Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (442)

Search Parameters:
Keywords = oil/water interface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2155 KiB  
Article
Emulsifying Properties of Oat Protein/Casein Complex Prepared Using Atmospheric Cold Plasma with pH Shifting
by Yang Teng, Mingjuan Ou, Jihuan Wu, Ting Jiang, Kaige Zheng, Yuxing Guo, Daodong Pan, Tao Zhang and Zhen Wu
Foods 2025, 14(15), 2702; https://doi.org/10.3390/foods14152702 - 31 Jul 2025
Viewed by 199
Abstract
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food [...] Read more.
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food industry. pH-shifting processing is a straightforward method to partially unfold protein structures. This study modified a mixture of an oat protein isolate (OPI) and casein by combining a pH adjustment (adjusting the pH of two solutions to 12, mixing them at a 3:7 ratio, and maintaining the pH at 12 for 2 h) with an atmospheric cold plasma (ACP) treatment to improve the emulsifying properties. The results demonstrated that the ACP treatment significantly enhanced the solubility of the OPI/casein mixtures, with a maximum solubility of 82.63 ± 0.33%, while the ζ-potential values were approximately −40 mV, indicating that all the samples were fairly stable. The plasma-induced increase in surface hydrophobicity supported greater protein adsorption and redistribution at the oil/water interface. After 3 min of treatment, the interfacial pressure peaked at 8.32 mN/m. Emulsions stabilized with the modified OPI/casein mixtures also exhibited a significant droplet size reduction upon extending the ACP treatment to 3 min, decreasing from 5.364 ± 0.034 μm to 3.075 ± 0.016 μm. The resulting enhanced uniformity in droplet size distribution signified the formation of a robust interfacial film. Moreover, the ACP treatment effectively enhanced the emulsifying activity of the OPI/casein mixtures, reaching (179.65 ± 1.96 m2/g). These findings highlight the potential application value of OPI/casein mixtures in liquid dairy products. In addition, dairy products based on oat protein are more conducive to sustainable development than traditional dairy products. Full article
(This article belongs to the Special Issue Food Proteins: Innovations for Food Technologies)
Show Figures

Figure 1

34 pages, 4196 KiB  
Review
Surface Interface Modulation and Photocatalytic Membrane Technology for Degradation of Oily Wastewater
by Yulin Zhao, Yang Xu, Chunling Yu, Yufan Feng, Geng Chen and Yingying Zhu
Catalysts 2025, 15(8), 730; https://doi.org/10.3390/catal15080730 - 31 Jul 2025
Viewed by 219
Abstract
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional [...] Read more.
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional physical separation methods avoid secondary pollution by chemicals and can effectively separate floating oil and dispersed oil, they are ineffective in removing emulsified oil with small particle sizes. To address these complex challenges, photocatalytic technology and photocatalysis-based improved technologies have emerged, offering significant application prospects in degrading organic pollutants in oily wastewater as an environmentally friendly oxidation technology. In this paper, the degradation mechanism, kinetic mechanism, and limitations of conventional photocatalysis technology are briefly discussed. Subsequently, the surface interface modulation functions of metal doping and heterojunction energy band engineering, along with their applications in enhancing the light absorption range and carrier separation efficiency, are reviewed. Focus on typical studies on the separation and degradation of aqueous and oily phases using photocatalytic membrane technology, and illustrate the advantages and mechanisms of photocatalysts loaded on the membranes. Finally, other new approaches and converging technologies in the field are outlined, and the challenges and prospects for the future treatment of oily wastewater are presented. Full article
Show Figures

Figure 1

16 pages, 1865 KiB  
Article
pH-Controlled Yeast Protein Precipitation from Saccharomyces cerevisiae: Acid-Induced Denaturation for Improved Emulsion Stability
by Laura Riedel, Nico Leister and Ulrike S. van der Schaaf
Foods 2025, 14(15), 2643; https://doi.org/10.3390/foods14152643 - 28 Jul 2025
Viewed by 192
Abstract
In the search for alternative protein sources, single cell proteins have gained increasing attention in recent years. Among them, proteins derived from yeast represent a promising but still underexplored option. To enable their application in food product design, their techno-functional properties must be [...] Read more.
In the search for alternative protein sources, single cell proteins have gained increasing attention in recent years. Among them, proteins derived from yeast represent a promising but still underexplored option. To enable their application in food product design, their techno-functional properties must be understood. In order to investigate the impact of precipitation pH on their emulsion-stabilizing properties, yeast proteins from Saccharomyces cerevisiae were isolated via precipitation at different pH (pH 3.5 to 5) after cell disruption in the high-pressure homogenizer. Emulsions containing 5 wt% oil and ~1 wt% protein were analyzed for stability based on their droplet size distribution. Proteins precipitated at pH 3.5 stabilized the smallest oil droplets and prevented partitioning of the emulsion, outperforming proteins precipitated at higher pH values. It is hypothesized that precipitation under acidic conditions induces protein denaturation and thereby exposes hydrophobic regions that enhance adsorption at the oil–water interface and the stabilization of the dispersed oil phase. To investigate the stabilization mechanism, the molecular weight of the proteins was determined using SDS-PAGE, their solubility using Bradford assay, and their aggregation behavior using static laser scattering. Proteins precipitated at pH 3.5 possessed larger molecular weights, lower solubility, and a strong tendency to aggregate. Overall, the findings highlight the potential of yeast-derived proteins as bio-surfactants and suggest that pH-controlled precipitation can tailor their functionality in food formulations. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

17 pages, 2223 KiB  
Article
An Investigation on the Effect of Mango Seed and Pongamia Oil-Based Cutting Fluids on Surface Morphology During Turning of AISI 304 Steel
by Aneesh Mishra, Vineet Dubey, Deepak K. Prajapati, Usha Sharma, Siddharth Yadav and Anuj Kumar Sharma
Lubricants 2025, 13(8), 325; https://doi.org/10.3390/lubricants13080325 - 25 Jul 2025
Viewed by 304
Abstract
In today’s industrial applications, cutting fluids have attained prime importance due to their all-round features, including increase of tool life by lubrication of the tool at the tool–workpiece interface. This study compares the effects of mango seed oil and pongamia oil on cutting [...] Read more.
In today’s industrial applications, cutting fluids have attained prime importance due to their all-round features, including increase of tool life by lubrication of the tool at the tool–workpiece interface. This study compares the effects of mango seed oil and pongamia oil on cutting force and surface morphology during the turning of AISI 304 steel. The design of experiments was applied using Taguchi’s method with an L9 array of experiments. During the experiment, it was discovered that mango seed and pongamia-based cutting fluid exhibited the lowest contact angles of 22.1° and 24.4°, respectively, at a 97:3 volumetric concentration of deionized water and eco-friendly oil. The use of mango seed oil as a cutting fluid with MQL (Minimum Quantity Lubrication) resulted in the lowest surface roughness of 0.809 µm, compared to 0.921 µm with pongamia-based cutting fluid. The cutting force was reduced by a maximum of 28.68% using mango seed-based cutting fluid, compared to pongamia-based cutting fluid. ANOVA analysis revealed that feed rate had the maximum influence on the optimization of output parameters for mango seed cutting fluid. For pongamia-based cutting fluid, feed rate had the maximum influence on cutting force, while the depth of cut had the strongest influence on surface roughness. Full article
Show Figures

Figure 1

11 pages, 5943 KiB  
Article
Stabilizing Water-in-Water Emulsions Using Oil Droplets
by Jean-Paul Douliez and Laure Béven
Molecules 2025, 30(15), 3120; https://doi.org/10.3390/molecules30153120 - 25 Jul 2025
Viewed by 261
Abstract
The production of water-in-water emulsion droplets, the coalescence of which is prevented by adding oil-in-water micrometric droplets, is reported. Hexadecane (O) and cetyl trimethyl ammonium bromide (CTAB) were added to a W/W emulsion made of dextran (Dex)-enriched droplets in a Polyethyleglycol (PEG)-enriched continuous [...] Read more.
The production of water-in-water emulsion droplets, the coalescence of which is prevented by adding oil-in-water micrometric droplets, is reported. Hexadecane (O) and cetyl trimethyl ammonium bromide (CTAB) were added to a W/W emulsion made of dextran (Dex)-enriched droplets in a Polyethyleglycol (PEG)-enriched continuous phase, and the mixture was further sonicated. Using Nile red to label the oil droplets enabled the observation of their presence at the surface of Dex droplets (5 µm), allowing for stabilizing them, preventing coalescence of the W/W emulsion, and mimicking W/O/W double emulsions. The addition of sulfate derivative of Dextran (DexSulf) allowed for stable droplets of a slightly larger diameter. By contrast, the addition of carboxymethyl Dextran (CMDex) destabilized the initial aqueous double-like emulsion, yielding sequestration of the oil droplets within the Dex-rich phase. Interestingly, addition of DexSulf to that unstable emulsion re-yielded stable droplets. Similar findings (destabilization) were obtained when adding sodium dodecyl sulfate (SDS) to the initial double-like emulsion, which reformed stable droplets when adding positively charged Dextran (DEAEDex) derivatives. The use of fluorescently (FITC) labeled derivatives of Dextran (Dex, CMDex, DEAEDex, and DexSulf) allowed us to follow their position within, out of, or at the interface of droplets in the above-mentioned mixtures. These findings are expected to be of interest in the field of materials chemistry. Full article
Show Figures

Figure 1

16 pages, 4597 KiB  
Article
Synthesis and Property Analysis of a High-Temperature-Resistant Polymeric Surfactant and Its Promoting Effect on Kerogen Pyrolysis Evaluated via Molecular Dynamics Simulation
by Jie Zhang, Zhen Zhao, Jinsheng Sun, Shengwei Dong, Dongyang Li, Yuanzhi Qu, Zhiliang Zhao and Tianxiang Zhang
Polymers 2025, 17(15), 2005; https://doi.org/10.3390/polym17152005 - 22 Jul 2025
Viewed by 211
Abstract
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity [...] Read more.
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity or even failure. The effect of surfactants on kerogen pyrolysis has rarely been researched. Therefore, this study synthesized a polymeric surfactant (PS) with high temperature resistance and investigated its effect on kerogen pyrolysis under the friction of drill bits or pipes via molecular dynamics. The infrared spectra and thermogravimetric and molecular weight curves of the PS were researched, along with its surface tension, contact angle, and oil saturation measurements. The results showed that PS had a low molecular weight, with an MW value of 124,634, and good thermal stability, with a main degradation temperature of more than 300 °C. It could drop the surface tension of water to less than 25 mN·m−1 at 25–150 °C, and the use of slats enhanced its surface activity. The PS also changed the contact angles from 127.96° to 57.59° on the surface of shale cores and reversed to a water-wet state. Additionally, PS reduced the saturated oil content of the shale core by half and promoted oil desorption, indicating a good cleaning effect on the shale oil reservoir. The kerogen molecules gradually broke down into smaller molecules and produced the final products, including methane and shale oil. The main reaction area in the system was the interface between kerogen and the surfactant, and the small molecules produced on the interface diffused to both ends. The kinetics of the reaction were controlled by two processes, namely, the step-by-step cleavage process of macromolecules and the side chain cleavage to produce smaller molecules in advance. PS could not only desorb oil in the core but also promote the pyrolysis of kerogen, suggesting that it has good potential for application in shale oil exploration and development. Full article
Show Figures

Figure 1

13 pages, 2340 KiB  
Article
The Microscopic Mechanism of High Temperature Resistant Core-Shell Nano-Blocking Agent: Molecular Dynamics Simulations
by Zhenghong Du, Jiaqi Xv, Jintang Wang, Juyuan Zhang, Ke Zhao, Qi Wang, Qian Zheng, Jianlong Wang, Jian Li and Bo Liao
Polymers 2025, 17(14), 1969; https://doi.org/10.3390/polym17141969 - 17 Jul 2025
Viewed by 322
Abstract
China has abundant shale oil and gas resources, which have become a critical pillar for future energy substitution. However, due to the highly heterogeneous nature and complex pore structures of shale reservoirs, traditional plugging agents face significant limitations in enhancing plugging efficiency and [...] Read more.
China has abundant shale oil and gas resources, which have become a critical pillar for future energy substitution. However, due to the highly heterogeneous nature and complex pore structures of shale reservoirs, traditional plugging agents face significant limitations in enhancing plugging efficiency and adapting to extreme wellbore environments. In response to the technical demands of nanoparticle-based plugging in shale reservoirs, this study systematically investigated the microscopic interaction mechanisms of nano-plugging agent shell polymers (Ployk) with various reservoir minerals under different temperature and salinity conditions using molecular simulation methods. Key parameters, including interfacial interaction energy, mean square displacement, and system density distribution, were calculated to thoroughly analyze the effects of temperature and salinity variations on adsorption stability and structural evolution. The results indicate that nano-plugging agent shell polymers exhibit pronounced mineral selectivity in their adsorption behavior, with particularly strong adsorption performance on SiO2 surfaces. Both elevated temperature and increased salinity were found to reduce the interaction strength between the shell polymers and mineral surfaces and significantly alter the spatial distribution and structural ordering of water molecules near the interface. These findings not only elucidate the fundamental interfacial mechanisms of nano-plugging agents in shale reservoirs but also provide theoretical guidance for the precise design of advanced nano-plugging agent materials, laying a scientific foundation for improving the engineering application performance of shale oil and gas wellbore-plugging technologies. Full article
Show Figures

Figure 1

24 pages, 4729 KiB  
Article
Formulation and Stability of Quercetin-Loaded Pickering Emulsions Using Chitosan/Gum Arabic Nanoparticles for Topical Skincare Applications
by Mathukorn Sainakham, Paemika Arunlakvilart, Napatwan Samran, Pattavet Vivattanaseth and Weeraya Preedalikit
Polymers 2025, 17(13), 1871; https://doi.org/10.3390/polym17131871 - 4 Jul 2025
Viewed by 542
Abstract
Natural polymer-based nanoparticles have emerged as promising stabilizers for Pickering emulsions, offering biocompatibility, environmental sustainability, and improved protection of active compounds. This study developed chitosan/gum arabic (CH/GA) nanoparticles as solid stabilizers for quercetin-loaded Pickering emulsions to enhance the stability and antioxidant bioactivity of [...] Read more.
Natural polymer-based nanoparticles have emerged as promising stabilizers for Pickering emulsions, offering biocompatibility, environmental sustainability, and improved protection of active compounds. This study developed chitosan/gum arabic (CH/GA) nanoparticles as solid stabilizers for quercetin-loaded Pickering emulsions to enhance the stability and antioxidant bioactivity of quercetin (QE), a plant-derived flavonoid known for its potent radical-scavenging activity but limited by oxidative degradation. A systematic formulation strategy was employed to evaluate the effects of CH/GA concentration (0.5–2.0% w/v), oil type (olive, soybean, sunflower, and coconut), and oil volume fraction (ϕ = 0.5–0.7) on emulsion stability. The formulation containing 1.5% CH/GA and olive oil at ϕ = 0.6 exhibited optimal physical and interfacial stability. Quercetin (0.1% w/w) was incorporated into the optimized emulsions and characterized for long-term stability, particle size, droplet morphology, rheology, antioxidant activity (DPPH), cytocompatibility, and intracellular reactive oxygen species (ROS) protection using HaCaT keratinocytes. The olive oil-based formulation (D1-QE) exhibited greater viscosity retention and antioxidant stability than its soybean-based counterpart (E2-QE) under both room temperature (RT) and accelerated heating–cooling (H/C) storage conditions. Confocal microscopy confirmed the accumulation of CH/GA nanoparticles at the oil–water interface, forming a dense interfacial barrier and enhancing emulsion stability. HPLC analysis showed that D1-QE retained 92.8 ± 0.5% of QE at RT and 82.8 ± 1.5% under H/C conditions after 30 days. Antioxidant activity was largely preserved, with only 4.7 ± 1.7% and 14.9 ± 4.8% loss of DPPH radical scavenging activity at RT and H/C, respectively. Cytotoxicity testing in HaCaT keratinocytes confirmed that the emulsions were non-toxic at 1 mg/mL QE and effectively reduced H2O2-induced oxidative stress, decreasing intracellular ROS levels by 75.16%. These results highlight the potential of CH/GA-stabilized Pickering emulsions as a polymer-based delivery system for maintaining the stability and functional antioxidant activity of QE in bioactive formulations. Full article
Show Figures

Figure 1

19 pages, 3175 KiB  
Article
Soy Protein-Based Emulsions: Application as Lipid Substitutes in Surimi Gels
by Fali Zhang, Jian Shi, Yanfei Chen, Yao Yue, Wenzheng Shi, Tanye Xu and Min Qu
Foods 2025, 14(13), 2342; https://doi.org/10.3390/foods14132342 - 1 Jul 2025
Viewed by 483
Abstract
By analyzing interfacial dynamics between soybean oil concentrations and soy protein isolate (SPI), this study established their impact on Pickering emulsion stability. Two optimal soy protein-based emulsions (EM60 with 60% oil phase; EM75 with 75%) were identified as lipid substitutes in silver carp [...] Read more.
By analyzing interfacial dynamics between soybean oil concentrations and soy protein isolate (SPI), this study established their impact on Pickering emulsion stability. Two optimal soy protein-based emulsions (EM60 with 60% oil phase; EM75 with 75%) were identified as lipid substitutes in silver carp surimi products. The results revealed that uniformly spherical droplets in EM60 enhanced interparticle interactions at emulsion interfaces. Compared to EM75 addition, EM60’s finely dispersed droplets improved gel network compactness in the surimi matrix. This increased water-holding capacity (WHC) by 12.037% and gel strength by 2414.168 g·mm. EM75 addition significantly enhanced gel whiteness by 0.8483 units (p < 0.05). It also demonstrated superior physical filling effects in sol state, reinforcing structural rigidity. As unsaturated lipids, soybean oil substitution for saturated fats (e.g., lard) contributes positively to human health. Pre-emulsified soybean oil yielded stronger structural rigidity in surimi sol than direct oil addition. Post-gelation, significant increases were observed in gel strength (+828.100 g·mm), WHC (+6.093%), and elasticity (+0.07 units). Collectively, SPI-based emulsions offer novel insights for healthy lipid substitution in surimi gels. They elucidate differential impact mechanisms on texture, WHC, whiteness, and microstructure. This provides theoretical guidance for developing premium healthy surimi products. Full article
(This article belongs to the Special Issue Oil and Protein Engineering and Its Applications in Food Industry)
Show Figures

Figure 1

17 pages, 1753 KiB  
Article
Demulsification Kinetics of Water-in-Oil Emulsions of Ecuadorian Crude Oil: Influence of Temperature and Salinity
by Jordy Sarmas-Farfan, Antonio Diaz-Barrios, Teresa E. Lehmann and Vladimir Alvarado
Energies 2025, 18(12), 3115; https://doi.org/10.3390/en18123115 - 13 Jun 2025
Viewed by 366
Abstract
This work focuses on the stability analysis of water-in-oil macroemulsions with a crude oil from the Sacha Field in Ecuador. This field is an important hydrocarbon resource in Ecuador with a typical bottom freshwater drive. The comprehensive stability analysis includes coalescence, water resolution [...] Read more.
This work focuses on the stability analysis of water-in-oil macroemulsions with a crude oil from the Sacha Field in Ecuador. This field is an important hydrocarbon resource in Ecuador with a typical bottom freshwater drive. The comprehensive stability analysis includes coalescence, water resolution or phase separation, and water–oil interfacial tension and interfacial dilatational viscoelastic modulus measurements over time. Two main parameters, due to their relevance, were controlled in these experiments: water salinity and temperature. The analysis reported here is the first focused on this important resource in Ecuador. Findings shed light on which mechanisms more likely control the stability of these water-in-oil macroemulsions. Results herein suggest that regardless of temperature, low-salinity water favors emulsion stability, likely due to the tendency of a stiffer interface formation at low-ionic strength, as interfacial viscoelasticity measurements show. This implies that the low-ionic strength water from the aquifer can enable the formation of stable emulsions. In contrast, water resolution depends significantly on temperature, possibly due to higher sedimentation rates. The implication is that if emulsions do not break up before cooling off, the emulsion can become more stable. Finally, analysis of the interface buildup rates could explain the observed increase in emulsion stability over time. Full article
Show Figures

Figure 1

15 pages, 9044 KiB  
Article
Polyether Demulsifier Complexes for Efficient Demulsification of Water-in-Heavy Oil Emulsions
by Jing Li, Xiao Xia, Jinlong Gao, Hao Chen and Jun Ma
Molecules 2025, 30(12), 2550; https://doi.org/10.3390/molecules30122550 - 11 Jun 2025
Viewed by 396
Abstract
In the production process of the heavy oil industry, efficiently demulsifying water-in-heavy oil (W/HO) emulsions can effectively prevent the negative effects of emulsion corrosion on equipment, increase costs, reduce oil quality, and pollute the environment. Herein, polyether demulsifier complexes (PDC) were obtained by [...] Read more.
In the production process of the heavy oil industry, efficiently demulsifying water-in-heavy oil (W/HO) emulsions can effectively prevent the negative effects of emulsion corrosion on equipment, increase costs, reduce oil quality, and pollute the environment. Herein, polyether demulsifier complexes (PDC) were obtained by compounding fatty alcohol nonionic polyether (FAP) with perfluoropolyether (PFPEA, [CF3O(CF2CF2O)nCF3]) through a simple physical blending method. The experimental results demonstrate that PDC exhibited outstanding demulsification performance for W/HO emulsions across varying temperatures: At 60 °C and 400 ppm dosage, PDC achieved complete dehydration (100%) within just 2 min, showing significantly faster demulsification kinetics compared to FAP and PFPEA. Even at the reduced temperature of 40 °C, PDC maintained effective demulsification capability, achieving complete phase separation within 6 min. These findings collectively establish PDC’s superior demulsification efficiency for W/HO emulsions, with particularly remarkable performance under challenging low-temperature conditions. Research on the demulsification mechanism indicates that PDC achieves efficient demulsification performance due to the synergistic effect the synergistic effect of FAP and PFPEA to effectively destroy the non-covalent bonds (hydrogen and π–π stacking) of interfacially active asphaltenes (IAA) at the oil–water interface, thereby achieving demulsification of W/HO emulsion. PDC with outstanding demulsification ability exhibits significant potential for practical applications in heavy crude oil–water emulsion treatment, and this work can provide insights for developing new composite demulsifiers for petroleum production. Full article
Show Figures

Graphical abstract

15 pages, 2683 KiB  
Article
Study on Mechanism of Surfactant Adsorption at Oil–Water Interface and Wettability Alteration on Oil-Wet Rock Surface
by Xinyu Tang, Yaoyao Tong, Yuhui Zhang, Pujiang Yang, Chuangye Wang and Jinhe Liu
Molecules 2025, 30(12), 2541; https://doi.org/10.3390/molecules30122541 - 10 Jun 2025
Viewed by 747
Abstract
With the depletion of conventional light crude oil reserves in China, the demand for heavy oil exploitation has grown, highlighting the increasing significance of enhanced heavy oil recovery. Surfactants reduce oil–water interfacial tension, modify the wettability of reservoir rocks, and facilitate the emulsification [...] Read more.
With the depletion of conventional light crude oil reserves in China, the demand for heavy oil exploitation has grown, highlighting the increasing significance of enhanced heavy oil recovery. Surfactants reduce oil–water interfacial tension, modify the wettability of reservoir rocks, and facilitate the emulsification of heavy oil. Consequently, investigating the adsorption behavior of surfactants at oil–water interfaces and the underlying mechanisms of wettability alteration is of considerable importance. In this study, the surface tension of four surfactants and their interfacial tension with Gudao heavy oil were measured. Among these, BS-12 exhibited a critical micelle concentration (CMC) of 6.26 × 10−4 mol·dm−3, a surface tension of 30.15 mN·m−1 at the CMC, and an adsorption efficiency of 4.54. In low-salinity systems, BS-12 achieved an ultralow interfacial tension on the order of 10−3 mN·m−1, demonstrating excellent surface activity. Therefore, BS-12 was selected as the preferred emulsifier for Gudao heavy oil recovery. Additionally, FT-IR, SEM, and contact angle measurements were used to elucidate the interfacial adsorption mechanism between BS-12 and aged cores. The results indicate that hydrophobic interactions between the hydrophobic groups of BS-12 and the adsorbed crude oil fractions play a key role. Core flooding experiments, simulating the formation of low-viscosity oil-in-water (O/W) emulsions under reservoir conditions, showed that at low flow rates, crude oil and water interact more effectively within the pores. The extended contact time between heavy oil and the emulsifier led to significant changes in rock wettability, enhanced interfacial activity, improved oil recovery efficiency, and increased oil content in the emulsion. This study analyzes the role of surfactants in interfacial adsorption and the multiphase flow behavior of emulsions, providing a theoretical basis for surfactant-enhanced oil recovery. Full article
Show Figures

Figure 1

27 pages, 2171 KiB  
Review
Progress on the Application of Nanomaterial Expansion in Oil Displacement
by Xiaoliang Zhao, Yu Cao, Yi Pan and Zhance Yang
Appl. Sci. 2025, 15(12), 6484; https://doi.org/10.3390/app15126484 - 9 Jun 2025
Viewed by 419
Abstract
Research on nanomaterials has opened up new opportunities for enhancing oil recovery. This paper reviews the mechanisms of nanomaterials for enhancing oil recovery, including reducing oil–water interfacial tension, regulating rock wettability, and decreasing crude oil viscosity, with a focus on the expansion of [...] Read more.
Research on nanomaterials has opened up new opportunities for enhancing oil recovery. This paper reviews the mechanisms of nanomaterials for enhancing oil recovery, including reducing oil–water interfacial tension, regulating rock wettability, and decreasing crude oil viscosity, with a focus on the expansion of the oil-displacement mechanism of nano-silica. Nanofluids form interfacial nanolayers that diminish tension while altering surface wettability to promote oil stripping. Their structural disjoining pressure creates wedge-shaped films at oil–water–solid interfaces, driving droplet detachment. The synergistic “roll-up” and “diffusion” mechanisms improve oil mobility through capillary regulation and interfacial disturbance. These findings offer critical insights for optimizing nanomaterial applications in oil displacement systems, advancing fundamental research and technological development for enhanced recovery processes. Full article
Show Figures

Figure 1

13 pages, 5518 KiB  
Article
Remediating Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Water by Foam Fractionation and Electrochemical Oxidation
by Steve Comfort, Amanda Araújo da Silva, Jessica Powell, Rebecca Cain, Ashleigh McGreer and Renato F. Dantas
Environments 2025, 12(6), 185; https://doi.org/10.3390/environments12060185 - 31 May 2025
Viewed by 955
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a family of synthetic chemicals that were used to improve the quality of several commercial products by making them resistant to heat, oil, stains, and grease. By containing a fluorinated carbon tail and a hydrophilic head (-COOH, [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are a family of synthetic chemicals that were used to improve the quality of several commercial products by making them resistant to heat, oil, stains, and grease. By containing a fluorinated carbon tail and a hydrophilic head (-COOH, -SO3H), PFASs act as surfactants that are attracted to bubble–water interfaces. Foam fractionation is the process of facilitating PFAS–air bubble interactions for the purpose of removing contaminants from tainted water. In this paper, we report on the use of foam fractionation and electrochemical oxidation (EO) under stirred batch conditions (200 mL) to remediate PFAS-contaminated water. We used radiolabeled PFOA (perfluorooctanoic acid; 14C-PFOA) as a representative surrogate to quickly screen treatment variables of flow rate, pH, temperature, and soap mass. Using radiolabeled PFASs eliminated the possibility of cross-contamination and greatly reduced analytical costs and processing time. The results showed that foam fractionation can remove 80 to 90 percent of PFOA from water within 30 min and that 90 to 100 percent of the PFOA in the concentrated foamate can be oxidized via electrochemical oxidation (-14COOH → 14CO2). We also tested the efficacy of the combined foam fractionation–EO treatment in natural waters by spiking 14C-PFOA and a cosolvent (CTAB) into PFAS-contaminated water obtained from two field sites with divergent PFAS concentrations and differing sources of PFAS contamination (natural drainage ditch vs. WWTP). Using a larger-scale tank (3500 mL), we observed that foam fractionation was 90% effective in removing 14C-PFOA from the WWTP effluent but only 50% effective for the drainage ditch water. Regardless, EO was highly effective in oxidizing 14C-PFOA in the foamate from both sources with half-lives (T1/2) ranging from 8.7 to 15 min. While water chemistry differences between source waters may have influenced foam fractionation and require additional investigations, tank experiments provide the first proof-of-concept experiment using 14C-PFASs that foam fractionation and electrochemical oxidation can be used in tandem to treat PFAS-contaminated water. Full article
Show Figures

Figure 1

15 pages, 1941 KiB  
Article
The High Interfacial Activity of Betaine Surfactants Triggered by Nonionic Surfactant: The Vacancy Size Matching Mechanism of Hydrophobic Groups
by Guoqiao Li, Jinyi Zhao, Lu Han, Qingbo Wu, Qun Zhang, Bo Zhang, Rushan Yue, Feng Yan, Zhaohui Zhou and Wei Ding
Molecules 2025, 30(11), 2413; https://doi.org/10.3390/molecules30112413 - 30 May 2025
Viewed by 464
Abstract
Alkyl sulfobetaine shows a strong advantage in the compounding of surfactants due to the defects in the size matching of hydrophilic and hydrophobic groups. The interfacial tensions (IFTs) of alkyl sulfobetaine (ASB) and xylene-substituted alkyl sulfobetaine (XSB) with oil-soluble (Span80) and water-soluble (Tween80) [...] Read more.
Alkyl sulfobetaine shows a strong advantage in the compounding of surfactants due to the defects in the size matching of hydrophilic and hydrophobic groups. The interfacial tensions (IFTs) of alkyl sulfobetaine (ASB) and xylene-substituted alkyl sulfobetaine (XSB) with oil-soluble (Span80) and water-soluble (Tween80) nonionic surfactants on a series of n-alkanes were studied using a spinning drop tensiometer to investigate the mechanism of IFT between nonionic and betaine surfactants. The two betaine surfactants’ IFTs are considerably impacted differently by Span80 and Tween80. The results demonstrate that Span80, through mixed adsorption with ASB and XSB, can create a relatively compacted interfacial film at the n-alkanes–water interface. The equilibrium IFT can be reduced to ultra-low values of 5.7 × 10−3 mN/m at ideal concentrations by tuning the fit between the size of the nonionic surfactant and the size of the oil-side vacancies of the betaine surfactant. Nevertheless, Tween80 has minimal effect on the IFT of betaine surfactants, and the betaine surfactant has no vacancies on the aqueous side. The present study provides significant research implications for screening betaine surfactants and their potential application in enhanced oil recovery (EOR) processes. Full article
Show Figures

Figure 1

Back to TopTop