Review
by Angeliki Chira and Nikolaos C. Kokkinos
Int. J. Mol. Sci. 2025, 26(9), 4028; https://doi.org/10.3390/ijms26094028 - 24 Apr 2025
Viewed by 980
Abstract
Aqueous biphasic catalysis has gained recognition as a sustainable and efficient method that combines the advantages of both homogeneous and heterogeneous catalytic systems. This approach enables the separation and recycling of catalysts, leading to reduced environmental impact and lower operational costs. A key [...] Read more.
Aqueous biphasic catalysis has gained recognition as a sustainable and efficient method that combines the advantages of both homogeneous and heterogeneous catalytic systems. This approach enables the separation and recycling of catalysts, leading to reduced environmental impact and lower operational costs. A key component of this method is the use of transition metal catalysts, which are crucial for facilitating various reactions when paired with different types of ligands, primarily hydrophiles. This combination is essential for achieving high success rates in recyclable catalytic systems. The reaction conditions, including temperature, pressure, and pH, significantly influence catalytic performance. However, challenges such as limited substrate solubility and catalyst leaching persist, underscoring the need for further research into advanced ligand design, catalyst immobilization techniques, and scalable process integration. This review systematically examines recent experiments in the aqueous biphasic catalysis of olefins, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework. From an initial pool of 597 articles, 104 were found to be relevant and focused specifically on aqueous biphasic catalysis. The study investigates key reactions, the factors that influence these biphasic reactions, and the catalytic systems that facilitate them. By highlighting both progress and ongoing challenges, this work underscores the potential of aqueous biphasic catalysis to bridge the gap between green chemistry principles and industrial applications. Full article
(This article belongs to the Special Issue Advanced Catalytic Materials (Second Edition))
Show Figures

Figure 1

16 pages, 3415 KiB  
Article
Catalytic Properties of ZnZrOx Obtained via Metal–Organic Framework Precursors for CO2 Hydrogenation to Prepare Light Olefins
by Rundong Cai, Heping Zheng, Hong Liang, Xiankun Chen and Jianhua Tang
Metals 2025, 15(4), 380; https://doi.org/10.3390/met15040380 - 28 Mar 2025
Viewed by 1617
Abstract
The conversion of CO2 into light olefins over bifunctional catalysts is a promising route for producing high-value-added products. This approach not only mitigates excessive CO2 emissions but also reduces the chemical industry’s reliance on fossil fuels. Among bifunctional catalysts, ZnZrOx [...] Read more.
The conversion of CO2 into light olefins over bifunctional catalysts is a promising route for producing high-value-added products. This approach not only mitigates excessive CO2 emissions but also reduces the chemical industry’s reliance on fossil fuels. Among bifunctional catalysts, ZnZrOx is widely used due to its favorable oxide composition. In this work, ZnZrOx solid solution was synthesized by calcining an MOF precursor, resulting in a large specific surface area and a small particle size. Characterization studies revealed that ZnZrOx prepared via MOF calcination exhibited an enhanced CO2 activation and H2 dissociation capacity compared to that synthesized using the co-precipitation method. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that CO2 adsorption on ZnZrOx led to the formation of carbonate species, while HCOO* and CH3O* intermediates were generated upon exposure to the reaction gas. When ZnZrOx was combined with SAPO-34 molecular sieves under reaction conditions of 380 °C, 3 MPa, and 6000 mL·g_cat−1·h−1, the CO2 conversion reached 34.37%, with a light olefin yield of 15.13%, demonstrating a superior catalytic performance compared to that of the co-precipitation method. Full article
Show Figures

Figure 1

24 pages, 3246 KiB  
Article
Layered Double Hydroxide (LDH)-Derived Mixed Oxides for Enhanced Light Hydrocarbon Production from CO2 Hydrogenation
by Evridiki Mandela, Antigoni G. Margellou, Athanasia Kotsaridou, George E. Marnellos, Michalis Konsolakis and Konstantinos S. Triantafyllidis
Catalysts 2025, 15(4), 323; https://doi.org/10.3390/catal15040323 - 27 Mar 2025
Viewed by 2277
Abstract
Layered double hydroxide (LDH)-derived mixed oxides offer a promising approach for CO2 hydrogenation to light hydrocarbons. Herein, we explore the impact of various transition metals (X = Mn, Co, Cu, and Zn) incorporated into the M-Al or M-(Al+Fe) LDH structures, with the [...] Read more.
Layered double hydroxide (LDH)-derived mixed oxides offer a promising approach for CO2 hydrogenation to light hydrocarbons. Herein, we explore the impact of various transition metals (X = Mn, Co, Cu, and Zn) incorporated into the M-Al or M-(Al+Fe) LDH structures, with the aim of exploring possible synergistic effects. Structural and compositional analyses reveal that an abundance of Fe over Al (Fe/Al ratio ~4) leads to the formation of mixed oxide crystalline phases attributed to CoFe2O4, CuFe2O4, and ZnFe2O4. Catalytic evaluation results demonstrate that the X-Al LDH-derived oxides exhibit high CO2 conversion yet are selective to CH4 or CO. In contrast, Fe incorporation shifts selectivity toward higher hydrocarbons. Specifically, the yield to higher hydrocarbons (C2+) follows the order Ζn-Al-Fe > Cu-Al-Fe > Mn-Al-Fe > Co-Al-Fe >> Mn-Al, Co-Al, Zn-Al, Cu-Al, highlighting the pivotal role of Fe. Moreover, Zn-Al-Fe and Mn-Al-Fe catalysts have been shown to be the most selective towards light olefins. Zn-based systems also exhibit high thermal and structural stability with minimal coke formation, whereas Co-, Cu-, and Mn-based catalysts, when modified with Fe, experience increased carbon deposition or structural changes that may impact long-term stability. This work provides insights into the combined role of Fe and a second transition metal in LDHs for modulating catalytic activity, phase transformations, and stability, underscoring the need for further optimization to balance selectivity and catalyst durability in CO2 hydrogenation applications. Full article
Show Figures

Graphical abstract

36 pages, 10506 KiB  
Review
HOF•CH3CN—The Most Potent Oxygen Transfer Agent for a Large Variety of Organic Molecules
by Shlomo Rozen
Molecules 2025, 30(6), 1248; https://doi.org/10.3390/molecules30061248 - 11 Mar 2025
Viewed by 1341
Abstract
The complex of hypofluorous acid with acetonitrile—HOF•CH3CN—is the only substance possessing a truly electrophilic oxygen. This fact makes it the only tool suitable for transferring oxygen atoms to sites that are not accessible to this vital element. We will review here [...] Read more.
The complex of hypofluorous acid with acetonitrile—HOF•CH3CN—is the only substance possessing a truly electrophilic oxygen. This fact makes it the only tool suitable for transferring oxygen atoms to sites that are not accessible to this vital element. We will review here most of the known organic reactions with this complex, which is easily made by bubbling dilute fluorine through aqueous acetonitrile. The reactions of HOF•CH3CN with double bonds produce epoxides in a matter of minutes at room temperature, even when the olefin is electron-depleted and cannot be epoxidized by any other means. The electrophilic oxygen can also substitute deactivated tertiary C-H bonds via electrophilic substitution, proceeding with full retention of configuration. Using this complex enables transferring oxygen atoms to a carbonyl and oxidizing alcohols and ethers to ketones. The latter could be oxidized to esters via the Baeyer–Villiger reaction, proving once again the validity of the original Baeyer mechanism. Azines are usually avoided as protecting groups for carbonyl since their removal is problematic. HOF•CH3CN solves this problem, as it is very effective in recreating carbonyls from the respective azines. A bonus of the last reaction is the ability to replace the common 16O isotope of the carbonyl with the heavier 17O or 18O in the simplest and cheapest possible way. The reagent can transfer oxygen to most nitrogen-containing molecules. Thus, it turns practically any azide or amine into nitro compounds, including amino acids. This helps to produce novel α-alkylamino acids. It also attaches oxygen atoms to most tertiary nitrogen atoms, including certain aromatic ones, which could not be obtained before. HOF•CH3CN was also used to make five-member cyclic poly-NO derivatives, many of them intended to be highly energetic materials. The nucleophilic sulfur atom also reacts very smoothly with the reagent in a wide range of compounds to form sulfone derivatives. While common sulfides are easily converted to sulfones by many orthodox reagents, electron-depleted ones, such as Rf-S-Ar, can be oxidized to Rf-SO2-Ar only with this reagent. The mild reaction conditions also make it possible to synthesize a whole range of novel episulfones and offer, as a bonus, a very easy way to make SxO2, x being any isotope variation of oxygen. These mild conditions also helped to oxidize thiophene to thiophen-S,S-dioxide without the Diels–Alder dimerizations, which usually follow such dioxide formation. The latter reaction was a prelude to a series of preparations of [all]-S,S-dioxo-oligothiophenes, which are important for the efficient preparation of active layers in field-effect transistors (FETs), as such oligomers are considered to be important for organic semiconductors for light-emitting diodes (LEDs). Several types of these oligothiophenes were prepared, including partly or fully oxygenated ones, star-oligothiophenes, and fused ones. Several [all]-S,S-dioxo-oligo-thienylenevinylenes were also successfully prepared despite the fact that they also possess carbon–carbon p centers in their molecules. All oxygenated derivatives have been prepared for the first time and have lower HOMO-LUMO gaps compared to their parent compounds. HOF•CH3CN was also used to oxidize the surface of the nanoparticles of oligothiophenes, leaving the core of the nanoparticle unchanged. Several highly interesting features have been detected, including their ability to photostimulate the retinal neurons, especially the inner retinal ones. HOF•CH3CN was also used on elements other than carbon, such as selenium and phosphor. Various selenides were oxidized to the respective selenodioxide derivatives (not a trivial task), while various phosphines were converted efficiently to the corresponding phosphine oxides. Full article
(This article belongs to the Special Issue Featured Reviews in Organic Chemistry 2025)
Show Figures

Graphical abstract

16 pages, 2146 KiB  
Article
Investigation of Dearomatizing Spirocyclizations and Spirocycle Functionalization En Route to Spirocalcaridines A and B—Some Trials and Tribulations
by Ravi P. Singh, Delphine Gout, James X. Mao, Peter Kroll and Carl J. Lovely
Molecules 2025, 30(5), 1143; https://doi.org/10.3390/molecules30051143 - 3 Mar 2025
Viewed by 1207
Abstract
Spirocalcaridines A and B are among the most challenging members of the marine invertebrate-derived Leucetta alkaloids. Approaches to the construction and elaboration of the highly compact spirocyclic core are described. The synthesis of tricyclic guanidine via tandem oxidative amination dearomatizing spirocyclization (TOADS) using [...] Read more.
Spirocalcaridines A and B are among the most challenging members of the marine invertebrate-derived Leucetta alkaloids. Approaches to the construction and elaboration of the highly compact spirocyclic core are described. The synthesis of tricyclic guanidine via tandem oxidative amination dearomatizing spirocyclization (TOADS) using hypervalent iodine set the stage for total synthesis via the migration of the C4/C8 double bond to the C4/C5 position, followed by oxidation. The undesired but not surprising propensity of the spirocyclic cyclohexadienone to undergo rearrangement to the phenol hindered the desired olefin migration. Furthermore, initial efforts to install the oxidation sequentially, first at C5 and then at C4 in the complete carbon skeleton, were fraught with unforeseen challenges and unusual outcomes. In addition, the scope and limitations of hypervalent iodine-mediated tandem oxidative dearomatizing spirocyclization on various substrates were explored. Urethanes and thiourethanes underwent spirocyclization with an excellent yield, whereas the reaction with allylic substrates and species lacking the p-methoxy substituent did not proceed. Attempts to prepare other guanidine precursors are briefly discussed. Full article
(This article belongs to the Special Issue Total Synthesis of Natural Products and Their Analogues)
Show Figures

Graphical abstract

16 pages, 11460 KiB  
Article
Enhanced Catalytic Performance of Sn Single-Atom Doped CuO with Oxygen Vacancies for Efficient Epoxidation of α-Olefins
by Min Zhang, Gaolei Qin, Pengfei Li, Xiangjie Zhang, Hongying Chang, Ziyu Zhou, Wei Zhao, Xumeng Huang, Kui Tang, Yonghe Ning, Chang Song and Peng He
Molecules 2025, 30(5), 1042; https://doi.org/10.3390/molecules30051042 - 25 Feb 2025
Viewed by 819
Abstract
Epoxidation of long-chain α-olefins (LAOs) is a process of paramount importance, particularly in the preparation of epoxides. Traditional epoxidation methods, such as the chlorohydrin method and peracid method, suffer from issues such as poor selectivity, by-product formation, and environmental pollution. Mukaiyama epoxidation, with [...] Read more.
Epoxidation of long-chain α-olefins (LAOs) is a process of paramount importance, particularly in the preparation of epoxides. Traditional epoxidation methods, such as the chlorohydrin method and peracid method, suffer from issues such as poor selectivity, by-product formation, and environmental pollution. Mukaiyama epoxidation, with its mild reaction conditions and exceptional selectivity, has attracted widespread attention and considerable research. Transition metal oxide catalysts show potential in the reaction; however, the catalytic efficiency still require substantial improvement due to dilemma of substance activation. In this study, a synergistic enhancement method was employed, achieved through the creation of oxygen vacancies and the electron-rich nature of Cu. The substitution of Cu with Sn in CuO facilitates the creation of oxygen vacancy (Vo), thereby enhancing absorption and activation of O2. The conversion for O2 activation paves the way for the formation of benzoyl peroxy radicals. Moreover, the interaction between Sn and Cu promotes charge transfer from Sn to Cu, resulting in an electron-rich Cu surface that significantly accelerates the dehydrogenation of benzaldehyde. The synergistic enhancement protocol exhibits near-quantitative performance, delivering an oxide yield of 92.9%. This study introduces an innovative dual-promotion catalytic strategy for Mukaiyama epoxidation utilizing readily available O2, providing profound insights into the optimization design of transition metal oxide catalysts and beyond. Full article
Show Figures

Graphical abstract

19 pages, 2426 KiB  
Review
Inorganic Bismuth Catalysts for Photocatalytic Organic Reactions
by Hualei He, Qiyan Lv and Bing Yu
Catalysts 2025, 15(2), 135; https://doi.org/10.3390/catal15020135 - 1 Feb 2025
Viewed by 4145
Abstract
Bismuth (Bi) is recognized as a low-toxicity and environmentally friendly metal. Owing to its diverse oxidation states, Bi-based compounds demonstrate exceptional catalytic activities across numerous organic reactions. In particular, Bi-based inorganic materials have emerged as a promising class of photocatalysts in synthetic chemistry. [...] Read more.
Bismuth (Bi) is recognized as a low-toxicity and environmentally friendly metal. Owing to its diverse oxidation states, Bi-based compounds demonstrate exceptional catalytic activities across numerous organic reactions. In particular, Bi-based inorganic materials have emerged as a promising class of photocatalysts in synthetic chemistry. In this review, the recent applications of inorganic Bi-materials, e.g., Bi2O3, BiVO4, BiCl3, Bi2WO6, and Bi4O5Br2, as photocatalysts in various organic reactions, including C-H oxidation, radical addition of olefins, and coupling reactions, have been summarized. The reaction mechanisms are discussed to reveal the crucial steps for enhancing catalytic performance. Moreover, the current challenges and prospects in this vibrant research area are also outlined, aiming to provide valuable insights and guidance for the development of more efficient Bi-based photocatalysts and their applications in diverse organic synthetic pathways. Full article
(This article belongs to the Special Issue Photocatalysis: Past, Present, and Future Outlook)
Show Figures

Graphical abstract

19 pages, 5163 KiB  
Article
Hydrogenation of Simulated Bio-Syngas in the Presence of GdBO3 (B = Fe, Co, Mn) Perovskite-Type Oxides
by Tatiana F. Sheshko, Polina V. Akhmina, Liliya G. Skvortsova, Elizaveta M. Borodina, Tatiana A. Kryuchkova, Irina A. Zvereva and Alexander G. Cherednichenko
Catalysts 2025, 15(1), 67; https://doi.org/10.3390/catal15010067 - 13 Jan 2025
Viewed by 861
Abstract
Direct light olefin synthesis from bio-syngas hydrogenation is a promising pathway to decarbonize the chemical industry. The present study is devoted to the investigation of co-hydrogenation of carbon oxides in the presence of complex systems with the perovskite structure GdBO3 (B = [...] Read more.
Direct light olefin synthesis from bio-syngas hydrogenation is a promising pathway to decarbonize the chemical industry. The present study is devoted to the investigation of co-hydrogenation of carbon oxides in the presence of complex systems with the perovskite structure GdBO3 (B = Fe, Mn, Co). The catalyst samples were synthesized by sol-gel technology and characterized by XRD, XPS, BET and TPR. It was found that the Fe/Mn-containing samples exhibited efficient catalysis of the hydrogenation of simulated bio-syngas to light hydrocarbons. The GdMnO3 catalyst exhibits selectivity for C2–C3 light olefins of up to 37% among C1+ hydrocarbons, with a maximum olefin/paraffin ratio. GdMnO3 also exhibits high conversion of CO and CO2, reaching up to 70–75% at 723 K. However, the GdFeO3 catalyst shows a lower selectivity of (C23= = 22%, while it exhibits a higher conversion of CO2, up to 95%, at the same temperature. Herein, we established a catalyst structure–performance relationship as a function of chemical composition. Oxygen mobilities and ratios of surface (Os) to lattice (Ol) oxygen, forms of hydrogen adsorption, formation of -CHx- radicals and their subsequent recombination to olefins are influenced by the nature of the element in the B position. This work provides valuable insights for the rational design of bimetallic catalysts for bio-syngas hydrogenation. Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Figure 1

24 pages, 9532 KiB  
Article
Bimetallic Mesoporous MCM-41 Nanoparticles with Ta/(Ti, V, Co, Nb) with Catalytic and Photocatalytic Properties
by Viorica Parvulescu, Gabriela Petcu, Nicoleta G. Apostol, Irina Atkinson, Simona Petrescu, Adriana Baran, Daniela C. Culita, Ramona Ene, Bogdan Trica and Elena M. Anghel
Nanomaterials 2024, 14(24), 2025; https://doi.org/10.3390/nano14242025 - 16 Dec 2024
Cited by 1 | Viewed by 1381
Abstract
Bimetallic (Ta/Ti, V, Co, Nb) mesoporous MCM-41 nanoparticles were obtained by direct synthesis and hydrothermal treatment. The obtained mesoporous materials were characterized by XRD, XRF, N2 adsorption/desorption, SEM, TEM, XPS, Raman, UV-Vis, and PL spectroscopy. A more significant effect was observed on [...] Read more.
Bimetallic (Ta/Ti, V, Co, Nb) mesoporous MCM-41 nanoparticles were obtained by direct synthesis and hydrothermal treatment. The obtained mesoporous materials were characterized by XRD, XRF, N2 adsorption/desorption, SEM, TEM, XPS, Raman, UV-Vis, and PL spectroscopy. A more significant effect was observed on the mesoporous structure, typically for MCM-41, and on optic properties if the second metal (Ti, Co) did not belong to the same Vb group with Ta as V and Nb. The XPS showed for the TaTi-MCM-41 sample that framework titanium is the major component. The new nanoparticles obtained were used as catalysts for oxidation with hydrogen peroxide of olefinic compounds (1,4 cyclohexadiene, cyclohexene, styrene) and photodegradation of organic pollutants (phenol, methyl orange) from water. The results showed improvementsin activity and selectivity in oxidation reactions by the addition of the second metal to the Ta-MCM-41 catalyst. The slow addition of H2O2 was also beneficial for the selectivity of epoxide products and the stability of the catalysts. The band gap energy values decreased in the presence of the second metal, and the band edge diagram evidenced positive potential for all the conduction bands of the bimetallic samples. The highestlevels of photocatalytic degradation were obtained for the samples with TaTi and TaV. Full article
Show Figures

Figure 1

9 pages, 1119 KiB  
Article
1,2-Oxidative Trifluoromethylation of Olefin with Ag(O2CCF2SO2F) and O2: Synthesis of α-Trifluoromethyl Ketones
by Shengxue Zhang, Wangchuan Xiao, Jingjing Wu, Fanhong Wu, Houjin Huang, Xiaoyu Ma, Yafei Shi and Chao Liu
Molecules 2024, 29(23), 5622; https://doi.org/10.3390/molecules29235622 - 27 Nov 2024
Viewed by 1426
Abstract
A novel and efficient 1,2-oxidative trifluoromethylation of olefins employing Ag(O2CCF2SO2F) as a trifluoromethyl source is described with O2 as the oxidant, which provides access to a variety of valuable α-trifluoromethyl-substituted ketones. The broad substrate scope, feasibility [...] Read more.
A novel and efficient 1,2-oxidative trifluoromethylation of olefins employing Ag(O2CCF2SO2F) as a trifluoromethyl source is described with O2 as the oxidant, which provides access to a variety of valuable α-trifluoromethyl-substituted ketones. The broad substrate scope, feasibility of large-scale operation, and derivatization reactions of α-trifluoromethyl ketones demonstrate the promising utility of this protocol. Full article
(This article belongs to the Special Issue Research Advances in Organofluorine Chemistry)
Show Figures

Graphical abstract

13 pages, 6319 KiB  
Article
Effect of Calcination Temperature in Large-Aperture Medium-Entropy Oxide (FeCoCuZnNa)O on CO2 Hydrogenation for Light Olefins
by Zhijiang Ni, Xiaoyu Chen, Lin Su, Hanyu Shen and Chaochuang Yin
Catalysts 2024, 14(11), 818; https://doi.org/10.3390/catal14110818 - 13 Nov 2024
Viewed by 1116
Abstract
The catalytic hydrogenation of carbon dioxide is not only a way to mitigate the greenhouse effect but also provides high-value chemicals. In this work, a medium-entropy oxide catalyst (FeCoCuZnNa)O was prepared by the sol–gel method for highly active and selective hydrogenation of CO [...] Read more.
The catalytic hydrogenation of carbon dioxide is not only a way to mitigate the greenhouse effect but also provides high-value chemicals. In this work, a medium-entropy oxide catalyst (FeCoCuZnNa)O was prepared by the sol–gel method for highly active and selective hydrogenation of CO2 to value-added hydrocarbons. When reacted at 290 °C, 2.5 MPa, and 2500 mL·gcat−1·h−1, the CO2 conversion and selectivity of olefin were affected by the calcination temperature of the catalyst, and the best performances were 39% and 41.3%. The large pore size and oxygen vacancies (Ov) formed by (FeCoCuZnNa)O promote the activation of CO2 and promote the C-C coupling reaction of Fe5C2 in a hydrogenation reaction. The promoted C-C coupling reaction was related to the surface enrichment of iron species. The presence of Ov also inhibited the excessive hydrogenation reaction, further improving the selectivity of light olefins. In addition, (FeCoCuZnNa)O did not show significant deactivation within 75 h, indicating that the catalyst has strong industrial potential. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

21 pages, 6075 KiB  
Article
Surface Chemical Effects on Fischer–Tropsch Iron Oxide Catalysts Caused by Alkali Ion (Li, Na, K, Cs) Doping
by Mirtha Z. Leguizamón León Ribeiro, Joice C. Souza, Igor Ferreira Gomes, Muthu Kumaran Gnanamani, Michela Martinelli, Gary Jacobs and Mauro Celso Ribeiro
Catalysts 2024, 14(10), 682; https://doi.org/10.3390/catal14100682 - 2 Oct 2024
Viewed by 1872
Abstract
Among the alkali metals, potassium is known to significantly shift selectivity toward value-added, heavier alkanes and olefins in iron-based Fischer–Tropsch synthesis catalysts. The aim of the present contribution is to shed light on the mechanism of action of alkaline promoters through a systematic [...] Read more.
Among the alkali metals, potassium is known to significantly shift selectivity toward value-added, heavier alkanes and olefins in iron-based Fischer–Tropsch synthesis catalysts. The aim of the present contribution is to shed light on the mechanism of action of alkaline promoters through a systematic study of the structure–reactivity relationships of a series of Fe oxide FTS catalysts promoted with Group I (Li, Na, K, Cs) alkali elements. Reactivity data are compared to structural data based on in situ, synchrotron-based XRD and XPS, as well as temperature-programmed studies (TPR-H2, TPC-CO, TPD-CO2, and TPD-H). It has been observed that the alkali elements induced higher carburization rates, higher basicities, and lower adsorbed hydrogen coverages. Catalyst stability followed the trend Na-Fe > unpromoted > Li-Fe > K-Fe > Cs-Fe, being consistent with the ability of the alkali (Na) to prevent active site loss by catalyst reoxidation. Potassium was the most active in promoting high α hydrocarbon formation. It is active enough to promote CO dissociative adsorption (and the formation of FeCx active phases) and decrease the surface coverage of H-adsorbed species, but it is not so active as to cause premature catalyst deactivation by the formation of a carbon layer resulting in the blocking active sites. Full article
Show Figures

Figure 1

12 pages, 3000 KiB  
Article
Experimental Study on the Thermal Behavior Characteristics of the Oxidative Spontaneous Combustion Process of Fischer–Tropsch Wax Residue
by Tongshuang Liu, Jun Deng, Min Yao, Xiaojing Yong, Tiejian Zhao, Xin Yi and Yongjun He
Fire 2024, 7(10), 348; https://doi.org/10.3390/fire7100348 - 30 Sep 2024
Viewed by 1362
Abstract
Coal-to-liquid technology is a key technology to ensuring national energy security, with the Fischer–Tropsch synthesis process at its core. However, in actual production, Fischer–Tropsch wax residue exhibits the characteristics of spontaneous combustion due to heat accumulation, posing a fire hazard when exposed to [...] Read more.
Coal-to-liquid technology is a key technology to ensuring national energy security, with the Fischer–Tropsch synthesis process at its core. However, in actual production, Fischer–Tropsch wax residue exhibits the characteristics of spontaneous combustion due to heat accumulation, posing a fire hazard when exposed to air for extended periods. This significantly threatens the safe production operations of coal-to-liquid chemical enterprises. This study primarily focuses on the experimental investigation of the oxidative spontaneous combustion process of three typical types of wax residues produced during Fischer–Tropsch synthesis. Differential Scanning Calorimetry (DSC) was used to test the thermal flow curves of the three wax residue samples. Kinetic analysis was performed using the Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) methods to calculate their apparent activation energy. This study analyzed the thermal behavior characteristics, exothermic properties, and kinetic parameters of three typical wax residue samples, exploring the ease of reaction between wax residues and oxygen and their tendency for spontaneous combustion. The results indicate that Wax Residue 1 is rich in low-carbon chain alkanes and olefins, Wax Residue 2 contains relatively fewer low-carbon chain alkanes and olefins, while Wax Residue 3 primarily consists of high-carbon chain alkanes and olefins. This leads to different thermal behavior characteristics among the three typical wax residue samples, with Wax Residue 1 having the lowest heat release and average apparent activation energy and Wax Residue 3 having the highest heat release and average apparent activation energy. These findings suggest that Wax Residue 1 has a higher tendency for spontaneous combustion. This research provides a scientific basis for the safety management of the coal chemical industry, and further exploration into the storage and handling methods of wax residues could reduce fire risks in the future. Full article
(This article belongs to the Special Issue Investigation of Combustion Dynamics and Flame Properties of Fuel)
Show Figures

Figure 1

Back to TopTop