Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,430)

Search Parameters:
Keywords = nutritional alternatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1097 KiB  
Review
Natural Feed Additives in Sub-Saharan Africa: A Systematic Review of Efficiency and Sustainability in Ruminant Production
by Zonaxolo Ntsongota, Olusegun Oyebade Ikusika and Thando Conference Mpendulo
Ruminants 2025, 5(3), 36; https://doi.org/10.3390/ruminants5030036 (registering DOI) - 6 Aug 2025
Abstract
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed [...] Read more.
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed shortages, and climate-related stresses, all of which limit productivity and sustainability. Considering these challenges, the adoption of natural feed additives has emerged as a promising strategy to enhance animal performance, optimise nutrient utilisation, and mitigate environmental impacts, including the reduction of enteric methane emissions. This review underscores the significant potential of natural feed additives such as plant extracts, essential oils, probiotics, and mineral-based supplements such as fossil shell flour as sustainable alternatives to conventional growth promoters in ruminant production systems across the region. All available documented evidence on the topic from 2000 to 2024 was collated and synthesised through standardised methods of systematic review protocol—PRISMA. Out of 319 research papers downloaded, six were included and analysed directly or indirectly in this study. The results show that the addition of feed additives to ruminant diets in all the studies reviewed significantly (p < 0.05) improved growth parameters such as average daily growth (ADG), feed intake, and feed conversion ratio (FCR) compared to the control group. However, no significant (p > 0.05) effect was found on cold carcass weight (CCW), meat percentage, fat percentage, bone percentage, or intramuscular fat (IMF%) compared to the control. The available evidence indicates that these additives can provide tangible benefits, including improved growth performance, better feed efficiency, enhanced immune responses, and superior meat quality, while also supporting environmental sustainability by reducing nitrogen excretion and decreasing dependence on antimicrobial agents. Full article
Show Figures

Figure 1

41 pages, 3389 KiB  
Review
Fully Green Particles Loaded with Essential Oils as Phytobiotics: A Review on Preparation and Application in Animal Feed
by Maria Sokol, Ivan Gulayev, Margarita Chirkina, Maksim Klimenko, Olga Kamaeva, Nikita Yabbarov, Mariia Mollaeva and Elena Nikolskaya
Antibiotics 2025, 14(8), 803; https://doi.org/10.3390/antibiotics14080803 - 6 Aug 2025
Abstract
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the [...] Read more.
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the food chain, thereby diminishing the efficacy of antibiotics in treating bacterial infections. Current research explores the potential of essential oils from derived medicinal plants as alternative phytobiotics. This review examines modern encapsulation strategies that incorporate essential oils into natural-origin matrices to improve their stability and control their release both in vitro and in vivo. We discuss a range of encapsulation approaches utilizing polysaccharides, gums, proteins, and lipid-based carriers. This review highlights the increasing demand for antibiotic alternatives in animal nutrition driven by regulatory restrictions, and the potential benefits of essential oils in enhancing feed palatability and stabilizing the intestinal microbiome in monogastric animals and ruminants. Additionally, we address the economic viability and encapsulation efficiency of different matrix formulations. Full article
Show Figures

Figure 1

26 pages, 2459 KiB  
Article
Urban Agriculture for Post-Disaster Food Security: Quantifying the Contributions of Community Gardens
by Yanxin Liu, Victoria Chanse and Fabricio Chicca
Urban Sci. 2025, 9(8), 305; https://doi.org/10.3390/urbansci9080305 - 5 Aug 2025
Abstract
Wellington, New Zealand, is highly vulnerable to disaster-induced food security crises due to its geography and geological characteristics, which can disrupt transportation and isolate the city following disasters. Urban agriculture (UA) has been proposed as a potential alternative food source for post-disaster scenarios. [...] Read more.
Wellington, New Zealand, is highly vulnerable to disaster-induced food security crises due to its geography and geological characteristics, which can disrupt transportation and isolate the city following disasters. Urban agriculture (UA) has been proposed as a potential alternative food source for post-disaster scenarios. This study examined the potential of urban agriculture for enhancing post-disaster food security by calculating vegetable self-sufficiency rates. Specifically, it evaluated the capacity of current Wellington’s community gardens to meet post-disaster vegetable demand in terms of both weight and nutrient content. Data collection employed mixed methods with questionnaires, on-site observations and mapping, and collecting high-resolution aerial imagery. Garden yields were estimated using self-reported data supported by literature benchmarks, while cultivated areas were quantified through on-site mapping and aerial imagery analysis. Six post-disaster food demand scenarios were used based on different target populations to develop an understanding of the range of potential produce yields. Weight-based results show that community gardens currently supply only 0.42% of the vegetable demand for residents living within a five-minute walk. This rate increased to 2.07% when specifically targeting only vulnerable populations, and up to 10.41% when focusing on gardeners’ own households. However, at the city-wide level, the current capacity of community gardens to provide enough produce to feed people remained limited. Nutrient-based self-sufficiency was lower than weight-based results; however, nutrient intake is particularly critical for vulnerable populations after disasters, underscoring the greater challenge of ensuring adequate nutrition through current urban food production. Beyond self-sufficiency, this study also addressed the role of UA in promoting food diversity and acceptability, as well as its social and psychological benefits based on the questionnaires and on-site observations. The findings indicate that community gardens contribute meaningfully to post-disaster food security for gardeners and nearby residents, particularly for vulnerable groups with elevated nutritional needs. Despite the current limited capacity of community gardens to provide enough produce to feed residents, findings suggest that Wellington could enhance post-disaster food self-reliance by diversifying UA types and optimizing land-use to increase food production during and after a disaster. Realizing this potential will require strategic interventions, including supportive policies, a conducive social environment, and diversification—such as the including private yards—all aimed at improving food access, availability, and nutritional quality during crises. The primary limitation of this study is the lack of comprehensive data on urban agriculture in Wellington and the wider New Zealand context. Addressing this data gap should be a key focus for future research to enable more robust assessments and evidence-based planning. Full article
Show Figures

Figure 1

16 pages, 1994 KiB  
Article
Fall Webworm Host Plant Preferences Generate a Reduced Predation Enemy-Free Space in Its Interaction with Parasitoids
by Lina Pan, Wenfang Gao, Zhiqin Song, Xiaoyu Li, Yipeng Wei, Guangyan Qin, Yiping Hu, Zeyang Sun, Cuiqing Gao, Penghua Bai, Gengping Zhu, Wenjie Wang and Min Li
Insects 2025, 16(8), 804; https://doi.org/10.3390/insects16080804 - 4 Aug 2025
Abstract
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here [...] Read more.
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here we investigated whether the host plant preference of Hyphantria cunea correlates with the attractiveness of these plants to Chouioia cunea, a parasitoid wasp that serves as the primary natural enemy of H. cunea. We found Morus alba was the preferred host plant for female H. cunea. Although M. alba provided suboptimal nutritional value for H. cunea growth and development compared to other plants, it attracted fewer C. cunea relative to alternative host plants. Gas chromatography–mass spectrometry (GC–MS) coupled with gas chromatography–electroantennographic detection (GC-EAD) analysis identified six distinct compounds among the herbivore-induced plant volatiles (HIPVs) produced following H. cunea feeding. Notably, M. alba was the sole plant species that did not emit tridecane. These results suggest that H. cunea utilizes M. alba as a reduced predation enemy-free space, thereby minimizing parasitization by C. cunea. Our research emphasizes the importance of considering adaptive responses of herbivores within the context of multi-trophic relationships, rather than solely focusing on optimizing herbivore growth on the most nutritionally suitable plant host. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
Show Figures

Graphical abstract

20 pages, 753 KiB  
Article
Production of Vegan Ice Cream: Enrichment with Fermented Hazelnut Cake
by Levent Yurdaer Aydemir, Hande Demir, Zafer Erbay, Elif Kılıçarslan, Pelin Salum and Melike Beyza Ozdemir
Fermentation 2025, 11(8), 454; https://doi.org/10.3390/fermentation11080454 - 4 Aug 2025
Abstract
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing [...] Read more.
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing their physicochemical, functional, and sensory properties to conventional dairy ice cream (DIC). Solid-state fermentation (72 h, 30 °C) enhanced the cake’s bioactive properties, and ice creams were characterized for composition, texture, rheology, melting behavior, antioxidant activity, and enzyme inhibition pre- and post-in vitro digestion. The results indicate that FHIC had higher protein content (64.64% vs. 58.02% in HIC) and unique volatiles (e.g., benzaldehyde and 3-methyl-1-butanol). While DIC exhibited superior overrun (15.39% vs. 4.01–7.00% in vegan samples) and slower melting, FHIC demonstrated significantly higher post-digestion antioxidant activity (4.73 μmol TE/g DPPH vs. 1.44 in DIC) and angiotensin-converting enzyme (ACE) inhibition (4.85–7.42%). Sensory evaluation ranked DIC highest for overall acceptability, with FHIC perceived as polarizing due to pronounced flavors. Despite textural challenges, HIC and FHIC offered nutritional advantages, including 18–30% lower calories and enhanced bioactive compounds. This study highlights fermentation as a viable strategy to upcycle hazelnut byproducts into functional vegan ice creams, although the optimization of texture and flavor is needed for broader consumer acceptance. Full article
(This article belongs to the Topic Fermented Food: Health and Benefit)
Show Figures

Figure 1

14 pages, 276 KiB  
Article
Inclusion of Hydrolyzed Feather Meal in Diets for Giant River Prawn (Macrobrachium rosenbergii) During the Nursery Phase: Effects on Growth, Digestive Enzymes, and Antioxidant Status
by Eduardo Luis Cupertino Ballester, Angela Trocino, Cecília de Souza Valente, Marlise Mauerwerk, Milena Cia Retcheski, Luisa Helena Cazarolli, Caio Henrique do Nascimento Ferreira and Francesco Bordignon
Appl. Sci. 2025, 15(15), 8627; https://doi.org/10.3390/app15158627 (registering DOI) - 4 Aug 2025
Abstract
We evaluated the inclusion of hydrolyzed feather meal (HFM) as a partial replacement for fishmeal in diets for Macrobrachium rosenbergii post-larvae (PL) over a 32-day nursery feeding trial. Five experimental diets with increasing HFM levels (control, 1.5%, 3.0%, 4.5%, and 6.0%) were tested. [...] Read more.
We evaluated the inclusion of hydrolyzed feather meal (HFM) as a partial replacement for fishmeal in diets for Macrobrachium rosenbergii post-larvae (PL) over a 32-day nursery feeding trial. Five experimental diets with increasing HFM levels (control, 1.5%, 3.0%, 4.5%, and 6.0%) were tested. Survival rates ranged from 73.3 ± 5.44% to 83.3 ± 3.84% without significant differences among groups. Dietary HFM inclusion levels above 3.0% significantly improved prawn performance, including final weight (up to 2.18-fold higher than control), length (1.13-fold), antenna length (1.18-fold), biomass gain (2.14-fold), and feed conversion ratio (1.59-fold lower). Prawn-fed diets at 6.0% HFM showed the highest performance among all experimental groups. No significant effects were observed on antioxidant biomarkers or digestive enzymes in prawns hepatopancreas, which suggests no imbalance in the antioxidant system or impairment of digestive function. Likewise, carcass proximate composition remained stable across experimental groups. These findings suggest that HFM at 3.0–6.0% dietary inclusion levels is a potential alternative to fishmeal in nursery-phase diets for M. rosernbergii PL, promoting prawn growth and welfare and maintaining health and carcass quality. Notably, to the best of our knowledge, this is the first study demonstrating the potential effective use of HFM in feeding the nursery phase of M. rosernbergii. Full article
(This article belongs to the Section Agricultural Science and Technology)
18 pages, 914 KiB  
Review
Advances in Surgical Management of Malignant Gastric Outlet Obstruction
by Sang-Ho Jeong, Miyeong Park, Kyung Won Seo and Jae-Seok Min
Cancers 2025, 17(15), 2567; https://doi.org/10.3390/cancers17152567 - 4 Aug 2025
Viewed by 27
Abstract
Malignant gastric outlet obstruction (MGOO) is a serious complication arising from advanced gastric or pancreatic head cancer, significantly impairing patients’ quality of life by disrupting oral intake and inducing severe gastrointestinal symptoms. With benign causes such as peptic ulcer disease on the decline, [...] Read more.
Malignant gastric outlet obstruction (MGOO) is a serious complication arising from advanced gastric or pancreatic head cancer, significantly impairing patients’ quality of life by disrupting oral intake and inducing severe gastrointestinal symptoms. With benign causes such as peptic ulcer disease on the decline, malignancies now account for 50–80% of gastric outlet obstruction (GOO) cases globally. This review outlines the pathophysiology, evolving epidemiology, and treatment modalities for MGOO. Therapeutic approaches include conservative management, endoscopic stenting, surgical gastrojejunostomy (GJ), stomach partitioning gastrojejunostomy (SPGJ), and endoscopic ultrasound-guided gastroenterostomy (EUS-GE). While endoscopic stenting offers rapid symptom relief with minimal invasiveness, it has higher rates of re-obstruction. Surgical options like GJ and SPGJ provide more durable palliation, especially for patients with longer expected survival. SPGJ, a modified surgical technique, demonstrates reduced incidence of delayed gastric emptying and may improve postoperative oral intake and survival compared to conventional GJ. EUS-GE represents a promising, minimally invasive alternative that combines surgical durability with endoscopic efficiency, although long-term data remain limited. Treatment selection should consider patient performance status, tumor characteristics, prognosis, and institutional resources. This comprehensive review underscores the need for individualized, multidisciplinary decision-making to optimize symptom relief, nutritional status, and overall outcomes in patients with MGOO. Full article
(This article belongs to the Special Issue Advances in the Treatment of Upper Gastrointestinal Cancer)
Show Figures

Figure 1

15 pages, 251 KiB  
Review
Pica Syndromes and Iron Deficiency Anemia Treatment: A Mini Review
by Humza Mallick and Samir Dalia
Hemato 2025, 6(3), 26; https://doi.org/10.3390/hemato6030026 - 4 Aug 2025
Viewed by 46
Abstract
Background/Objectives: Pica, the compulsive ingestion of non-nutritive substances, has long been observed in patients with iron deficiency anemia (IDA). This behavior is particularly noted in adults, including pregnant women, and poses both diagnostic and management challenges. We conducted a review of studies [...] Read more.
Background/Objectives: Pica, the compulsive ingestion of non-nutritive substances, has long been observed in patients with iron deficiency anemia (IDA). This behavior is particularly noted in adults, including pregnant women, and poses both diagnostic and management challenges. We conducted a review of studies from the past decade to evaluate the epidemiology and nature of pica in adult IDA patients and the outcome of various treatment strategies on anemia and pica behaviors. Methods: We searched PubMed, Scopus, and Cochrane Library for peer-reviewed articles (including observational studies, clinical trials, and reviews) published in English between 2015 and 2025. Inclusion criteria targeted studies of adult populations with IDA that reported on pica prevalence, characteristics, or treatment outcomes. We also reviewed clinical guidelines and meta-analyses on IDA treatment in adults for recommended management approaches. Results: Pica was found to be a prevalent symptom among individuals with IDA, but was readily treatable with appropriate iron deficiency treatment. Among treatment options, both oral and parenteral iron supplementation were found to be effective in resolving iron deficiency and pica. Choice of treatment depends on tolerance to oral iron, speed of resolution required, and comorbid conditions. Conclusions: Pica is closely intertwined with IDA; our review highlighted the prevalence of pica among individuals with IDA, which serves as both a clinical clue to underlying anemia and a potential source of complications. Crucially, the treatment of IDA is also effective for pica. We recommend oral iron therapy on alternate-day dosing as first-line therapy to minimize side effects, alongside dietary optimization. If IDA and pica are resistant to oral iron supplementation or oral iron cannot be tolerated, parenteral iron therapy can be considered. Full article
(This article belongs to the Section Non Neoplastic Blood Disorders)
13 pages, 1057 KiB  
Article
Osmotic Pretreatment and Solar Drying of Eggplant in Tunisian Rural Areas: Assessing the Impact of Process Efficiency and Product Quality
by Sarra Jribi, Ismahen Essaidi, Ines Ben Rejeb, Raouia Ghanem, Mahmoud Elies Hamza and Faten Khamassi
Processes 2025, 13(8), 2442; https://doi.org/10.3390/pr13082442 - 1 Aug 2025
Viewed by 233
Abstract
The drying process plays a crucial role in enhancing the shelf life of food products by reducing moisture content. As climate change contributes to rising temperatures, alternative drying methods, such as solar drying, offer promising solutions for sustainable food preservation. This study investigates [...] Read more.
The drying process plays a crucial role in enhancing the shelf life of food products by reducing moisture content. As climate change contributes to rising temperatures, alternative drying methods, such as solar drying, offer promising solutions for sustainable food preservation. This study investigates the solar drying of eggplant (Solanum melongena L.) slices, with a focus on the effect of salting pretreatment on drying efficiency. Eggplant slices were subjected to salting pretreatment for partial moisture removal prior to drying. Drying kinetics were monitored to construct the characteristic drying curve. The dried eggplant slices were evaluated for their proximate composition and rehydration capacity, as well as textural and thermal properties. The results showed that salting pretreatment significantly enhanced the solar drying process by accelerating moisture removal. Notably, water activity (aw) decreased significantly from 0.978 to 0.554 for the control sample and to 0.534 for the saltedsample. Significant differences were observed between the dried and salted dried slices, particularly in rehydration capacity, which decreased following salting. Additionally, the salted dried samples showedreductions in protein, carbohydrate, and potassium contents. In contrast, ash content and hardness increased as a result ofosmotic pretreatment. These findings suggest that while dry salting pretreatment effectively reduces solar drying time, it may adversely affect several nutritional and textural properties. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

15 pages, 1391 KiB  
Article
Valorization of Food By-Products: Formulation and Evaluation of a Feed Complement for Broiler Chickens Based on Bonito Fish Meal and Única Potato Peel Flour
by Ashley Marianella Espinoza Davila and Rebeca Salvador-Reyes
Resources 2025, 14(8), 125; https://doi.org/10.3390/resources14080125 - 1 Aug 2025
Viewed by 227
Abstract
Restaurants and open markets generate considerable quantities of organic waste. Converting these residues into poultry feed ingredients offers a sustainable disposal route. This study aimed to evaluate the nutritional and sensory viability of a novel feed complement formulated from Bonito fish meal ( [...] Read more.
Restaurants and open markets generate considerable quantities of organic waste. Converting these residues into poultry feed ingredients offers a sustainable disposal route. This study aimed to evaluate the nutritional and sensory viability of a novel feed complement formulated from Bonito fish meal (Sarda chiliensis chiliensis) and Única potato peel flour (Solanum tuberosum L. cv. Única). This study was conducted in three phases: (i) production and nutritional characterization of the two by-product flours; (ii) formulation of a 48:52 (w/w) blend, incorporated into broiler diets at 15%, 30%, and 45% replacement levels over a 7-week trial divided into starter (3 weeks), grower (3 weeks), and finisher (1 week) phases; and (iii) assessment of growth performance (weight gain, final weight, and feed conversion ratio), followed by a sensory evaluation of the resulting meat using a Check-All-That-Apply (CATA) analysis. The Bonito fish meal exhibited 50.78% protein, while the Única potato peel flour was rich in carbohydrates (74.08%). The final body weights of broiler chickens ranged from 1872.1 to 1886.4 g across treatments, and the average feed conversion ratio across all groups was 0.65. Replacing up to 45% of commercial feed with the formulated complement did not significantly affect growth performance (p > 0.05). Sensory analysis revealed that meat from chickens receiving 15% and 45% substitution levels was preferred in terms of aroma and taste, whereas the control group was rated higher in appearance. These findings suggest that the formulated feed complement may represent a viable poultry-feed alternative with potential sensory and economic benefits, supporting future circular-economy strategies. Full article
Show Figures

Figure 1

25 pages, 1695 KiB  
Review
Bee Brood as a Food for Human Consumption: An Integrative Review of Phytochemical and Nutritional Composition
by Raquel P. F. Guiné, Sofia G. Florença, Maria João Barroca and Cristina A. Costa
Insects 2025, 16(8), 796; https://doi.org/10.3390/insects16080796 - 31 Jul 2025
Viewed by 418
Abstract
The utilisation of edible insects for human nutrition is a long-standing practice in many parts of the globe, and is being gradually introduced into countries without an entomophagic tradition as well. These unconventional sources of protein of animal origin have arisen as a [...] Read more.
The utilisation of edible insects for human nutrition is a long-standing practice in many parts of the globe, and is being gradually introduced into countries without an entomophagic tradition as well. These unconventional sources of protein of animal origin have arisen as a sustainable alternative to other animal protein sources, such as meat. This review intends to present the compilation of data in the scientific literature on the chemical composition and nutritional value of the bee brood of A. mellifera species and subspecies as edible foods. For this, a comprehensive search of the scientific literature was carried out using the databases ScienceDirect, Scopus, Pub-Med, BOn, and SciELO. Appropriate keywords were used for the search to reach the research works that addressed the topics of the review. The results showed that bee brood has considerable quantities of protein, fat and carbohydrates. The most abundant amino acids are leucine and lysine (these two being essential amino acids) and aspartic acid, glutamic acid, and proline (these three being non-essential amino acids). As for the fatty acids, bee broods contain approximately equal fractions of saturated and monounsaturated fatty acids, while the polyunsaturated fatty acids are negligible. The dietary minerals present in higher quantities are potassium, phosphorus, and magnesium, and the most abundant vitamins are vitamin C and niacin; choline is also present, although it is not a true vitamin. Although bee brood from A. mellifera has potential for human consumption as a nutrient-rich food, there are still many aspects that need to be further studied in the future, such as safety and hazards linked to possible regular consumption. Full article
(This article belongs to the Special Issue Insects: A Unique Bioresource for Agriculture and Humanity)
Show Figures

Figure 1

20 pages, 4117 KiB  
Review
Analytical Strategies for Tocopherols in Vegetable Oils: Advances in Extraction and Detection
by Yingfei Liu, Mengyuan Lv, Yuyang Wang, Jinchao Wei and Di Chen
Pharmaceuticals 2025, 18(8), 1137; https://doi.org/10.3390/ph18081137 - 30 Jul 2025
Viewed by 198
Abstract
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud [...] Read more.
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud and regulatory demands. Analytical challenges, such as matrix effects in complex oils and the cost trade-offs of green extraction methods, complicate these processes. This review examines recent advances in tocopherol analysis, focusing on extraction and detection techniques. Green methods like supercritical fluid extraction and deep eutectic solvents offer selectivity and sustainability, though they are costlier than traditional approaches. On the analytical side, hyphenated techniques such as supercritical fluid chromatography-mass spectrometry (SFC-MS) achieve detection limits as low as 0.05 ng/mL, improving sensitivity in complex matrices. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides robust analysis, while spectroscopic and electrochemical sensors offer rapid, cost-effective alternatives for high-throughput screening. The integration of chemometric tools and miniaturized systems supports scalable workflows. Looking ahead, the incorporation of Artificial Intelligence (AI) in oil authentication has the potential to enhance the accuracy and efficiency of future analyses. These innovations could improve our understanding of tocopherol compositions in vegetable oils, supporting more reliable assessments of nutritional value and product authenticity. Full article
Show Figures

Graphical abstract

18 pages, 7224 KiB  
Article
Exploring Sorghum Flour as a Sustainable Ingredient in Gluten-Free Cookie Production
by Simona Bukonja, Jelena Tomić, Mladenka Pestorić, Nikola Maravić, Saša Despotović, Zorica Tomičić, Biljana Kiprovski and Nebojša Đ. Pantelić
Foods 2025, 14(15), 2668; https://doi.org/10.3390/foods14152668 - 29 Jul 2025
Viewed by 198
Abstract
In this study, whole grain sorghum flour was used to partially substitute the gluten-free flour blend in cookie formulation at 20% (C20) and 40% (C40) replacement levels. The goal was to explore its potential to improve the nutritional value and sensory appeal of [...] Read more.
In this study, whole grain sorghum flour was used to partially substitute the gluten-free flour blend in cookie formulation at 20% (C20) and 40% (C40) replacement levels. The goal was to explore its potential to improve the nutritional value and sensory appeal of cookies relative to conventional and commercially available gluten-free alternatives. Nutritional analysis revealed that cookies with added sorghum flour showed increased levels of protein, ash, and polyphenolic compounds, while maintaining favorable macronutrient profiles. Notably, several bioactive compounds, such as gallic acid, caffeic acid, and apigenin, were detected exclusively in sorghum-containing samples, suggesting enhanced functional properties. Despite these compositional changes, textural measurements showed no significant differences in hardness or fracturability compared with the control. Sensory profiling using the Rate-All-That-Apply (RATA) method demonstrated that both samples (C20 and C40) achieved balanced results in terms of aroma as well as texture and were generally well accepted by the panel. The results indicate that moderate inclusion of sorghum flour (20% and 40%) can improve the sensory and nutritional profiles of gluten-free cookies without compromising product acceptability. Sorghum thus offers a promising pathway for the development of high-quality, health-oriented, gluten-free bakery products. Full article
(This article belongs to the Special Issue Formulation and Nutritional Aspects of Cereal-Based Functional Foods)
Show Figures

Figure 1

22 pages, 3083 KiB  
Article
Evaluating the Effect of Thermal Treatment on Phenolic Compounds in Functional Flours Using Vis–NIR–SWIR Spectroscopy: A Machine Learning Approach
by Achilleas Panagiotis Zalidis, Nikolaos Tsakiridis, George Zalidis, Ioannis Mourtzinos and Konstantinos Gkatzionis
Foods 2025, 14(15), 2663; https://doi.org/10.3390/foods14152663 - 29 Jul 2025
Viewed by 355
Abstract
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) [...] Read more.
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) spectroscopy (350–2500 nm), integrated with machine learning (ML) algorithms. Random Forest models were employed to classify samples based on flour type, baking temperature, and phenolic concentration. The full spectral range yielded high classification accuracy (0.98, 0.98, and 0.99, respectively), and an explainability framework revealed the wavelengths most relevant for each class. To address concerns regarding color as a confounding factor, a targeted spectral refinement was implemented by sequentially excluding the visible region. Models trained on the 1000–2500 nm and 1400–2500 nm ranges showed minor reductions in accuracy, suggesting that classification is not solely driven by visible characteristics. Results indicated that legume and wheat flours retain higher total phenolic content (TPC) under mild thermal conditions, whereas grape seed flour (GSF) and olive stone flour (OSF) exhibited notable thermal stability of TPC even at elevated temperatures. These first findings suggest that the proposed non-destructive spectroscopic approach enables rapid classification and quality assessment of functional flours, supporting future applications in precision food formulation and quality control. Full article
Show Figures

Figure 1

18 pages, 2105 KiB  
Communication
Morphological and Nutritional Characterization of the Native Sunflower as a Potential Plant Resource for the Sierra Gorda of Querétaro
by Ana Patricia Arenas-Salazar, Mark Schoor, María Isabel Nieto-Ramírez, Juan Fernando García-Trejo, Irineo Torres-Pacheco, Ramon Gerardo Guevara-González, Humberto Aguirre-Becerra and Ana Angélica Feregrino-Pérez
Resources 2025, 14(8), 121; https://doi.org/10.3390/resources14080121 - 29 Jul 2025
Viewed by 387
Abstract
Problems with primary food production (food insecurity, malnutrition, and socioeconomic problems) persist throughout the world, especially in rural areas. Despite these problems, the available natural food resources are underutilized; residents are no longer interested in growing and consuming foods native to their region. [...] Read more.
Problems with primary food production (food insecurity, malnutrition, and socioeconomic problems) persist throughout the world, especially in rural areas. Despite these problems, the available natural food resources are underutilized; residents are no longer interested in growing and consuming foods native to their region. In this regard, this study carries out the morphological and nutritional characterization of a native sunflower (Helianthus annuus) grown in the Sierra Gorda, Querétaro, Mexico, known as “Maíz de teja”, to implement a sustainable monoculture production system. The results were compared with some other sunflower varieties and other oilseeds grown and consumed in the country. This study determined that this native sunflower seed is a good source of linoleic acid (84.98%) and zinc (17.2 mg/100 g). It is an alternative protein source (18.6 g/100 g), comparable to foods of animal origin. It also provides a good amount of fiber (22.6 g/100 g) and bioactive compounds (total phenolic compounds (TPC) 3.434 ± 0.03 mg/g and total flavonoids (TFC) 0.67 ± 0.02 mg/g), and seed yield 341.13 kg/ha. This study demonstrated a valuable nutritional profile of this native seed and its potential for cultivation. Further research is needed to improve agricultural management to contribute to food security and improve the socioeconomic status of the community. Full article
Show Figures

Figure 1

Back to TopTop