Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = offshore coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2676 KiB  
Review
Biofouling on Offshore Wind Energy Structures: Characterization, Impacts, Mitigation Strategies, and Future Trends
by Poorya Poozesh, Felix Nieto, Pedro M. Fernández, Rosa Ríos and Vicente Díaz-Casás
J. Mar. Sci. Eng. 2025, 13(7), 1363; https://doi.org/10.3390/jmse13071363 - 17 Jul 2025
Viewed by 504
Abstract
Biofouling, the accumulation of marine organisms on submerged surfaces, presents a significant challenge to the design, performance, and maintenance of offshore wind turbines (OWTs). This work synthesizes current knowledge on the physical and operational impacts of biofouling on OWT marine substructures, with a [...] Read more.
Biofouling, the accumulation of marine organisms on submerged surfaces, presents a significant challenge to the design, performance, and maintenance of offshore wind turbines (OWTs). This work synthesizes current knowledge on the physical and operational impacts of biofouling on OWT marine substructures, with a particular focus on how it alters hydrodynamic loading, increases drag and mass, and affects fatigue and structural response. Drawing from experimental studies, computational modeling, and real-world observations, this paper highlights the critical need to integrate biofouling effects into design practices. Additionally, emerging mitigation strategies are explored, including advanced antifouling materials and AI-driven monitoring systems, which offer promising solutions for long-term biofouling management. By addressing both engineering and ecological perspectives, this paper underscores the importance of developing robust, adaptive approaches to biofouling that can support the durability, reliability, and environmental sustainability of the offshore wind industry. Full article
(This article belongs to the Section Marine Pollution)
Show Figures

Figure 1

17 pages, 3303 KiB  
Article
Research on High-Performance Underwater-Curing Polymer Composites for Offshore Oil Riser Pipes
by Xuan Zhao, Jun Wan, Xuefeng Qv, Yajun Yu and Huiyan Zhao
Polymers 2025, 17(13), 1827; https://doi.org/10.3390/polym17131827 - 30 Jun 2025
Viewed by 466
Abstract
In offshore oil and gas extraction, riser pipes serve as the first isolation barrier for wellbore integrity, playing a crucial role in ensuring operational safety. Protective coatings represent an effective measure for corrosion prevention in riser pipes. To address issues such as electrochemical [...] Read more.
In offshore oil and gas extraction, riser pipes serve as the first isolation barrier for wellbore integrity, playing a crucial role in ensuring operational safety. Protective coatings represent an effective measure for corrosion prevention in riser pipes. To address issues such as electrochemical corrosion and poor adhesion of existing coatings, this study developed an underwater-curing composite material based on a polyisobutylene (PIB) and butyl rubber (IIR) blend system. The material simultaneously exhibits high peel strength, low water absorption, and stability across a wide temperature range. First, the contradiction between material elasticity and strength was overcome through the synergistic effect of medium molecular weight PIB internal plasticization and IIR crosslinking networks. Second, stable peel strength across a wide temperature range (−45 °C to 80 °C) was achieved by utilizing the interfacial effects of nano-fillers. Subsequently, an innovative solvent-free two-component epoxy system was developed, combining medium molecular weight PIB internal plasticization, nano-silica hydrogen bond reinforcement, and latent curing agent regulation. This system achieves rapid surface drying within 30 min underwater and pull-off strength exceeding 3.5 MPa. Through systematic laboratory testing and field application experiments on offshore oil and gas well risers, the material’s fundamental properties and operational performance were determined. Results indicate that the material exhibits a peel strength of 5 N/cm on offshore oil risers, significantly extending the service life of the riser pipes. This research provides theoretical foundation and technical support for improving the efficiency and reliability of repair processes for offshore oil riser pipes. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites: 2nd Edition)
Show Figures

Figure 1

14 pages, 8001 KiB  
Article
Preparation of Transparent MTMS/BNNS Composite Siloxane Coatings with Anti-Biofouling Properties
by Lu Cao, Zhutao Ding, Qi Chen, Yefeng Ji, Ying Xiong, Yun Gao and Zhongyan Huo
Coatings 2025, 15(7), 769; https://doi.org/10.3390/coatings15070769 - 29 Jun 2025
Viewed by 389
Abstract
With the rapid development of marine renewable energy, especially offshore photovoltaic systems, the problem of biofouling of photovoltaic equipment in the marine environment has become increasingly prominent. The attachment of marine organisms such as algae will significantly affect the photoelectric conversion efficiency of [...] Read more.
With the rapid development of marine renewable energy, especially offshore photovoltaic systems, the problem of biofouling of photovoltaic equipment in the marine environment has become increasingly prominent. The attachment of marine organisms such as algae will significantly affect the photoelectric conversion efficiency of photovoltaic panels, thereby reducing the stability and economy of the system. In this study, a composite siloxane coating was designed and prepared. Methyltrimethoxysilane (MTMS) was used as the organosilicon component. The negative potential of the coating was significantly enhanced by incorporating hexagonal boron nitride nanosheets (h-BNNS). This negative potential and the negative charge on the surface of marine organisms, especially algae, would produce electrostatic repulsion, which can effectively reduce the attachment of organisms. The results show that the prepared coating exhibits excellent performance in anti-biofouling, adhesion, chemical stability, transparency, and self-cleaning properties. The transparency of the coating reached 92.7%. After immersion with Chlorella for 28 days, the coverage percentage on the coating surface was only 0.98%, while the coverage percentage on the blank sample was 23.25%. The corrosion resistance and salt resistance of the coating also ensure its stability in complex marine environments, and it has broad application prospects. Full article
(This article belongs to the Special Issue Advanced Polymer Coatings: Materials, Methods, and Applications)
Show Figures

Graphical abstract

12 pages, 19804 KiB  
Article
Tuning Nanocrystalline Heterostructures for Enhanced Corrosion Resistance: A Study on Electrodeposited Ni Coatings
by Wenyi Huo, Zeling Zhang, Xuhong Huang, Yueheng Wang, Shiqi Wang, Xiaoheng Lu, Shuangxiao Li, Senlei Zhu, Feng Fang and Jianqing Jiang
Coatings 2025, 15(5), 534; https://doi.org/10.3390/coatings15050534 - 30 Apr 2025
Viewed by 593
Abstract
Tailoring the microstructural heterogeneity of metallic coatings is a promising strategy for enhancing their corrosion resistance; however, its systematic optimization remains underexplored. Here in, we present a one-step, scalable electrodeposition strategy to fabricate Ni coatings with tunable nanocrystalline heterostructures on Cu substrates by [...] Read more.
Tailoring the microstructural heterogeneity of metallic coatings is a promising strategy for enhancing their corrosion resistance; however, its systematic optimization remains underexplored. Here in, we present a one-step, scalable electrodeposition strategy to fabricate Ni coatings with tunable nanocrystalline heterostructures on Cu substrates by varying the current density from 1 mA/cm2 to 50 mA/cm2. The coating with a current density of 10 mA/cm2, featuring a heterogeneous nanograin structure of coexisting small and large grains, exhibited optimal corrosion resistance in 3.5 wt.% NaCl solution, with a low self-corrosion current density of 4.48 µA/cm2. Electrochemical impedance spectroscopy (EIS) and molecular dynamics (MD) simulations revealed that the heterostructure dispersed Cl adsorption sites and promoted passivation. High-resolution transmission electron microscopy (HRTEM) revealed that as the current density increased from 10 mA/cm2 to 50 mA/cm2, the corrosion product transitioned from a crystalline NiOOH structure to an amorphous structure, which correlated with a reduced corrosion resistance. The heterogeneous microstructure enhances durability, offering a cost-effective and alloy-free alternative for offshore applications. These findings provide a theoretical and experimental basis for designing advanced corrosion-resistant coatings. Full article
Show Figures

Figure 1

14 pages, 3801 KiB  
Article
Synthesis and Characterization of Silane-Coupled Sodium Silicate Composite Coatings for Enhanced Anticorrosive Performance
by Minghui Liu, Zhiwen Tan, Shengda Xu, Yuantao Zhao, Haoran Wang, Shitao Zhang, Rong Ma, Tao Jiang, Zhen Ma, Ning Zhong and Wenge Li
Coatings 2025, 15(4), 428; https://doi.org/10.3390/coatings15040428 - 4 Apr 2025
Cited by 1 | Viewed by 734 | Correction
Abstract
Ships and offshore equipment operating in marine environments often face issues such as seawater corrosion and biofouling, leading to significant economic losses. To address the corrosion problems of ships and offshore equipment, heavy-duty anticorrosive coatings are widely used for corrosion protection in marine [...] Read more.
Ships and offshore equipment operating in marine environments often face issues such as seawater corrosion and biofouling, leading to significant economic losses. To address the corrosion problems of ships and offshore equipment, heavy-duty anticorrosive coatings are widely used for corrosion protection in marine environments due to their long-term effectiveness, cost-efficiency, and excellent applicability. In this study, silane coupling agent (KH-560) was employed to modify sodium silicate, and the modified sodium silicate was then incorporated as a reinforcing phase into polyurethane to ultimately prepare a modified sodium silicate/polyurethane coating. The feasibility of the modified sodium silicate/polyurethane coating was investigated by characterizing its conventional physicochemical properties, weather resistance, acid and alkali resistance, and salt spray corrosion resistance. Experimental results indicate that the silane coupling agent acts as a bridge between the organic and inorganic interfaces through the hydrolysis and condensation reactions of its bifunctional groups, forming an interfacial layer connected by hydrogen bonds and covalent bonds, thereby improving the compatibility between the organic resin and inorganic sodium silicate. Comprehensive performance analysis revealed that when the content of modified sodium silicate was 60 wt%, the coating hardness reached 4H. Additionally, electrochemical tests demonstrated that the coating exhibited higher impedance (9.62 × 104 Ω/cm2) and lower corrosion current density (5.82 × 10−7 A/cm2). This study provides a theoretical and experimental basis for the development of high-performance anticorrosive coatings for marine applications. Full article
Show Figures

Figure 1

24 pages, 5617 KiB  
Article
Effects of Coatings on Antioxidant Enzyme Activities, Histopathology, and Transcriptome Profiles of Kidney Tissue in Larimichthys crocea
by Xuan Xu, Huayu Song, Lu Zhang, Chonghui Chen, Xiaoxu Zhang, Yiying Liu, Chao Li and Qiang Fu
Genes 2025, 16(4), 392; https://doi.org/10.3390/genes16040392 - 29 Mar 2025
Viewed by 564
Abstract
Background: As an innovative approach to deep-sea aquaculture, fish farm vessels offer a dual benefit by alleviating the pressure on offshore fishing resources while providing an additional high-quality protein source. However, the potential impacts of vessel coatings on farmed fish remain poorly understood. [...] Read more.
Background: As an innovative approach to deep-sea aquaculture, fish farm vessels offer a dual benefit by alleviating the pressure on offshore fishing resources while providing an additional high-quality protein source. However, the potential impacts of vessel coatings on farmed fish remain poorly understood. Methods: In this study, to investigate the effects of vessel coatings on the large yellow croaker (Larimichthys crocea), we established four experimental groups with coating concentrations at 1-fold, 10-fold, 20-fold, and 80-fold levels. Antioxidant enzyme activities in kidney tissues were measured across all groups, while histological and transcriptome analyses were specifically conducted for the 1-fold and 80-fold concentration groups. Results: Firstly, significant alterations in antioxidant enzyme activity were observed in the 80-fold concentration group. Moreover, histological analysis demonstrated more severe pathological changes in kidney tissue at the higher concentration, including interstitial hemorrhage and tubular epithelial cell fatty degeneration. In addition, we identified 11,902 differentially expressed genes (DEGs) by high-throughput sequencing. KEGG pathway enrichment analysis revealed that the DEGs were predominantly involved in critical biological processes, including endoplasmic reticulum protein processing, oxidative phosphorylation, cytokine–cytokine receptor interactions, cell cycle regulation, DNA replication, and PPAR signaling pathways. Finally, the validation of nine selected DEGs through quantitative real-time PCR (qRT-PCR) showed significant correlation with RNA-Seq data, confirming the reliability of our transcriptome analysis. Conclusions: This study provides preliminary insights into the antioxidant stress response mechanisms of L. crocea to coating exposure and establishes a theoretical foundation for optimizing healthy fish farming practices in aquaculture vessels. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 10957 KiB  
Article
Effect of Loads on Tribological Performance of Rubber Seals at Floating Wind Power in Deep Sea
by Guibin Tan, Cheng Zhou, Jiantao Liang, Guangjing Huang, Zhixing Wang and Xing Huang
Lubricants 2025, 13(3), 111; https://doi.org/10.3390/lubricants13030111 - 3 Mar 2025
Viewed by 853
Abstract
The main shaft seal of offshore wind power equipment is one of the key components of wind power systems. However, wear issues between the seals and the main shaft caused by the intrusion of particulate matter in the environment have become a key [...] Read more.
The main shaft seal of offshore wind power equipment is one of the key components of wind power systems. However, wear issues between the seals and the main shaft caused by the intrusion of particulate matter in the environment have become a key factor affecting the service life of the equipment. To improve the surface performance of the main shaft, this study used laser cladding technology to prepare an Fe55 coating on the surface of QT-500 components. Through the wear experiments on HNBR seal pairs with the main shaft under different load conditions, this study thoroughly investigated the impact of the coating on frictional coefficients, wear mechanisms, and the wear morphology of metal surfaces. The experimental results show that the average hardness of the Fe55 coating is 533 HV, which is about 2.3 times the hardness of the substrate, and as the loading force increases, the wear form of the QT-500 metal changes from being dominated by pits to being dominated by furrows. In contrast, the wear form of the Fe55 coating is more inclined to furrows, and no pit formation is observed, indicating that the coating has improved the wear resistance of the surface. The frictional coefficient of the HNBR pair with the metal decreases with increasing load, and the frictional coefficient of the coating is lower than that of the substrate. As the loading increases, the wear morphology of the rubber surface transitions from furrows to pits, and the wear mechanism becomes abrasive wear. Full article
(This article belongs to the Special Issue Marine Tribology)
Show Figures

Figure 1

18 pages, 8696 KiB  
Article
Comparative Study on the Anti-Corrosion Performance of Epoxy Coatings Containing BIB and HFTC
by Yong Yao, Weitao Huang, Mumin Rao, Yang Cao, Congshu Huang, Yu Liang, Canxing Tan and Yeqiang Mo
Coatings 2025, 15(3), 271; https://doi.org/10.3390/coatings15030271 - 24 Feb 2025
Cited by 1 | Viewed by 1110
Abstract
The main load-bearing structure of offshore wind power is mainly metal, and the corrosion of metal structures is particularly serious when exposed to corrosive environments, such as high salt and humidity for a long period of time and has attracted more and more [...] Read more.
The main load-bearing structure of offshore wind power is mainly metal, and the corrosion of metal structures is particularly serious when exposed to corrosive environments, such as high salt and humidity for a long period of time and has attracted more and more attention from researchers at home and abroad. Epoxy resin is used as a matrix resin in both primer and middle coatings. In anti-corrosion coatings, when additives are added to the epoxy system, the affinity and hydrophobicity of the additives themselves affect the protective effect of the system. In this study, the effects of two additives, BIB (containing hydrophilic groups) and HFTC (containing both hydrophilic and hydrophobic groups), on the corrosion protection properties of epoxy adhesives were investigated. The impact of these additives on the contact angle, water absorption rate, salt spray resistance, and overall corrosion resistance was evaluated using various experimental methods. The results show that the BIB additive is not conducive to the enhancement of epoxy coatings’ anti-corrosive properties due to its good hydrophilicity. The addition of HFTC can effectively improve the protective performance of the coating, and when the addition of HFTC is 0.6%, the salt spray resistance of the composite coating is optimized. This study provides valuable insights into the optimization of epoxy systems for enhanced corrosion protection in marine environments. Full article
(This article belongs to the Collection Feature Paper Collection in Corrosion, Wear and Erosion)
Show Figures

Figure 1

16 pages, 4593 KiB  
Article
Self-Healing Properties of Crosslinked PMMA-DVB Copolymer Microcapsules Based on Interfacial Polymerization
by Xiaowei Jiang, Chengwu Tang, Jiachuan Yu, Yuankai Zhou and Xue Zuo
Polymers 2025, 17(5), 569; https://doi.org/10.3390/polym17050569 - 21 Feb 2025
Viewed by 726
Abstract
To address the issue of metal corrosion caused by microcracks in the coating on the steel structures of offshore drilling platforms, this study employs interfacial polymerization to prepare microcapsules with self-healing functionality for coatings. The microcapsules are fabricated through free radical polymerization between [...] Read more.
To address the issue of metal corrosion caused by microcracks in the coating on the steel structures of offshore drilling platforms, this study employs interfacial polymerization to prepare microcapsules with self-healing functionality for coatings. The microcapsules are fabricated through free radical polymerization between methyl methacrylate (MMA) and ammonium persulfate (APS), along with crosslinking reactions involving divinylbenzene (DVB). The particle size distribution and surface morphology of the microcapsules were optimized by adjusting process parameters using optical microscopy and scanning electron microscopy. Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were used to characterize the chemical structure and thermal stability of the microcapsules. The results show that when polyvinyl alcohol is used as the emulsifier, the oil–water ratio was 7.5:200, the amount of emulsifier was 1 wt%, the emulsification speed was 2500 r/min, the amount of initiator was 2 g, the core-to-wall ratio was 4:1, and the ambient temperature was 60 °C showed good sphericity, the microcapsules prepared under the optimized parameters exhibit good sphericity, a smooth surface, and an average particle size of 35.17 μm. They have a good core material encapsulation effect and thermal stability, which impart excellent self-healing properties to the epoxy coating. Such microcapsules have promising applications in mitigating the problem of metal corrosion of coatings due to microcracks and improving the service life and reliability of equipment. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

35 pages, 42329 KiB  
Article
The Influence of Structural Design on the Hydrodynamics of Floating Offshore Wind Turbine Platforms
by Nilotpal Dhar, Charlie J. Lloyd, John Walker and Robert M. Dorrell
J. Mar. Sci. Eng. 2025, 13(2), 248; https://doi.org/10.3390/jmse13020248 - 28 Jan 2025
Viewed by 1349
Abstract
Floating offshore wind turbine (FOWT) platforms are subject to a wide range of hydrodynamic loading and dynamic movement, making hydrodynamic force evaluation difficult. Amongst various floating platforms, submersible platforms are structurally complex, with multiple members held together by cross-braces. The influence of these [...] Read more.
Floating offshore wind turbine (FOWT) platforms are subject to a wide range of hydrodynamic loading and dynamic movement, making hydrodynamic force evaluation difficult. Amongst various floating platforms, submersible platforms are structurally complex, with multiple members held together by cross-braces. The influence of these members on hydrodynamic loading is poorly understood. An investigation of the effect of these members on loads is essential to optimise the design of FOWT platforms, mooring systems, and protective coatings, leading to a reduction in construction and maintenance costs. This paper numerically investigates the effect of structural members on the forces acting on a static semi-submersible platform in a unidirectional current flow of Reynolds number (Re) ranging from 2000 to 200,000, based on structural diameter and tidal velocity. The OC4 semi-submersible is chosen as the baseline platform. For each Re, this study is divided into three stages, such that in each stage, the number of members increased. These stages are as follows: (1) a finite cylinder (FC), (2) a finite cylinder with a heave plate (FCHP), (3) three cylinders with heave plates (TCHP) in an equilateral triangle arrangement, and (4) the OC4 semi-sub. The drag coefficient (C¯d) increases with increasing structural members and weakly varies with increasing Re. However, the viscous drag coefficient (C¯f) decreases with increasing Re, and a reverse trend is seen in the case of the pressure drag coefficient (C¯p), with pressure drag dominating over friction drag. Further, the contribution of individual members is observed to vary with Re. The contribution of cylinders towards C¯d is higher than heave plates, showing that contributions directly depend on the aspect ratio of members. In the case of TCHP and OC4, the contribution of the rear members is higher than that of the leading members due to the strong wake effect of the former. Also, the braces and pontoons of OC4 have contributed substantially towards total C¯d, unlike the central cylinder, which has experienced low drag due to the wake effect of the front cylinder and heave plate. Also, flow visualisation has shown vortex cores, and recirculating flows in the near wake of the cylinders and under the heave plates. Recirculation zones under the heave plates lead to vertical pressure on the structures. This vertical pressure increases with the number of structural members and the vertical pressure coefficient (C¯v), varying with Re due to three-dimensionality in the wake. Further, this pressure varies across the bottom surfaces of structures. Analyses of the streamwise pressure coefficient have shown it is highest on the front surfaces of cylinders. The highest friction is on the top and sides of the heave plates, and there is considerable friction on the sides of the cylinder. Full article
Show Figures

Figure 1

16 pages, 5470 KiB  
Article
Surface Properties of Coatings Based on Iron Amino-Functionalized Oxides Deposited on DH 36 Steel Plates for Shipbuilding
by Maria Luisa Testa, Carla Calabrese, Valeria La Parola, Cristina Scolaro, Annamaria Visco, Simone Cappello and Leonarda Francesca Liotta
Nanomaterials 2025, 15(3), 150; https://doi.org/10.3390/nano15030150 - 21 Jan 2025
Cited by 1 | Viewed by 946
Abstract
The development of eco-friendly paint formulations is part of the transition process to more sustainable materials, which involves many industries such as offshore and shipbuilding, where the deterioration of steel in seawater is a key factor. This article aims to produce innovative coatings [...] Read more.
The development of eco-friendly paint formulations is part of the transition process to more sustainable materials, which involves many industries such as offshore and shipbuilding, where the deterioration of steel in seawater is a key factor. This article aims to produce innovative coatings and test their protective action on DH 36 steel plates. SiO2 and TiO2 were modified with amino groups and iron sites to be used as filler for the design of ecological paint formulations The antimicrobial features of both NH2 groups and iron ionic species were combined with the chemical and mechanical stability of silica and titania, with silica-based powders showing increased efficacy. The surface properties of the resulting coatings were examined by determination of thickness, water wettability, roughness, and cross-cut adhesion tests (before and after a degradation test in seawater according to ASTM D870-97 standards). Preliminary tests of the microbiological activity of the iron amino functionalized materials were carried out to monitor, as proof of concept, the growth of some bacterial strains through measurements of optical density. The findings indicate that these coatings not only provide effective corrosion protection but are promising for enhancing the durability and environmental performance of steel surfaces exposed to marine environments. Full article
Show Figures

Figure 1

14 pages, 2422 KiB  
Article
Effect of Welding Current on the Dilution and Mechanical Properties of Co–Cr Alloy Stellite-6 Coatings Applied to AISI 4130 Steel
by Elias Rocha Gonçalves Júnior, Bárbara Ferreira de Oliveira, Luis Augusto Hernandez Terrones, Noan Tonini Simonassi and Sergio Neves Monteiro
Coatings 2024, 14(12), 1591; https://doi.org/10.3390/coatings14121591 - 19 Dec 2024
Cited by 1 | Viewed by 1003
Abstract
Coating welding with cobalt alloys on pipelines is crucial for the offshore industry due to its exceptional resistance to corrosion and wear. In this paper, two welding conditions with different currents were proposed to observe the behavior of the dissimilar joint. The microstructure, [...] Read more.
Coating welding with cobalt alloys on pipelines is crucial for the offshore industry due to its exceptional resistance to corrosion and wear. In this paper, two welding conditions with different currents were proposed to observe the behavior of the dissimilar joint. The microstructure, mechanical properties, and dilution of a dissimilar material consisting of AISI 4130 steel substrate coated with Stellite 6 alloy were analyzed. Firstly, samples were metallographically prepared for the evaluation of the weld bead and the coating phases using SEM, EDS, and XRD analyses. Then, microstructural characterization was performed qualitatively using confocal microscopy and quantitatively to determine the phase fraction volumes in the dendritic and interdendritic regions, as well as the resulting dilution. Results revealed that varying welding conditions did not significantly affect the hardness of the coatings, which remained within the alloy standard of 36-45 HRC, with microhardness varying by 3%–5% from one condition to another and phase fraction volume showing a variation of 5.6% between welding conditions. On the other hand, experimental results indicated a clear effect of welding current variation on dilution values, with 4.6% for condition 1 and 16.7% for condition 2, allowing for direct proportional relationships to be established, i.e., higher deposition current results in greater dilution. Full article
Show Figures

Figure 1

21 pages, 6182 KiB  
Review
Advances in the Mitigation of Microbiologically Influenced Concrete Corrosion: A Snapshot
by Husnu Gerengi, Ertugrul Kaya, Moses M. Solomon, Matthew Snape and Andrea Koerdt
Materials 2024, 17(23), 5846; https://doi.org/10.3390/ma17235846 - 28 Nov 2024
Cited by 1 | Viewed by 1574
Abstract
Concrete, a versatile construction material, faces pervasive deterioration due to microbiologically influenced corrosion (MIC) in various applications, including sewer systems, marine engineering, and buildings. MIC is initiated by microbial activities such as involving sulfate-reducing bacteria (SRB), sulfur-oxidizing bacteria (SOB), etc., producing corrosive substances [...] Read more.
Concrete, a versatile construction material, faces pervasive deterioration due to microbiologically influenced corrosion (MIC) in various applications, including sewer systems, marine engineering, and buildings. MIC is initiated by microbial activities such as involving sulfate-reducing bacteria (SRB), sulfur-oxidizing bacteria (SOB), etc., producing corrosive substances like sulfuric acid. This process significantly impacts structures, causing economic losses and environmental concerns. Despite over a century of research, MIC remains a debated issue, lacking standardized assessment methods. Microorganisms contribute to concrete degradation through physical and chemical means. In the oil and gas industry, SRB and SOB activities may adversely affect concrete in offshore platforms. MIC challenges also arise in cooling water systems and civil infrastructures, impacting concrete surfaces. Sewer systems experience biogenic corrosion, primarily driven by SRB activities, leading to concrete deterioration. Mitigation traditionally involves the use of biocides and surface coatings, but their long-term effectiveness and environmental impact are questionable. Nowadays, it is important to design more eco-friendly mitigation products. The microbial-influenced carbonate precipitation is one of the green techniques and involves incorporating beneficial bacteria with antibacterial activity into cementitious materials to prevent the growth and the formation of a community that contains species that are pathogenic or may be responsible for MIC. These innovative strategies present promising avenues for addressing MIC challenges and preserving the integrity of concrete structures. This review provides a snapshot of the MIC in various areas and mitigation measures, excluding underlying mechanisms and broader influencing factors. Full article
Show Figures

Figure 1

18 pages, 8369 KiB  
Article
Surface Integrity of Austenitic Manganese Alloys Hard Layers after Cavitation Erosion
by Ion Mitelea, Ilare Bordeașu, Daniel Mutașcu, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Lubricants 2024, 12(10), 330; https://doi.org/10.3390/lubricants12100330 - 26 Sep 2024
Cited by 1 | Viewed by 1237
Abstract
Cavitation erosion, as a mechanical effect of destruction, constitutes a complex and critical problem that affects the safety and efficiency of the functioning of engineering components specific to many fields of work, the most well-known being propellers of ships and maritime and river [...] Read more.
Cavitation erosion, as a mechanical effect of destruction, constitutes a complex and critical problem that affects the safety and efficiency of the functioning of engineering components specific to many fields of work, the most well-known being propellers of ships and maritime and river vessels, seawater desalination systems, offshore oil and gas drilling platforms (including drilling and processing equipment), and the rotors and blades of hydraulic machines. The main objective of the research conducted in this paper is to experimentally investigate the phenomenology of this surface degradation process of maritime ships and offshore installations operating in marine and river waters. To reduce cavitation erosion of maritime structures made from Duplex stainless steels, the study used the deposition by welding of layers of metallic alloys with a high capacity for work hardening. The cavitation tests were conducted in accordance with the American Society for Testing and Materials standards. The response of the deposited metal under each coating condition, compared to the base metal, was investigated by calculating the erosion penetration rate (MDER) through mass loss measurements over the cavitation duration and studying the degraded zones using scanning electron microscopy (SEM), the energy-dispersive X-ray analysis, and hardness measurements. It was revealed that welding hardfacing with austenitic manganese alloy contributes to an approximately 8.5–10.5-fold increase in cavitation erosion resistance. The explanation is given by the increase in surface hardness of the coated area, with 2–3 layers of deposited alloy reaching values of 465–490 HV5, significantly exceeding those specific to the base metal, which range from 260–280 HV5. The obtained results highlighted the feasibility of forming hard coatings on Duplex stainless-steel substrates. Full article
Show Figures

Figure 1

17 pages, 8189 KiB  
Article
Experimental Study on the Microstructure and Tribological Properties of Laser-Clad Ni60-WC Composite Coatings
by Yupeng Cao, Kai Yan, Weidong Shi, Rui Zhou, Bin Li and Jiaxin Qin
Materials 2024, 17(18), 4638; https://doi.org/10.3390/ma17184638 - 21 Sep 2024
Cited by 4 | Viewed by 1418
Abstract
To address the wear issues faced by the leg components of offshore platforms in harsh marine conditions, a Ni60-WC composite coating was fabricated on the surface of E690 high-strength steel using laser cladding. The microstructure, elemental distribution, microhardness, and tribological properties of the [...] Read more.
To address the wear issues faced by the leg components of offshore platforms in harsh marine conditions, a Ni60-WC composite coating was fabricated on the surface of E690 high-strength steel using laser cladding. The microstructure, elemental distribution, microhardness, and tribological properties of the composite coating were characterized and tested using XRD (X-ray diffraction), SEM (scanning electron microscopy), EDS (energy-dispersive spectrometry), a microhardness tester, and a multifunctional tribometer. The study focused on the microstructure and tribological properties of the Ni60-WC composite coating. The results show that the composite coating primarily consists of γ-(Fe, Ni), WC, W2C, M23C6, and M6C phases, with cellular and dendritic structures at the top. WC and W2C, along with M23C6 and M6C, are precipitated from the W and C elements. The average hardness of the composite coating reached 569.5 HV, representing a 103% increase over the substrate hardness. The prepared composite coating exhibited a 32.6% increase in corrosion potential compared to the substrate. Additionally, the corrosion current density was reduced by 62.0%, indicating a significant enhancement in the corrosion resistance of the composite coating. The friction coefficient of the composite coating was reduced by 17.4% compared to the substrate, and wear volume was reduced by 79%, significantly enhancing the tribological performance of the coating due to reduced abrasive wear and fatigue wear. Full article
Show Figures

Figure 1

Back to TopTop