Tuning Nanocrystalline Heterostructures for Enhanced Corrosion Resistance: A Study on Electrodeposited Ni Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrodeposition Preparation
2.2. Material Characterization
2.3. Adsorption Simulation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Zhou, X.; Lu, Y.; Li, X. Enhanced mechanical properties in bulk nanograined Ni with high-density fivefold twins. Small 2025, 21, 2410202. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Z.; Yan, J.; Sun, L.; Wang, J. Enhancing wear and corrosion resistance of electroless Ni-P coatings in CO2-saturated NaCl solution through polytetrafluoroethylene incorporation. Corros. Sci. 2024, 226, 111620. [Google Scholar] [CrossRef]
- Li, X.; Lu, K. Improving sustainability with simpler alloys. Science 2019, 364, 733–734. [Google Scholar] [CrossRef]
- Liu, D.; Wang, D.; Hong, T.; Wang, Z.; Wang, Y.; Qin, Y.; Su, L.; Yang, T.; Gao, X.; Ge, Z.; et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics. Science 2023, 380, 841–846. [Google Scholar] [CrossRef]
- Naghdi, A.; Domínguez-Gutiérrez, F.J.; Huo, W.Y.; Karimi, K.; Papanikolaou, S. Dynamic nanoindentation and short-range order in equiatomic NiCoCr medium-entropy alloy lead to novel density wave ordering. Phys. Rev. Lett. 2024, 132, 116101. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, R.; Yu, Q.; Ell, J.; Ritchie, R.O.; Minor, A.M. Cryoforged nanotwinned titanium with ultrahigh strength and ductility. Science 2021, 373, 1363–1368. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, G.; Li, L.; Kang, J.; Yan, F.; Du, P.; Raabe, D.; Wang, G. Ductile 2-GPa steels with hierarchical substructure. Science 2023, 379, 168–173. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhou, X.; Lu, K. Rapid heating induced ultrahigh stability of nanograined copper. Sci. Adv. 2020, 6, eaaz8003. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, X. Heterostructured materials. Prog. Mater. Sci. 2023, 131, 101019. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Yu, Z.; Zhao, J.; Wei, Y. Hetero-zone boundary affected region: A primary microstructural factor controlling extra work hardening in heterostructure. Acta Mater. 2022, 241, 118395. [Google Scholar] [CrossRef]
- Kong, Y.; Peng, K.; Huang, H. Highly controllable additive manufacturing of heterostructured nickel-based composites. Int. J. Mach. Tool. Manuf. 2024, 195, 104112. [Google Scholar] [CrossRef]
- Peng, B.; Jin, J.; Liu, Y.; Lu, C.; Li, L.; Yan, M. Towards peculiar corrosion behavior of multi-main-phase Nd-Ce-Y-Fe-B permanent material with heterogeneous microstructure. Corros. Sci. 2020, 177, 108972. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, H.; Du, H.; Yang, Y.; Gao, Z.; Qie, L.; Huang, Y. Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 2022, 13, 3252. [Google Scholar] [CrossRef]
- Ye, C.; Jin, H.; Shan, J.; Jiao, Y.; Li, H.; Gu, Q.; Davey, K.; Wang, H.; Qiao, S.-Z. A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries. Nat. Commun. 2021, 12, 7195. [Google Scholar] [CrossRef]
- Li, Y.; Cai, X.; Zhang, G.; Xu, C.; Gao, W.; An, M. Optimization of electrodeposition nanocrytalline Ni-Fe alloy coatings for the replacement of Ni coatings. J. Alloy. Comp. 2022, 903, 163761. [Google Scholar] [CrossRef]
- Huo, W.; Wang, S.; Fang, F.; Tan, S.; Kurpaska, Ł.; Xie, Z.; Kim, H.S.; Jiang, J. Microstructure and corrosion resistance of highly <111> oriented electrodeposited CoNiFe medium-entropy alloy films. J. Mater. Res. Technol. 2022, 20, 1677–1684. [Google Scholar] [CrossRef]
- Li, S.; Li, H.; Zhai, Z.; Cao, X.; Liu, D.; Jiang, J. Corrosion resistance and tribological behavior of FeCoCrNi@GO/Ni high entropy alloy-based composite coatings prepared by electrodeposition. Surf. Coating. Technol. 2024, 477, 130379. [Google Scholar] [CrossRef]
- Dong, M.; Liu, P.; Wang, C.; Wang, Y.; Tang, X.; He, M.; Liu, J. Microstructure and properties of FeCoNiCr and FeCoNiCrW high entropy alloy coatings by electrodeposition. Intermetallics 2024, 175, 108492. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, L.; He, Z.; Zhang, S.; Singh, H.; Hayat, M.D.; Yao, C. Influence of pretreatments on physicochemical properties of Ni-P coatings electrodeposited on aluminum alloy. Mater. Des. 2021, 197, 109233. [Google Scholar] [CrossRef]
- Daneshnia, A.; Raeissi, K.; Salehikahrizsangi, P. Rapid one-step electrodeposition of robust superhydrophobic and oleophobic Ni coating with anti-corrosion and self-cleaning properties. Surf. Coating. Technol. 2022, 450, 129007. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, G.; He, Z.; Chen, J.; Gao, W.; Cao, P. Superhydrophobic Ni nanocone surface prepared by electrodeposition and its overall performance. Surf. Coating. Technol. 2023, 464, 129548. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Comm. 2015, 197, 212–219. [Google Scholar] [CrossRef]
- Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983–7991. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Modelling Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Lin, J.; Kilani, M.; Baharfar, M.; Wang, R.; Mao, G. Understanding the nanoscale phenomena of nucleation and crystal growth in electrodeposition. Nanoscale 2024, 16, 19564–19588. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, G.; Zhou, G.; Xiang, C.; Miao, X.; Liu, L.; An, X.; Lan, H.; Liu, H. In situ visual observation of surface energy-controlled heterogeneous nucleation of metal nanocrystals. Small 2024, 20, 2401674. [Google Scholar] [CrossRef]
- Zhou, J.; Cheng, Y.; Wan, Y.; Chen, H.; Wang, Y.; Ma, K.; Yang, J. Enhancement mechanisms of self-lubricating Ti3SiC2 ceramic doping in CoCrFeNi high-entropy alloy via high-speed laser cladding: Tribology and electrochemical corrosion. Surf. Coating. Technol. 2024, 480, 130554. [Google Scholar] [CrossRef]
- Dai, L.; Fang, C.; Yao, F.; Zhang, X.; Xu, X.; Han, S.; Deng, J.; Zhu, J.; Sun, J. Thickness-dependent β/γ-NiOOH transformation of Ni-MOFs in oxygen evolution reaction. Appl. Surf. Sci. 2023, 623, 156991. [Google Scholar] [CrossRef]
- Qin, L.; Lian, J.; Jiang, Q. Effect of grain size on corrosion behavior of electrodeposited bulk nanocrystalline Ni. Trans. Nonferr. Metal. Soc. China 2010, 20, 82–89. [Google Scholar] [CrossRef]
- Hall, D.S.; Lockwood, D.J.; Bock, C.; MacDougall, B.R. Nickel hydroxides and related materials: A review of their structures, synthesis and properties. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140792. [Google Scholar] [CrossRef] [PubMed]
- El-Tantawy, Y.A.; Al-Kharafi, F.M. Role of Cl− in breakdown of Ni passivity in aqueous NaOH solutions. Electrochim. Acta 1982, 27, 691–699. [Google Scholar] [CrossRef]
- Wan, C.; Zhang, Z.; Dong, J.; Xu, M.; Pu, H.; Baumann, D.; Lin, Z.; Wang, S.; Huang, J.; Shah, A.H.; et al. Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat. Mater. 2023, 22, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Marcus, P.; Maurice, V. Atomic level characterization in corrosion studies. Philos. T. R. Soc. A 2017, 375, 20160414. [Google Scholar] [CrossRef]
- Davies, D.E.; Barker, W. Influence of pH on corrosion and passivation of nickel. Corrosion 1964, 20, 47t–53t. [Google Scholar] [CrossRef]
- Yang, S.; Liang, G.; Huang, Y.; Hao, X.; Zhao, J.; Lv, M. Adsorption structure and properties of Ni/Fe electrodeposition interface: A DFT study. Model. Simul. Mater. Sci. Eng. 2024, 32, 055024. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Y.; Duan, X.; Liu, Y.; Wang, S. Density functional theory calculations for insight into the heterocatalyst reactivity and mechanism in persulfate-based advanced oxidation reactions. ACS Catal. 2021, 11, 11129–11159. [Google Scholar] [CrossRef]
- Wasekar, N.P. The influence of grain size and triple junctions on corrosion behavior of nanocrystalline Ni and Ni-W alloy. Scr. Mater. 2022, 213, 114604. [Google Scholar] [CrossRef]
- Chen, Y.; Schuh, C.A. Contribution of triple junctions to the diffusion anomaly in nanocrystalline materials. Scr. Mater. 2007, 57, 253–256. [Google Scholar] [CrossRef]
- Palumbo, G.; Thrope, S.J.; Aust, K.T. On the contribution of triple junctions to the structure and properties of nanocrystalline materials. Scr. Metall. Mater. 1990, 24, 1347–1350. [Google Scholar] [CrossRef]
- Mahesh, B.V.; Raman, R.K.S.; Koch, C.C. Bimodal grain size distribution: An effective approach for improving the mechanical and corrosion properties of Fe–Cr–Ni alloys. J. Mater. Sci. 2012, 47, 7735–7743. [Google Scholar] [CrossRef]
- Tian, W.; Li, S.; Wang, B.; Liu, J.; Yu, M. Pitting corrosion of naturally aged AA 7075 aluminum alloys with bimodal grain size. Corros. Sci. 2016, 113, 1–16. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Dai, H.; Fujiwara, H.; Chen, X.; Ameyama, K. Enhanced corrosion resistance of CoCrFeMnNi high entropy alloy using heterogeneous structure design. Corros. Sci. 2022, 209, 110761. [Google Scholar] [CrossRef]
- Li, Y.; Olejarz, A.; Kurpaska, Ł.; Lu, E.; Alava, M.J.; Kim, H.S.; Huo, W. Designing cobalt-free face-centered cubic high-entropy alloys: A strategy using d-orbital energy level. Int. J. Refract. Metal. Hard Mater. 2024, 124, 106834. [Google Scholar] [CrossRef]
- Huo, W.; Wang, S.; Zhang, X.; Ren, K.; Tan, S.; Fang, F.; Xie, Z.; Jiang, J. A strategy to improve the performance of TiO2 nanotube array film photocatalysts by magnetron-sputtered amorphous BiFeO3. Vacuum 2022, 202, 111135. [Google Scholar] [CrossRef]
Current Density (mA/cm2) | R1 (Ω·cm2) | Q1-Y0 (Ω−1·cm2·Sn) | Q1-n | R2 (Ω·cm2) | Q2-Y0 (Ω−1·cm2·Sn) | Q2-n | R3 (Ω·cm2) |
---|---|---|---|---|---|---|---|
1 | 15.62 | 0.00193 | 1 | 23.6 | 0.00855 | 0.4228 | 36.96 |
5 | 15.85 | 8.716 × 10−4 | 0.7893 | 1107 | 2.995 × 10−5 | 0.9158 | 1410 |
10 | 34.54 | 2.641 × 10−5 | 0.905 | 4586 | 2.983 × 10−4 | 0.8799 | 2473 |
20 | 28.54 | 2.866 × 10−5 | 0.9312 | 3554 | 4.238 × 10−4 | 0.8431 | 1773 |
50 | 25.82 | 2.689 × 10−4 | 0.9792 | 3295 | 2.713 × 10−5 | 0.9502 | 7739 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, W.; Zhang, Z.; Huang, X.; Wang, Y.; Wang, S.; Lu, X.; Li, S.; Zhu, S.; Fang, F.; Jiang, J. Tuning Nanocrystalline Heterostructures for Enhanced Corrosion Resistance: A Study on Electrodeposited Ni Coatings. Coatings 2025, 15, 534. https://doi.org/10.3390/coatings15050534
Huo W, Zhang Z, Huang X, Wang Y, Wang S, Lu X, Li S, Zhu S, Fang F, Jiang J. Tuning Nanocrystalline Heterostructures for Enhanced Corrosion Resistance: A Study on Electrodeposited Ni Coatings. Coatings. 2025; 15(5):534. https://doi.org/10.3390/coatings15050534
Chicago/Turabian StyleHuo, Wenyi, Zeling Zhang, Xuhong Huang, Yueheng Wang, Shiqi Wang, Xiaoheng Lu, Shuangxiao Li, Senlei Zhu, Feng Fang, and Jianqing Jiang. 2025. "Tuning Nanocrystalline Heterostructures for Enhanced Corrosion Resistance: A Study on Electrodeposited Ni Coatings" Coatings 15, no. 5: 534. https://doi.org/10.3390/coatings15050534
APA StyleHuo, W., Zhang, Z., Huang, X., Wang, Y., Wang, S., Lu, X., Li, S., Zhu, S., Fang, F., & Jiang, J. (2025). Tuning Nanocrystalline Heterostructures for Enhanced Corrosion Resistance: A Study on Electrodeposited Ni Coatings. Coatings, 15(5), 534. https://doi.org/10.3390/coatings15050534