Remediating Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Water by Foam Fractionation and Electrochemical Oxidation
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Foam Fractionation Experiments—Batch Conditions
2.3. Foam Fractionation Experiments—Tank Experiments
2.4. Water Sampling PFAS-Tainted Water
2.5. Electrochemical Oxidation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effects of Cosolvent Mass on PFAS Recovery and Enrichment
Surfactant Mass | Foamate Volume | 14C Enrichment in Foam † | 14C Recovered in Foamate |
---|---|---|---|
g | mL | % | |
0.02 | 32 | 3.51 a ‡ | 56.99 a |
0.04 | 64 | 2.33 b | 75.75 b |
0.06 | 104 | 1.75 c | 92.35 c |
0.08 | 122 | 1.32 d | 81.80 d |
3.2. Effect of Flow Rate
Flow Rate | Foamate Volume | 14C Enrichment in Foam † | 14C Recovered in Foamate |
---|---|---|---|
L/min | mL | % | |
4 | 94 | 1.78 a ‡ | 85.02 a |
6 | 118 | 1.49 b | 88.89 ab |
8 | 126 | 1.43 c | 91.13 bc |
3.3. Effect of pH
pH | Foamate Volume | 14C Enrichment in Foam † | 14C Recovered in Foamate |
---|---|---|---|
mL | % | ||
3.6 | 124 | 1.40 a ‡ | 88.32 a |
6.4 | 112 | 1.64 b | 93.19 ab |
9.4 | 110 | 1.55 c | 86.42 bc |
3.4. Effect of Temperature
Temperature | Foamate Volume | 14C Enrichment in Foam † | 14C Recovered in Foamate |
---|---|---|---|
°C | mL | % | |
16 | 124 | 1.38 c ‡ | 86.99 a |
20 | 122 | 1.52 a | 93.75 c |
23 | 140 | 1.30 d | 92.48 c |
26 | 122 | 1.45 b | 89.49 b |
3.5. Tank Experiments
Water Source | Foamate Volume (mL) | 14C-Enrichment Factor † | 14C Recovered in Foamate (%) | Mass Balance | Time (min) |
---|---|---|---|---|---|
DI Water | 659 | 4.00 a ‡ | 75.50 b ‡ | 94 | 30 |
Site B WWTP | 1206 | 2.60 b | 89.47 a | 91 | 30 |
Site B WWTP | 1306 | 2.31 b | 86.19 a | 91 | 60 |
Site A Drainage | 663 | 2.67 b | 50.78 c | 111 | 30 |
3.6. Electrochemical Oxidation of Foamate
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suthersan, S.S.; Horst, J.; Ross, I.; Kalve, E.; Quinnan, J.; Houtz, E.; Burdick, J. Responding to emerging contaminant impacts: Situational management. Groundw. Monit. Remediat. 2016, 36, 22–32. [Google Scholar] [CrossRef]
- Key, B.L.; Howell, R.D.; Criddle, C.S. Fluorinated organics in the biosphere. Environ. Sci. Technol. 1997, 31, 2445–2454. [Google Scholar] [CrossRef]
- O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev. 2008, 37, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Conder, J.M.; Hoke, R.A.; Wolf, W.D.; Russell, M.H.; Buck, R.C. Are PFCAs Bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ. Sci. Technol. 2008, 42, 995–1003. [Google Scholar] [CrossRef]
- Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicol. Sci. 2007, 99, 366–394. [Google Scholar] [CrossRef]
- Johansson, N.; Eriksson, P.; Viberg, H. Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain. Toxicol. Sci. 2009, 108, 412–418. [Google Scholar] [CrossRef]
- Liu, W.; Xu, L.; Li, X.; Jin, Y.H.; Sasaki, K.; Saito, N.; Sato, I.; Tsuda, S. Human nails analysis as biomarker of exposure to perfluoroalkyl compounds. Environ. Sci. Technol. 2011, 45, 8144–8150. [Google Scholar] [CrossRef]
- Mills, M.S.; Thurman, E.M.; Ertel, J.; Thorn, K.A. Chapter 11: Organic Geochemistry and sources of natural aquatic foams. In Humic and Fulvic Acids; Gaffney, J.S., Marley, N.A., Clark, S.B., Eds.; PFAS and Microplastic Enrichment in Surface Water Foams; American Chemical Society: Washington, DC, USA, 1996; pp. 151–192. [Google Scholar]
- Schwichtenberg, T.; Bogdan, D.; Carignan, C.C.; Reardon, P.; Rewerts, J.; Wanzek, T.; Field, J. PFAS and Dissolved Organic Carbon Enrichment in Surface Water Foams on a Northern U.S. Freshwater Lake. Environ. Sci. Technol. 2020, 54, 14455–14464. [Google Scholar] [CrossRef]
- Lee, Y.C.; Wang, P.Y.; Lo, S.L.; Huang, C.P. Recovery of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from dilute water solution by foam flotation. Sep. Purif. Technol. 2017, 173, 280–285. [Google Scholar] [CrossRef]
- We, A.C.E.; Zamyadi, A.; Stickland, A.D.; Clarke, B.O.; Freguia, S. A review of foam fractionation for the removal of per- and polyfluoroalkyl substances (PFAS) from aqueous matrices. J. Hazard. Mater. 2024, 465, 133182. [Google Scholar] [CrossRef]
- Burns, D.J.; Stevenson, P.; Murphy, P.J.C. PFAS removal from groundwaters using Surface—Active Foam Fractionation. Remediat. J. 2021, 31, 19–33. [Google Scholar] [CrossRef]
- Buckley, T.; Karanam, K.; Xu, X.; Shukla, P.; Firouzi, M.; Rudolph, V. Effect of mono- and di-valent cations on PFAS removal from water using foam fractionation—A modelling and experimental study. Sep. Purif. Technol. 2022, 286, 120508. [Google Scholar] [CrossRef]
- Burghoff, B. Foam fractionation applications. J Biotechnol. 2012, 161, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, P.; Li, X. Foam Fractionation: Principles and Process Design, 1st ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Carter, K.E.; Farrel, J. Oxidative destruction of perfluorooctane sulfate using boron-doped diamond film electrodes. Environ. Sci. Technol. 2009, 42, 6111–6115. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Farrell, J. Electrochemical oxidation of perfluorobutane sulfonate using boron-doped diamond film electrodes. J. Appl. Electrochem. 2009, 39, 1993–1999. [Google Scholar] [CrossRef]
- Matzek, L.W.; Tipton, M.J.; Farmer, A.T.; Steen, A.D.; Carter, K.E. Understanding electrochemically activated persulfate and its application to Ciprofloxacin abatement. Environ. Sci. Technol. 2018, 52, 5875–5883. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Andaya, C.; Urtiaga, A.; McKenzie, E.R.; Higgins, C.P. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs). J. Hazard. Mater. 2015, 295, 170–175. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Andaya, C.; Burant, A.; Condee, C.W.; Urtiagad, A.; Strathmann, T.J.; Higgins, C.P. Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: Insights into mechanisms and application to groundwater treatment. Chem. Eng. J. 2017, 317, 424–432. [Google Scholar] [CrossRef]
- Yanagida, A.; Webb, E.; Harris, C.E.; Christenson, M.; Comfort, S. Using Electrochemical Oxidation to Remove PFAS in Simulated Investigation-Derived Waste (IDW): Laboratory and Pilot-Scale Experiments. Water 2022, 14, 2708. [Google Scholar] [CrossRef]
- Kapałka, A.; Fóti, G.; Comninellis, C. Kinetic modelling of electrochemical mineralization of organic pollutants for wastewater treatment. J. Appl. Electrochem. 2008, 38, 7–16. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and procedures of statistics. In A Biometrical Approach, 2nd ed.; McGraw-Hill Book Co.: New York, NY, USA, 1980; pp. 172–194. [Google Scholar]
- Hu, K.; Zhang, H.; Ouyang, M.; Kong, M.; Jiang, Q.; Wang, G.; Zhuang, L. Experimental and DFT studies on foam performances of lauryl ether sulfate-based anionic surface active ionic liquids. J. Mol. Liq. 2021, 342, 117519. [Google Scholar] [CrossRef]
- Meng, P.; Deng, S.; Maimaiti, A.; Wang, B.; Huang, J.; Wang, Y.; Cousins, I.T.; Yu, G. Efficient removal of perfluorooctane sulfonate from aqueous film-forming foam solution by aeration-foam collection. Chemosphere 2018, 203, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-F.; Chien, W.-Y.; Liu, Y.-J.; Lee, Y.-C.; Lo, S.-L.; Hu, C.-Y. Perfluorooctanoic acid (PFOA) removal by flotation with cationic surfactants. Chemosphere 2021, 266, 128949. [Google Scholar] [CrossRef] [PubMed]
- Buckley, T.; Karanam, K.; Han, H.; Vo, H.N.P.; Shukla, P.; Firouzi, M.; Rudolph, V. Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation. Water Res. 2023, 230, 119532. [Google Scholar] [CrossRef]
- Weisman, J. Chapter 15: Two-phase flow patterns. In Handbook of Fluids in Motion; Cheremisinoff, N.P., Gupta, R., Eds.; Ann Arbor Science Publ.: Ann Arbor, MI, USA, 1983; pp. 409–425. [Google Scholar]
- Boonyasuwat, S.; Chavadej, S.; Malakul, P.; Scamehorn, J.F. Anionic and cationic surfactant recovery from water using a multistage foam fractionator. Chem. Eng. J. 2003, 93, 241–252. [Google Scholar] [CrossRef]
- Dai, X.; Xie, Z.; Dorian, B.; Gray, S.; Zhang, J. Comparative study of PFAS treatment by UV, UV/ozone, and fractionations with air and ozonated air. Environ. Sci. Water Res. Technol. 2019, 5, 1897–1907. [Google Scholar] [CrossRef]
- Du, L.; Prokop, A.; Tanner, R.D. Effect of pH on the Startup of a Continuous Foam Fractionation Process Containing Ovalbumin. Sep. Sci. Technol. 2003, 38, 1093–1109. [Google Scholar] [CrossRef]
- Morrison, A.L.; Strezov, V.; Niven, R.K.; Taylor, M.P.; Wilson, S.P.; Wang, J.; Burns, D.J.; Murphy, P.J.C. Impact of salinity and temperature on removal of PFAS species from water by aeration in the absence of additional surfactants: A novel application of green chemistry using adsorptive bubble fractionation. Ind. Eng. Chem. Res. 2023, 62, 5635–5645. [Google Scholar] [CrossRef]
- Smith, S.J.; Lauria, M.; Ahrens, L.; McCleaf, P.; Hollman, P.; Bj¨alkefur Seroka, S.; Hamers, T.; Arp, H.P.H.; Wiberg, K. Electrochemical oxidation for treatment of pfas in contaminated water and fractionated foam—A pilot-scale study. ACS EST Water 2023, 3, 1201–1211. [Google Scholar] [CrossRef]
- Tasca, A.L.; Uwayezu, J.N.; Carabante, I.; Kumpiene, J. Electrochemical remediation of PFAS by Boron-Doped Diamond electrodes: A review. J. Environ. Chem. Eng. 2025, 13, 117044. [Google Scholar] [CrossRef]
- Radjenovic, J.; Duinslaeger, N.; Avvl, S.S.; Chaplin, B.P. Facing the challenge of poly- and perfluoroalkyl substances in water: Is electrochemical oxidation the answer? Environ. Sci. Technol. 2020, 54, 14815–14829. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Schaefer, C.E.; Bamer, J.T.; Lanza, H.A.; Wintle, D.; Maynard, K.G.; Murphy, P.; Anderson, R.H. Bench-scale testing of a novel soil PFAS treatment train for informed remedial planning and decision-making. Remediat. J. 2023, 33, 309–321. [Google Scholar] [CrossRef]
- Uwayezu, J.N.; Ren, Z.; Sonnenschein, S.; Leiviskä, T.; Lejon, T.; van Hees, P.; Karlsson, P.; Kumpiene, J.; Carabante, I. Combination of separation and degradation methods after PFAS soil washing. Sci. Total Environ. 2024, 907, 168137. [Google Scholar] [CrossRef]
- Lu, D.; Sha, S.; Luo, J.; Huang, Z.; Jackie, X.Z. Treatment train approaches for the remediation of per- and polyfluoroalkyl substances (PFAS): A critical review. J. Hazard. Mater. 2020, 386, 121963. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comfort, S.; da Silva, A.A.; Powell, J.; Cain, R.; McGreer, A.; Dantas, R.F. Remediating Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Water by Foam Fractionation and Electrochemical Oxidation. Environments 2025, 12, 185. https://doi.org/10.3390/environments12060185
Comfort S, da Silva AA, Powell J, Cain R, McGreer A, Dantas RF. Remediating Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Water by Foam Fractionation and Electrochemical Oxidation. Environments. 2025; 12(6):185. https://doi.org/10.3390/environments12060185
Chicago/Turabian StyleComfort, Steve, Amanda Araújo da Silva, Jessica Powell, Rebecca Cain, Ashleigh McGreer, and Renato F. Dantas. 2025. "Remediating Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Water by Foam Fractionation and Electrochemical Oxidation" Environments 12, no. 6: 185. https://doi.org/10.3390/environments12060185
APA StyleComfort, S., da Silva, A. A., Powell, J., Cain, R., McGreer, A., & Dantas, R. F. (2025). Remediating Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Water by Foam Fractionation and Electrochemical Oxidation. Environments, 12(6), 185. https://doi.org/10.3390/environments12060185