Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (301)

Search Parameters:
Keywords = ochratoxin B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10020 KB  
Article
Microbiological and Mycotoxicological Quality of Stored Wheat, Wholemeal Flour and Bread: The Impact of Extreme Weather Events in Romania in the 2024 Summer
by Valeria Gagiu, Elena Mirela Cucu (Chirtu), Elena Iulia Lazar (Banuta), Cristian Mihai Pomohaci, Alina Alexandra Dobre, Gina Pusa Pirvu, Oana Alexandra Oprea, Cristian Lazar, Elena Mateescu and Nastasia Belc
Toxins 2025, 17(10), 502; https://doi.org/10.3390/toxins17100502 (registering DOI) - 11 Oct 2025
Abstract
This study examines the effects of the extreme drought and heatwaves that occurred in Romania during the summer of 2024 on the microbiological and mycotoxicological quality of wheat (Triticum aestivum) stored until April 2025, as well as on the quality of [...] Read more.
This study examines the effects of the extreme drought and heatwaves that occurred in Romania during the summer of 2024 on the microbiological and mycotoxicological quality of wheat (Triticum aestivum) stored until April 2025, as well as on the quality of wholemeal flour and bread derived from it. Comparative analyses were conducted against the contamination in wheat harvested in 2024. The hot and dry conditions significantly influenced the microbial and mycotoxicological contamination of both freshly harvested and stored wheat, as well as the derived flour and bread, due to their notably reduced moisture content and water activity. Although levels of total fungi, Fusarium-damaged kernels, and mycotoxins deoxynivalenol, aflatoxin B1, and ochratoxin A remained well below regulatory thresholds, higher contamination was observed in Transylvania and Moldavia Moldavia—particularly in the Curvature Carpathians, likely due to their cooler and wetter microclimates. The observed quality changes were strongly associated with alterations in physico-chemical, rheological, and colorimetric parameters, posing potential economic challenges for the milling and baking industries. The study recommends implementing integrated regional strategies to enhance wheat resilience, optimize production systems, and improve contamination control in response to increasing climate stress across Southeastern Europe. Full article
(This article belongs to the Collection Impact of Climate Change on Fungal Population and Mycotoxins)
Show Figures

Figure 1

22 pages, 2908 KB  
Article
Proteomic Changes in the Cytoplasmatic Fraction of Weaned Piglets’ Liver and Kidney Under Antioxidant and Mycotoxin Diets
by Roua Gabriela Popescu, Anca Dinischiotu, Andreea-Angelica Stroe, Sergiu Emil Georgescu and George Cătălin Marinescu
Antioxidants 2025, 14(10), 1216; https://doi.org/10.3390/antiox14101216 - 9 Oct 2025
Viewed by 267
Abstract
Mycotoxin contamination represents a major risk to both human and animal health. Antioxidants can mitigate some of these effects through free radical scavenging, reduction in oxidative stress, and anti-inflammatory and immunomodulatory actions. This work investigated the potential of antioxidants derived from grapeseed and [...] Read more.
Mycotoxin contamination represents a major risk to both human and animal health. Antioxidants can mitigate some of these effects through free radical scavenging, reduction in oxidative stress, and anti-inflammatory and immunomodulatory actions. This work investigated the potential of antioxidants derived from grapeseed and sea buckthorn to mitigate the adverse effects of aflatoxin B1 (AFB1) and ochratoxin A (OTA) in weaned piglets. An unbiased Data-Independent Acquisition (DIA) proteomic approach was used to analyse the impact of OTA- and AFB1-contaminated diets on liver and kidney cytoplasmic metabolism, particularly focusing on the conjugation phase. Our results indicate that several toxic effects of these mycotoxins were partially alleviated by dietary antioxidant supplementation. Additionally, in kidneys, some of the effects are synergistically amplified, such as proteins involved in fatty acid degradation, peroxisome, PPAR signalling, translation, the TCA cycle, and excretion pathways. Inclusion of antioxidants in the animal diet can have beneficial effects. Nevertheless, caution is advised; synergistic effects can occur with potentially more serious consequences than the effects of mycotoxins alone. Full article
(This article belongs to the Special Issue Potential Health Benefits of Dietary Antioxidants)
Show Figures

Figure 1

18 pages, 1671 KB  
Article
Toxigenic Aspergillus Diversity and Mycotoxins in Organic Spanish Grape Berries
by Clara Melguizo, Andrea Tarazona, Jéssica Gil-Serna, Fernando Mateo, Belén Patiño and Eva María Mateo
Toxins 2025, 17(10), 487; https://doi.org/10.3390/toxins17100487 - 30 Sep 2025
Viewed by 462
Abstract
Grapes are frequently contaminated by Aspergillus section Nigri fungi and ochratoxin A (OTA), with A. niger also capable of producing substantial fumonisin B2 (FB2) levels. Emerging evidence suggests that aflatoxigenic fungi may eventually replace ochratoxigenic fungi in certain regions due [...] Read more.
Grapes are frequently contaminated by Aspergillus section Nigri fungi and ochratoxin A (OTA), with A. niger also capable of producing substantial fumonisin B2 (FB2) levels. Emerging evidence suggests that aflatoxigenic fungi may eventually replace ochratoxigenic fungi in certain regions due to better adaptation to changes in climatic conditions. However, research on the toxigenic fungal community and mycotoxins in grapes from organic vineyards remains limited. Research on Spanish conventional grapes is also deficient, with most of the available literature being outdated. The present study investigates the diversity of toxigenic fungi and the presence of mycotoxins in organically cultivated grape berries in Spain, which are renowned for their significant oenological tradition. This study employed species-specific PCR protocols for fungal characterization and optimized methods for the analysis of OTA, FB2, and aflatoxin B1 (AFB1) by UPLC–ESI–MS/MS. The most prevalent species present were Aspergillus flavus, A. niger, A. parasiticus, A. steynii, A. carbonarius, and A. westerdijkiae (67.1%, 43.5%, 20.0%, 14.1%, 14.1%, and 11.8% of the samples, respectively). OTA was detected only in 16 samples (19%), averaging 0.48 ng/g and peaking at 0.7 ng/g, which were lower than previously reported for conventional grapes. There was no FB2 or AFB1 detected. This study is pioneering in its exploration of the occurrence of toxigenic mycobiota, beyond Nigri fungi, and subsequent potential for other serious mycotoxins to contaminate Spain’s organic grapes. Full article
Show Figures

Graphical abstract

32 pages, 4256 KB  
Review
Mycotoxin Contamination: Occurrence, Biotransformation, Pathogenic Mechanisms, and Strategies for Nutritional Intervention
by Chenyu Yao, Mengyu Ye, Cong Wang, Lin Zou, Ximeng Zhang, Xin Chai, Huijuan Yu, Chengyu Zhang and Yuefei Wang
Molecules 2025, 30(19), 3860; https://doi.org/10.3390/molecules30193860 - 23 Sep 2025
Viewed by 401
Abstract
Mycotoxins, toxic fungal secondary metabolites, exhibit a diverse array of toxicological effects, including hepatotoxicity, carcinogenicity, estrogenicity, immunotoxicity, and neurotoxicity. These toxins cause severe contamination in food, feed, and traditional Chinese medicines (TCMs), threatening global food security and imposing substantial economic burdens. Among over [...] Read more.
Mycotoxins, toxic fungal secondary metabolites, exhibit a diverse array of toxicological effects, including hepatotoxicity, carcinogenicity, estrogenicity, immunotoxicity, and neurotoxicity. These toxins cause severe contamination in food, feed, and traditional Chinese medicines (TCMs), threatening global food security and imposing substantial economic burdens. Among over 400 distinct mycotoxins identified to date, aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) stand out for their pervasive contamination and grave toxicities. Upon absorption, these toxins undergo biotransformation into reactive metabolites that exert multifaceted toxicities via mechanisms such as carcinogenesis, estrogenic effects, oxidative stress, inflammation, and abnormal apoptosis, collectively threatening human and livestock health. The application of natural and engineered enterosorbents suppresses intestinal absorption and subsequent bioactivation of mycotoxins, while dietary small-molecule bioactive compounds neutralize post-absorption toxicity via biotransformation intervention and cytoprotective reinforcement, collectively preventing the onset and progression of related diseases. This paper reviews the biosynthetic routes of three representative mycotoxins (AFB1, OTA, and ZEN), along with their biotransformation and underlying pathogenic mechanisms. Furthermore, nutritional intervention approaches targeting the underlying mechanisms to ameliorate mycotoxin-induced damage are discussed. This review not only provides valuable insights for future research on mycotoxin toxicity, but also establishes a theoretical foundation for utilizing dietary strategies to counteract mycotoxin-induced physical damage. Full article
Show Figures

Graphical abstract

13 pages, 2239 KB  
Article
Biocatalytic Detoxification of Ochratoxins A/B by a Fungal Dye-Decolorizing Peroxidase: Mechanistic Insights and Toxicity Assessment
by Wenjing Xia, Nianqing Zhu, Jie Mei, Yueqin Peng, Fanglin Song, Shuai Ding, Fei Li and Xue Zhou
Toxins 2025, 17(9), 438; https://doi.org/10.3390/toxins17090438 - 2 Sep 2025
Viewed by 585
Abstract
Mycotoxin contamination in agricultural products poses severe global health risks, with ochratoxins (particularly OTA and OTB) exhibiting marked nephrotoxicity and classified as Group 2B carcinogens by IARC. Conventional physical/chemical detoxification methods often impair food nutritional quality, highlighting the need for enzymatic alternatives. Herein, [...] Read more.
Mycotoxin contamination in agricultural products poses severe global health risks, with ochratoxins (particularly OTA and OTB) exhibiting marked nephrotoxicity and classified as Group 2B carcinogens by IARC. Conventional physical/chemical detoxification methods often impair food nutritional quality, highlighting the need for enzymatic alternatives. Herein, we systematically investigated the degradation mechanisms of ochratoxin A (OTA) and ochratoxin B (OTB) using Pleurotus ostreatus dye-decolorizing peroxidase (PoDyP4) coupled with redox mediators. Remarkably, hydroxybenzotriazole (HBT) enhanced degradation efficiency 26.7-fold for OTA and 10.6-fold for OTB compared to mediator-free systems, establishing it as the optimal catalytic enhancer. Through LC-MS/MS analysis, we identified five key degradation products, including 6-OH-OTA and OTB-quinone, elucidating a putative oxidative degradation pathway. In vitro cytotoxicological evaluation in HK-2 cells demonstrated that PoDyP4-treated ochratoxins significantly attenuated cytotoxicity, reducing malondialdehyde (MDA) levels by 48.7% (OTA) and 42.3% (OTB) (p < 0.01) and suppressing ROS generation. Molecular docking revealed strong binding affinities between PoDyP4 and ochratoxins, with calculated binding energies of −7.6 kcal/mol (OTA) and −8.6 kcal/mol (OTB), stabilized by hydrogen bond networks (1.9–3.4 Å). These findings position PoDyP4 as a promising biocatalyst for mycotoxin mitigation in food systems, offering a sustainable alternative to traditional detoxification methods. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

25 pages, 687 KB  
Article
Chemical Profile and Mycotoxin Analyses of Corn (Argentina, Brazil, and Ukraine), Soybean Meal (USA and Argentina), and Sunflower Meal (Ukraine) Used in Poultry Feed in Morocco
by Najlae El Bouanani, Bouchaib Bencharki and Hafsa Houmairi
Analytica 2025, 6(3), 30; https://doi.org/10.3390/analytica6030030 - 30 Aug 2025
Viewed by 752
Abstract
This study analyzes the nutritional quality and mycotoxin contamination of three key feed ingredients—corn, soybean meal (SBM), and sunflower meal (SFM)—imported into Morocco during the years 2019, 2020, and 2021. Samples were collected upon reception at the plant and analyzed in triplicate under [...] Read more.
This study analyzes the nutritional quality and mycotoxin contamination of three key feed ingredients—corn, soybean meal (SBM), and sunflower meal (SFM)—imported into Morocco during the years 2019, 2020, and 2021. Samples were collected upon reception at the plant and analyzed in triplicate under standardized laboratory conditions. Chemical composition was evaluated using classical and NIR-based methods, while mycotoxin levels were assessed through ELISA and confirmed by HPLC. Corn samples from Argentina, Brazil, and Ukraine were assessed for their proximate composition and mycotoxin burden. While most nutritional parameters showed no significant differences between origins (p > 0.05), water activity (Aw) and digestible threonine content were significantly affected by origin (p < 0.01). Brazilian corn had the highest Aw (0.716), followed by Argentina (0.680), and Ukraine (0.662), a factor linked to its higher susceptibility to mold and mycotoxin development. Soybean meal from the U.S. and Argentina showed a general positive trend in favor of U.S. imports, with higher average crude protein (the CP content of American soybean meal was 46.912%, compared to 46.610% in Argentine soybean meal), fat, digestible lysine, and metabolizable energy. However, statistical differences were limited to water activity and moisture content (p < 0.05). American soybean meals are generally recognized for their consistent processing quality and superior amino acid digestibility. Sunflower meal, sourced exclusively from Ukraine, showed a steady improvement in crude protein (from 35.97% in 2019 to 36.99% in 2021) and metabolizable energy, alongside reduced crude fiber content, enhancing its nutritional value in poultry diets. The consistent use of Ukrainian SFM in Morocco reflects both supply stability and quality. Regarding mycotoxins, origin had a significant effect on several compounds. Argentine and Brazilian corn showed higher mean levels of fumonisins (1165.26 and 1019.52 ppb), ochratoxin A (2.26 and 3.02 ppb), and zearalenone (36.99 and 21.92 ppb) compared to Ukrainian corn, which consistently had the lowest levels across all major mycotoxins (e.g., fumonisins = 200 ppb; zearalenone = 4.90 ppb). Aflatoxin B1 levels remained constant at 0.2 ppb across all origins. These findings confirm the influence of geographic origin—particularly water activity—on mycotoxin risk in imported maize. Full article
Show Figures

Figure 1

17 pages, 848 KB  
Article
Mycotoxin Assessment in Minimally Processed Traditional Ecuadorian Foods
by Johana Ortiz-Ulloa, Jorge Saquicela, Michelle Castro, Alexander Cueva-Chamba, Juan Manuel Cevallos-Cevallos and Jessica León
Foods 2025, 14(15), 2621; https://doi.org/10.3390/foods14152621 - 26 Jul 2025
Viewed by 746
Abstract
Nowadays, there is special interest in promoting the consumption of ancestral crops and minimally processed foods with high nutritional value. However, besides nutritional issues, safety assessments must be addressed. This study aimed to evaluate mycotoxin contamination in five minimally processed traditional Ecuadorian foods: [...] Read more.
Nowadays, there is special interest in promoting the consumption of ancestral crops and minimally processed foods with high nutritional value. However, besides nutritional issues, safety assessments must be addressed. This study aimed to evaluate mycotoxin contamination in five minimally processed traditional Ecuadorian foods: ochratoxin A (OTA), fumonisin B1 (FB1), and aflatoxins (AFs) in brown rice, lupin, and quinoa; OTA, FB1, and deoxynivalenol (DON) in whole-wheat flour; and OTA and AFs in peanuts. Samples (45 samples of peanuts and whole-wheat flour, 47 of brown rice, 46 of quinoa, and 36 of lupin) were collected from local markets and supermarkets in the three most populated cities in Ecuador. Mycotoxins were determined by RP-HPLC with fluorescence and detection. Results were compared with the maximum permitted levels (MPLs) of European Regulation 2023/915/EC. Overall contamination reached up to 59.8% of the analyzed samples (38.4% with one mycotoxin and 21.5% with co-occurrence). OTA was the most prevalent mycotoxin (in 82.6% of quinoa, 76.7% of whole-wheat flour, 53.3% of peanuts, 48.6% of lupin, and 25.5% of brown rice), and a modest number of quinoa (17%) and lupin (5.7%) samples surpassed the MPLs. DON was found in 82.2% of whole-wheat flour (28.9% > MPL). FB1 was detected in above 25% of brown rice and whole-wheat flour and in 9% of the quinoa samples. FB1 levels were above the MPLs only for whole-wheat flour (17.8%). AFB1 and AFG1 showed similar prevalence (about 6.5 and 8.5%, respectively) in quinoa and rice and about 27% in peanuts. Overall, these findings underscore the importance of enhancing fungal control in the pre- and post-harvest stages of these foods, which are recognized for their high nutritional value and ancestral worth; consequently, the results present key issues related to healthy diet promotion and food sovereignty. This study provides compelling insights into mycotoxin occurrence in minimally processed Ecuadorian foods and highlights the need for further exposure assessments by combining population consumption data. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

16 pages, 324 KB  
Article
Occurrence, Dietary Risk Assessment and Cancer Risk Estimates of Aflatoxins and Ochratoxin A in Powdered Baby Foods Consumed in Turkey
by Çiğdem El and Seydi Ahmet Şengül
Toxins 2025, 17(8), 366; https://doi.org/10.3390/toxins17080366 - 25 Jul 2025
Viewed by 988
Abstract
In this study, the aim was to determine the levels of aflatoxins and ochratoxin A (OTA) in baby food consumed in Hatay using fluorescence-detector HPLC (HPLC-FLD) and to reveal the health risks that may occur in babies through consumption of these foods. To [...] Read more.
In this study, the aim was to determine the levels of aflatoxins and ochratoxin A (OTA) in baby food consumed in Hatay using fluorescence-detector HPLC (HPLC-FLD) and to reveal the health risks that may occur in babies through consumption of these foods. To determine the dietary intake and to reveal the health risk assessment, the estimated daily intake (EDI) for all mycotoxins, the margin of exposure (MOE) for aflatoxin B1 (AFB1), aflatoxin M1 (AFM1) and OTA, the hazard index (HI) and the consumption-related hepatocellular cancer risk for AFM1 were calculated. It was reported that 11.5% and 8.2% of the analyzed samples exceeded the legal limit set for AFB1 and OTA, respectively. However, it was found that AFM1 concentrations in all samples did not exceed the legal limit. Based on the estimated consumption amounts of the baby foods, the HI values calculated for AFM1 were below 1, and the MOE values calculated for AFB1 and AFM1 were above 10.000, indicating that the consumption of baby foods does not pose a risk regarding AFB1 and AFM1 for babies. However, it was determined in all other products, except for toddler formula, that the MOE values calculated for OTA were below 10.000, indicating that their consumption may pose serious health problems in babies. Full article
10 pages, 1267 KB  
Communication
Oral Exposure to Chlorella sorokiniana Detoxifies Deoxynivalenol, Ochratoxin A, and Fumonisin B1 In Vitro and In Vivo
by Hiroki Yamaguchi, Mana Ando, Chiharu Ohira, Tensei Magami, Mao Kaneki, Kazutoshi Sugita, Taro Ogawa, Ayaka Nakashima and Tomoki Fukuyama
Toxins 2025, 17(7), 318; https://doi.org/10.3390/toxins17070318 - 23 Jun 2025
Viewed by 927
Abstract
Mycotoxins are synthesized by various fungal species and are known to exert toxic effects on vertebrates and other animals, even at low concentrations. However, the current countermeasure for mycotoxin contamination is random inspection of samples prior to shipment. In this study, we focused [...] Read more.
Mycotoxins are synthesized by various fungal species and are known to exert toxic effects on vertebrates and other animals, even at low concentrations. However, the current countermeasure for mycotoxin contamination is random inspection of samples prior to shipment. In this study, we focused on Chlorella sorokiniana (CS) from Ishigaki Island, Japan, and examined its ability to detoxify deoxynivalenol (DON), ochratoxin A (OTA), and fumonisin B1 (FB1) in vitro and in vivo. The binding of CS to DON, OTA, and FB1 was evaluated in vitro. The detoxification of CS was demonstrated by monitoring its concentrations in the plasma and urine samples of male ICR mice. Plasma and urine samples were collected 30 min, 2 h, and 24 h after an oral administration of 5 mg/kg mycotoxins and/or 500 mg/kg CS. CS bound to more than 80% and 40% of DON and OTA, respectively, whereas the binding of CS to FB1 was less than 10%. The concentrations of DON and OTA in plasma and urine samples were substantially reduced by CS co-administration, whereas CS did not affect FB1 absorption. The co-administration of CS substantially inhibited the systemic absorption of DON and OTA. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

16 pages, 1025 KB  
Article
Comprehensive Analysis of Mycotoxins in Green Coffee Food Supplements: Method Development, Occurrence, and Health Risk Assessment
by Laura Carbonell-Rozas, Octavian Augustin Mihalache, Renato Bruni and Chiara Dall’Asta
Toxins 2025, 17(7), 316; https://doi.org/10.3390/toxins17070316 - 21 Jun 2025
Viewed by 1890
Abstract
This study investigates the presence of mycotoxins in green coffee-based dietary supplements to ensure their safety, given the potential risks of contamination and the growing interest in them among consumers. A sample treatment based on a salting-out assisted liquid–liquid extraction (SALLE) followed by [...] Read more.
This study investigates the presence of mycotoxins in green coffee-based dietary supplements to ensure their safety, given the potential risks of contamination and the growing interest in them among consumers. A sample treatment based on a salting-out assisted liquid–liquid extraction (SALLE) followed by one-step solid-phase extraction (SPE) was selected for the extraction and clean-up of 15 mycotoxins followed by ultra-high performance chromatography–tandem mass spectrometry detection (UHPLC-MS/MS). The target mycotoxins included aflatoxins (AFG1, AFG2, AFB1, AFB2), Alternaria toxins (AOH, AME, TEN), ochratoxin A (OTA), fumonisins (FB1, FB2), zearalenone (ZEN), trichothecenes (T-2, HT-2), enniatin B1 (ENNB1), and beauvericin (BEA). The proposed method was successfully characterized, obtaining high recoveries, a satisfactory precision, and low detection limits. Subsequently, the method was applied for the analysis of 16 commercial food supplements. The analysis revealed the presence of mycotoxins in all samples investigated with Fusarium mycotoxins as the most prevalent. The dietary exposure and risk characterization revealed a low level of risk, except for AFs where chronic exposure in adults may lead to potential health concerns. Full article
Show Figures

Graphical abstract

11 pages, 241 KB  
Article
Mycotoxin Residues in Chicken Breast Muscle and Liver
by Tina Lešić, Jelka Pleadin, Nina Kudumija, Dora Tomašković and Ana Vulić
Foods 2025, 14(12), 2017; https://doi.org/10.3390/foods14122017 - 7 Jun 2025
Cited by 1 | Viewed by 1057
Abstract
The global increase in chicken meat production and consumption has heightened concerns regarding the safety of chicken meat and its derived products. This study aimed to investigate the presence of Penicillium and Aspergillus mycotoxins in 50 samples of chicken breast muscle and liver [...] Read more.
The global increase in chicken meat production and consumption has heightened concerns regarding the safety of chicken meat and its derived products. This study aimed to investigate the presence of Penicillium and Aspergillus mycotoxins in 50 samples of chicken breast muscle and liver collected from the Croatian market. Eight mycotoxins commonly produced by Aspergillus and Penicillium species were analyzed: aflatoxins B1 (AFB1), G1 (AFG1), B2 (AFB2), and G2 (AFG2); sterigmatocystin (STC); ochratoxin A (OTA); cyclopiazonic acid (CPA); and citrinin (CIT). Mycotoxin concentrations were determined using liquid chromatography–tandem mass spectrometry (LC-MS/MS) following sample cleanup with immunoaffinity columns while a QuEChERS-based method was applied for CPA. Mycotoxin occurrence was higher in liver samples, indicating the liver as primary site of mycotoxin accumulation compared to muscle tissue, where only CPA was detected. CPA was present in 20% of all samples, with the highest concentration (6.50 µg/kg) found in breast muscle, detected for the first time in fresh meat. AFB1 and OTA were each detected in 10% of samples, and CIT was found in 4%—all exclusively in liver tissue. Notably, 4 out of the 17 contaminated samples contained more than one mycotoxin. Although the detected concentrations can be considered too low to pose an immediate health risk, the contamination rate suggests further research into these mycotoxins in chicken and other poultry species is needed. Full article
11 pages, 268 KB  
Article
Occurrence and Exposure Assessment of Mycotoxins from Beers Commercially Traded in Brazil
by Gilmara F. C. Penha, Carlos H. Corassin, Roice E. Rosim and Carlos A. F. Oliveira
Beverages 2025, 11(3), 82; https://doi.org/10.3390/beverages11030082 - 4 Jun 2025
Viewed by 1299
Abstract
Mycotoxins are toxic secondary metabolites produced by fungi that often contaminate food materials used in beer production, posing health risks to consumers. This study investigated the occurrence and levels of mycotoxins in commercial beers commercially available in São Paulo, Brazil, and assessed the [...] Read more.
Mycotoxins are toxic secondary metabolites produced by fungi that often contaminate food materials used in beer production, posing health risks to consumers. This study investigated the occurrence and levels of mycotoxins in commercial beers commercially available in São Paulo, Brazil, and assessed the estimated daily intake (EDI) of quantifiable mycotoxins. Sixty beer samples from different brands and compositions (barley malt, malt with corn, and malt with rice) were analyzed for deoxynivalenol (DON); aflatoxins (AFs) B1, B2, G1, and G2; ochratoxin A (OTA); T-2 toxin; fumonisins (F) (B1 and B2); and zearalenone (ZEN) using ultra-performance liquid chromatography coupled to tandem mass spectrometry. FB1 was quantified in all samples, while DON, ZEN, OTA, AFB1, and T-2 toxin were detected in 40, 65, 25, 20, and 10%, respectively. Mean levels of 2.38, 36.41, 0.19, 1.05, 0.78, and 0.47 ng/mL were observed for FB1, DON, ZEN, OTA, AFB1, and T-2 toxin, respectively. Mycotoxin co-occurrence was observed in 43 (71.7%) samples analyzed, with DON and FB1 as the most frequent combination (20%). The EDI values of individual mycotoxins were generally below tolerable daily intakes established by international agencies. However, the co-occurrence of up to four different mycotoxins in beers warrants concern on the possible interactive toxic effects of mycotoxin mixtures and reinforces the necessity of specific regulations for ready-to-drink beverages in Brazil. Full article
Show Figures

Graphical abstract

22 pages, 2363 KB  
Article
Modulation of the Antioxidant System of Caco-2 Cells in the Presence of Aflatoxin B1, Ochratoxin A, and Ferulic Acid
by Andreea-Luminița Rădulescu, Roua Gabriela Popescu, Mihaela Balas, George Cătălin Marinescu and Anca Dinischiotu
Toxins 2025, 17(6), 274; https://doi.org/10.3390/toxins17060274 - 30 May 2025
Viewed by 971
Abstract
Food security and food safety are major aspects for human and animal health, yet mycotoxins contaminate 60–80% of food crops before and after harvest, elevating the risk of chronic toxicity and cancer development. This study investigates the potential of ferulic acid (FA) as [...] Read more.
Food security and food safety are major aspects for human and animal health, yet mycotoxins contaminate 60–80% of food crops before and after harvest, elevating the risk of chronic toxicity and cancer development. This study investigates the potential of ferulic acid (FA) as an antioxidant against mycotoxin-induced oxidative stress in Caco-2 cells exposed to aflatoxin B1 (AFB1) and ochratoxin A (OTA) for 24 and 48 h. The effects on the degree of lipid peroxidation and non-enzymatic and enzymatic mechanisms against oxidative stress were evaluated. FA appears to mitigate oxidative stress by modulating lipid and protein oxidation, decreasing the level of 4-hydroxy-2-nonenal (4-HNE), increasing superoxide dismutase (SOD) activity, and preserving thiol groups by scavenging reactive oxygen species (ROS). Additionally, the reduction in polyubiquitinated Nrf2 level, and higher SOD activity, suggest that FA stabilizes Nrf2, delaying its degradation and reinforcing its antioxidant role. These findings indicate that FA partially counteracts mycotoxin-induced oxidative damage, highlighting the need for further investigation into its long-term effects. Full article
(This article belongs to the Special Issue Co-Occurrence of Mycotoxins and Their Combined Toxicity)
Show Figures

Figure 1

15 pages, 3162 KB  
Article
Dual-Mode Microfluidic Workstation for Rapid Detection of Multiple Mycotoxins on Chip
by Binfeng Yin, Shiyu Zeng, Jun Liu, Rashid Muhammad, Zhuoao Jiang, Gang Tan and Qi Yang
Foods 2025, 14(11), 1928; https://doi.org/10.3390/foods14111928 - 29 May 2025
Cited by 3 | Viewed by 914
Abstract
The assurance of food safety requires sensitive monitoring of multiple mycotoxins due to their severe impacts on the food industry and high health risks posed to consumers. Herein, we proposed a chemiluminescent/colorimetric dual-signal readout microfluidic method, incorporating a streptavidin-biotin-alkaline phosphatase (SA-Biotin-ALP) signal amplification [...] Read more.
The assurance of food safety requires sensitive monitoring of multiple mycotoxins due to their severe impacts on the food industry and high health risks posed to consumers. Herein, we proposed a chemiluminescent/colorimetric dual-signal readout microfluidic method, incorporating a streptavidin-biotin-alkaline phosphatase (SA-Biotin-ALP) signal amplification system for the highly sensitive detection of Deoxynivalenol (DON), Ochratoxin A (OTA), and Aflatoxin B1 (AFB1). The indirect competitive enzyme-linked immunoassay (ic-ELISA) was integrated into microfluidic chip, resulting in sensitive detection ranges of DON in the range of 4–128 ng/mL, 2–64 ng/mL for OTA, and 0.2–6.4 ng/mL for AFB1, with the limit of detection (LOD) being 2.636 ng/mL, 1.492 ng/mL, and 0.131 ng/mL, respectively. Recovery rates in beer samples ranged from 91.93% to 109.31%. Furthermore, a dual-mode microfluidic workstation (DMMW) was developed to facilitate rapid, automated detection for these mycotoxins, simplifying the detection procedure, enhancing the detection efficiency, and reducing the requirement for specialized personnel, thus confirming significant potential for the rapid detection of mycotoxins in complex matrices such as beer. Full article
Show Figures

Figure 1

16 pages, 1180 KB  
Article
Evaluation of Dietary Bioactive Agents Against Aflatoxin B1 and Ochratoxin A-Induced Duodenal Toxicity in Rats
by Sarra Rafai, Alessandra Cimbalo and Lara Manyes
Foods 2025, 14(10), 1793; https://doi.org/10.3390/foods14101793 - 18 May 2025
Cited by 1 | Viewed by 727
Abstract
Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) are two of the most potent mycotoxins, recognized for their severe toxicity. In recent years, the consumption of bioactive substances has proven to be a valuable ally in combating their harmful effects on human health. For [...] Read more.
Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) are two of the most potent mycotoxins, recognized for their severe toxicity. In recent years, the consumption of bioactive substances has proven to be a valuable ally in combating their harmful effects on human health. For this purpose, this study evaluates the protective effects of fermented whey (FW) and pumpkin (P), as functional ingredients in bread, on duodenum tissue against sub-chronic toxicity induced by AFB1 and OTA. Nine groups of male and female Wistar rats (n = 5 per sex/group) were exposed to different combinations of AFB1, OTA, FW, and P for 28 days. The gene expression of apoptotic and antioxidant markers, including p53, Bax, Hmox1, NF-κB, and occludin, was measured by quantitative real-time PCR (RT-qPCR). AFB1 + OTA exposure led to an increased expression of p53 and NF-κB, with the downregulation of Bax and Hmox1. Occludin expression, which supports tight junction integrity, remained largely unaffected. Supplementation with FW and FW + P modulated gene expression favorably, offering protection against AFB1 and OTA toxicity. These bioactive components effectively mitigated oxidative stress and apoptosis in duodenal tissue. Notably, the results indicate that the protective effects of FW and P are not sex-dependent. These findings highlight the potential of FW and P as functional ingredients in combating the toxic effects of AFB1 and OTA in vivo. Full article
Show Figures

Figure 1

Back to TopTop