Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,117)

Search Parameters:
Keywords = nutrition-related disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 208 KiB  
Article
Effect of Technological Process and Temperature on Phospholipids in Buffalo Milk, Whey and Buttermilk
by Marika Di Paolo, Valeria Pelizzola, Lucia De Luca, Loriana Casalino, Giulia Polizzi, Milena Povolo and Raffaele Marrone
Foods 2025, 14(15), 2756; https://doi.org/10.3390/foods14152756 - 7 Aug 2025
Abstract
Phospholipids (PLs) are a group of biomolecules found in the milk fat globule membranes (MFGMs). Recently, MFGM phospholipids have attracted increasing amounts of attention due to their unique composition, stability, and potential health benefits, including protective effects against Alzheimer’s disease, hypercholesterolemia, and certain [...] Read more.
Phospholipids (PLs) are a group of biomolecules found in the milk fat globule membranes (MFGMs). Recently, MFGM phospholipids have attracted increasing amounts of attention due to their unique composition, stability, and potential health benefits, including protective effects against Alzheimer’s disease, hypercholesterolemia, and certain types of cancer. Although buffalo milk is the second most commonly produced milk and has high nutritional value, few studies have focused on the properties of buffalo MFGM. This study investigates the PLs composition of buffalo milk and related dairy by-products (whey and buttermilk). Milk and whey were collected from two dairy farms (A—small and B—big) to produce mozzarella buffalo cheese (high-pasteurization milk for GDO production and low for local); while buttermilk was obtained from a butter-making farm. Phospholipids were purified by a solid-phase extraction method and then identified by high-performance liquid chromatography with an evaporative light-scattering detector (HPLC/ELSD). Five classes of phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and sphingomyelin (SM)] were identified. The thermal process of milk did not significantly affect the PLs milk. However, local whey showed a higher concentration of total PLs than GDO, which was mainly represented by PE followed by PC content. Farm A exhibited higher PL content than B, particularly with a greater concentration of SM. Buttermilk showed the lowest PLs content. These findings offer valuable insights for the dairy industry and related applications, contributing to the valorization of buffalo dairy products. Full article
(This article belongs to the Section Food Engineering and Technology)
22 pages, 5809 KiB  
Article
Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity
by Jun Zhang, Xin Li, Peiyao Pei, Peiya Wang, Qi Guo, Hui Yang and Xian Xue
Agronomy 2025, 15(8), 1879; https://doi.org/10.3390/agronomy15081879 - 3 Aug 2025
Viewed by 181
Abstract
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and [...] Read more.
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and preventing and adjuvantly treating related diseases. However, the cultivation of G. uralensis is easily restricted by adverse soil conditions in these regions, characterized by high salinity, high alkalinity, and nutrient deficiency. This study investigated the impacts of four multistrain microbial inoculants (Pa, Pb, Pc, Pd) on the growth performance and bioactive compound accumulation of G. uralensis in moderately saline–sodic soil. The aim was to screen the most beneficial inoculant from these strains, which were isolated from the rhizosphere of plants in moderately saline–alkaline soils of the Hexi Corridor and possess native advantages with excellent adaptability to arid environments. The results showed that inoculant Pc, comprising Pseudomonas silesiensis, Arthrobacter sp. GCG3, and Rhizobium sp. DG1, exhibited superior performance: it induced a 0.86-unit reduction in lateral root number relative to the control, while promoting significant increases in single-plant dry weight (101.70%), single-plant liquiritin (177.93%), single-plant glycyrrhizic acid (106.10%), and single-plant total flavonoids (107.64%). Application of the composite microbial inoculant Pc induced no significant changes in the pH and soluble salt content of G. uralensis rhizospheric soils. However, it promoted root utilization of soil organic matter and nitrate, while significantly increasing the contents of available potassium and available phosphorus in the rhizosphere. High-throughput sequencing revealed that Pc reorganized the rhizospheric microbial communities of G. uralensis, inducing pronounced shifts in the relative abundances of rhizospheric bacteria and fungi, leading to significant enrichment of target bacterial genera (Arthrobacter, Pseudomonas, Rhizobium), concomitant suppression of pathogenic fungi, and proliferation of beneficial fungi (Mortierella, Cladosporium). Correlation analyses showed that these microbial shifts were linked to improved plant nutrition and secondary metabolite biosynthesis. This study highlights Pc as a sustainable strategy to enhance G. uralensis yield and medicinal quality in saline–alkali ecosystems by mediating microbe–plant–nutrient interactions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

19 pages, 300 KiB  
Review
Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance
by Yan Sun, Caiyun Li and Aejin Lee
Appl. Sci. 2025, 15(15), 8574; https://doi.org/10.3390/app15158574 - 1 Aug 2025
Viewed by 296
Abstract
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination [...] Read more.
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination and their relevance to metabolic health. We examined recent in vitro, animal, and human studies focusing on how germination enhances the nutritional and functional properties of grains, particularly through the synthesis of compounds such as γ-aminobutyric acid, polyphenols, flavonoids, and antioxidants, while reducing anti-nutritional factors. These bioactive compounds have been shown to modulate metabolic and inflammatory pathways by inhibiting carbohydrate-digesting enzymes, suppressing pro-inflammatory cytokines, improving redox balance, and influencing gut microbiota composition. Collectively, these effects contribute to improved insulin sensitivity and glycemic control. The findings suggest that sprouted grains serve not only as functional food ingredients but also as accessible dietary tools for preventing or alleviating IR. Their role in delivering multiple bioactive molecules through a simple, environmentally friendly process highlights their promise in developing future nutrition-based strategies for metabolic disease prevention. Full article
(This article belongs to the Special Issue New Insights into Bioactive Compounds)
30 pages, 1428 KiB  
Review
The Oral–Gut Microbiota Axis Across the Lifespan: New Insights on a Forgotten Interaction
by Domenico Azzolino, Margherita Carnevale-Schianca, Luigi Santacroce, Marica Colella, Alessia Felicetti, Leonardo Terranova, Roberto Carlos Castrejón-Pérez, Franklin Garcia-Godoy, Tiziano Lucchi and Pier Carmine Passarelli
Nutrients 2025, 17(15), 2538; https://doi.org/10.3390/nu17152538 - 1 Aug 2025
Viewed by 243
Abstract
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic [...] Read more.
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic health. The aim of this review is therefore to provide an overview of the interactions between oral and gut microbiota, and the influence of diet and related metabolites on this axis. Pathogenic oral bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, can migrate to the gut through the enteral route, particularly in individuals with weakened gastrointestinal defenses or conditions like gastroesophageal reflux disease, contributing to disorders like inflammatory bowel disease and colorectal cancer. Bile acids, altered by gut microbes, also play a significant role in modulating these microbiota interactions and inflammatory responses. Oral bacteria can also spread via the bloodstream, promoting systemic inflammation and worsening some conditions like cardiovascular disease. Translocation of microorganisms can also take place from the gut to the oral cavity through fecal–oral transmission, especially within poor sanitary conditions. Some metabolites including short-chain fatty acids, trimethylamine N-oxide, indole and its derivatives, bile acids, and lipopolysaccharides produced by both oral and gut microbes seem to play central roles in mediating oral–gut interactions. The complex interplay between oral and gut microbiota underscores their crucial role in maintaining systemic health and highlights the potential consequences of dysbiosis at both the oral and gastrointestinal level. Some dietary patterns and nutritional compounds including probiotics and prebiotics seem to exert beneficial effects both on oral and gut microbiota eubiosis. A better understanding of these microbial interactions could therefore pave the way for the prevention and management of systemic conditions, improving overall health outcomes. Full article
(This article belongs to the Special Issue Exploring the Lifespan Dynamics of Oral–Gut Microbiota Interactions)
Show Figures

Figure 1

18 pages, 1894 KiB  
Article
Are Calculated Immune Markers with or Without Comorbidities Good Predictors of Colorectal Cancer Survival? The Results of a Longitudinal Study
by Zoltan Herold, Magdolna Herold, Gyongyver Szentmartoni, Reka Szalasy, Julia Lohinszky, Aniko Somogyi, Attila Marcell Szasz and Magdolna Dank
Med. Sci. 2025, 13(3), 108; https://doi.org/10.3390/medsci13030108 - 1 Aug 2025
Viewed by 136
Abstract
Background/Objectives: Although numerous prognostic biomarkers have been proposed for colorectal cancer (CRC), their longitudinal evaluation remains limited. The aim of this study was to investigate longitudinal changes in biomarkers calculated from routinely used laboratory markers and their relationships to common chronic diseases (comorbidities). [...] Read more.
Background/Objectives: Although numerous prognostic biomarkers have been proposed for colorectal cancer (CRC), their longitudinal evaluation remains limited. The aim of this study was to investigate longitudinal changes in biomarkers calculated from routinely used laboratory markers and their relationships to common chronic diseases (comorbidities). Methods: A retrospective longitudinal observational study was completed with the inclusion of 817 CRC patients and a total of 4542 measurement points. Pan-immune inflammation value (PIV), prognostic nutritional index (PNI), and systemic immune-inflammation index (SII) were calculated based on complete blood count and albumin measurement data. Results: Longitudinal data analyses confirmed the different values and slopes of the parameters tested at the different endpoints. Survivors had the lowest and most constant PIVs and SII values, and the highest and most slowly decreasing PNI values. Those patients with non-cancerous death had similar values to the previous cohort, but an increase/decrease occurred towards the death event. Patients with CRC-related death had significantly higher PIVs and SII values and significantly lower PNI values (p < 0.0001), and a significant increase/decrease was observed at the early observational periods. The presence of lymph node and/or distant metastases, adjuvant chemotherapy, and hypertension significantly affected PIVs and SII and/or PNI values. The changes in PIVs and SII and PNI values toward pathological values are poor prognostic signs (p < 0.0001). Conclusions: Each of the three calculated markers demonstrates suitability for longitudinal patient follow-up, and their pathological alterations over time serve as valuable prognostic indicators. They may also be useful to detect certain clinicopathological parameters early. Full article
(This article belongs to the Section Cancer and Cancer-Related Research)
Show Figures

Figure 1

19 pages, 1889 KiB  
Article
Infrared Thermographic Signal Analysis of Bioactive Edible Oils Using CNNs for Quality Assessment
by Danilo Pratticò and Filippo Laganà
Signals 2025, 6(3), 38; https://doi.org/10.3390/signals6030038 - 1 Aug 2025
Viewed by 190
Abstract
Nutrition plays a fundamental role in promoting health and preventing chronic diseases, with bioactive food components offering a therapeutic potential in biomedical applications. Among these, edible oils are recognised for their functional properties, which contribute to disease prevention and metabolic regulation. The proposed [...] Read more.
Nutrition plays a fundamental role in promoting health and preventing chronic diseases, with bioactive food components offering a therapeutic potential in biomedical applications. Among these, edible oils are recognised for their functional properties, which contribute to disease prevention and metabolic regulation. The proposed study aims to evaluate the quality of four bioactive oils (olive oil, sunflower oil, tomato seed oil, and pumpkin seed oil) by analysing their thermal behaviour through infrared (IR) imaging. The study designed a customised electronic system to acquire thermographic signals under controlled temperature and humidity conditions. The acquisition system was used to extract thermal data. Analysis of the acquired thermal signals revealed characteristic heat absorption profiles used to infer differences in oil properties related to stability and degradation potential. A hybrid deep learning model that integrates Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) units was used to classify and differentiate the oils based on stability, thermal reactivity, and potential health benefits. A signal analysis showed that the AI-based method improves both the accuracy (achieving an F1-score of 93.66%) and the repeatability of quality assessments, providing a non-invasive and intelligent framework for the validation and traceability of nutritional compounds. Full article
Show Figures

Figure 1

15 pages, 524 KiB  
Systematic Review
Association Between Maternal Diet and Frequency of Micronuclei in Mothers and Newborns: A Systematic Review
by Anny Cristine de Araújo, Priscila Kelly da Silva Bezerra do Nascimento, Marília Cristina Santos de Medeiros, Raul Hernandes Bortolin, Ricardo Ney Cobucci and Adriana Augusto de Rezende
Nutrients 2025, 17(15), 2535; https://doi.org/10.3390/nu17152535 - 1 Aug 2025
Viewed by 224
Abstract
Background/Objectives: The effect of diet on maternal and infant genetic levels has been reported in the literature. Diet-associated DNA damage, such as the presence of micronuclei (MN), may be related to an increased risk of developing chronic diseases such as cancer. There is [...] Read more.
Background/Objectives: The effect of diet on maternal and infant genetic levels has been reported in the literature. Diet-associated DNA damage, such as the presence of micronuclei (MN), may be related to an increased risk of developing chronic diseases such as cancer. There is particular concern regarding this damage during pregnancy, as it may affect the newborn (NB). Thus, this review aims to summarize the primary evidence of the impact of diet on the frequency of MN in the mother–infant population. Methods: Five databases (PubMed, Embase, Web of Science, Scopus, and ScienceDirect) were used to search for observational studies. Google Scholar and manual searching were required to perform the “gray literature” search. Results: The search strategy retrieved 1418 records. Of these, 13 were read in full and 5 were included in the review. Most studies were of the cohort type (n = 4) and were carried out in the European region. A total of 875 pregnant women and 238 newborns were evaluated. Despite insufficient evidence to confirm that diet changes the frequency of MN, the included studies found possible effects from the consumption of fried red meat and processed meats and the adequate consumption of vegetables and polyunsaturated fats. Conclusions: Future research is needed in order to understand the effects of diet on genetic stability and to obtain evidence to help plan public policies on food and nutrition or reinforce protective dietary patterns for this and future generations. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Graphical abstract

18 pages, 1782 KiB  
Review
Nutrition and Micronutrient Interactions in Autoimmune Thyroid Disorders: Implications for Cardiovascular Health
by Michał Mazur, Magdalena Szymańska, Agnieszka Malik, Wojciech Szlasa and Joanna Popiołek-Kalisz
Pathophysiology 2025, 32(3), 37; https://doi.org/10.3390/pathophysiology32030037 - 1 Aug 2025
Viewed by 231
Abstract
Thyroid hormones play a crucial role in regulating metabolism and cardiovascular function, with even mild dysfunction—such as subclinical hypothyroidism—negatively impacting heart health. While previous studies have confirmed the effects of iodine, selenium, and vitamin D on thyroid regulation and inflammation, the combined role [...] Read more.
Thyroid hormones play a crucial role in regulating metabolism and cardiovascular function, with even mild dysfunction—such as subclinical hypothyroidism—negatively impacting heart health. While previous studies have confirmed the effects of iodine, selenium, and vitamin D on thyroid regulation and inflammation, the combined role of these nutrients in reducing cardiovascular disease (CVD) risk in autoimmune thyroid disorders remains insufficiently understood. This review explores the influence of specific micronutrients—including selenium, iodine, and zinc—and dietary patterns, particularly the Mediterranean diet, on the pathophysiology of hypothyroidism and Hashimoto’s thyroiditis. We introduce a novel framework that integrates emerging data on sex-specific micronutrient interactions and nutritional immunomodulation. Unlike the existing literature, this review introduces original hypotheses related to sex-specific nutritional immunomodulation and proposes a novel framework for micronutrient-driven dietary intervention in Hashimoto’s thyroiditis. Full article
(This article belongs to the Section Metabolic Disorders)
Show Figures

Graphical abstract

25 pages, 7131 KiB  
Article
Spatiotemporal Patterns of Non-Communicable Disease Mortality in the Metropolitan Area of the Valley of Mexico, 2000–2019
by Constantino González-Salazar, Kathia Gasca-Gómez and Omar Cordero-Saldierna
Diseases 2025, 13(8), 241; https://doi.org/10.3390/diseases13080241 - 1 Aug 2025
Viewed by 324
Abstract
Background: Non-communicable diseases (NCDs) are a leading cause of mortality globally, contributing significantly to the burden on healthcare systems. Understanding the spatiotemporal patterns of NCD mortality is crucial for identifying vulnerable populations and regions at high risk. Objectives: Here, we evaluated the spatiotemporal [...] Read more.
Background: Non-communicable diseases (NCDs) are a leading cause of mortality globally, contributing significantly to the burden on healthcare systems. Understanding the spatiotemporal patterns of NCD mortality is crucial for identifying vulnerable populations and regions at high risk. Objectives: Here, we evaluated the spatiotemporal patterns of NCD mortality in the Metropolitan Area of the Valley of Mexico (MAVM) from 2000 to 2019 for five International Classification of Diseases chapters (4, 5, 6, 9, and 10) at two spatial scales: the municipal level and metropolitan region. Methods: Mortality rates were calculated for the total population and stratified by sex and age groups at both spatial scales. In addition, the relative risk (RR) of mortality was estimated to identify vulnerable population groups and regions with a high risk of mortality, using women and the 25–34 age group as reference categories for population-level analysis, and the overall MAVM mortality rate as the reference for municipal-level analysis. Results: Mortality trends showed that circulatory-system diseases (Chapter 9) are emerging as a concerning health issue, with 45 municipalities showing increasing mortality trends, especially among older adults. Respiratory-system diseases (Chapter 10), mental and behavioral disorders (Chapter 5) and nervous-system diseases (Chapter 6) predominantly did not exhibit a consistent general mortality trend. However, upon disaggregating by sex and age groups, specific negative or positive trends emerged at the municipal level for some of these chapters or subgroups. Endocrine, nutritional, and metabolic diseases (Chapter 4) showed a complex pattern, with some age groups presenting increasing mortality trends, and 52 municipalities showing increasing trends overall. The RR showed men and older age groups (≥35 years) exhibiting higher mortality risks. The temporal trend of RR allowed us to identify spatial mortality hotspots mainly in chapters related to circulatory, endocrine, and respiratory diseases, forming four geographical clusters in Mexico City that show persistent high risk of mortality. Conclusions: The spatiotemporal analysis highlights municipalities and vulnerable populations with a consistently elevated mortality risk. These findings emphasize the need for monitoring NCD mortality patterns at both the municipal and metropolitan levels to address disparities and guide the implementation of health policies aimed at reducing mortality risk in vulnerable populations. Full article
Show Figures

Figure 1

46 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 196
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

11 pages, 286 KiB  
Article
Beyond the Malnutrition Screening Tool: Assessing Hand Grip Strength and Gastrointestinal Symptoms for Malnutrition Prediction in Outpatients with Chronic Kidney Disease Not on Kidney Replacement Therapy
by Maya Young, Jessica Dawson, Ivor J. Katz, Kylie Turner and Maria Chan
Nutrients 2025, 17(15), 2471; https://doi.org/10.3390/nu17152471 - 29 Jul 2025
Viewed by 211
Abstract
Background: The Malnutrition Screening Tool (MST) is commonly used to identify malnutrition risk; however it has demonstrated poor sensitivity to detect malnutrition in inpatients with chronic kidney disease (CKD) and kidney replacement therapy (KRT) populations. Gastrointestinal symptoms, such as poor appetite, may [...] Read more.
Background: The Malnutrition Screening Tool (MST) is commonly used to identify malnutrition risk; however it has demonstrated poor sensitivity to detect malnutrition in inpatients with chronic kidney disease (CKD) and kidney replacement therapy (KRT) populations. Gastrointestinal symptoms, such as poor appetite, may better detect malnutrition. The accuracy of MST or other nutrition-related parameters to detect malnutrition in ambulatory patients with CKD stages 4–5 without KRT has not been evaluated. Methods: A single site retrospective audit of outpatient records from May 2020 to March 2025 was conducted. Patients with eGFR < 25 mL/min/1.73 m2 without KRT who had both MST and a 7-point Subjective Global Assessment (SGA) within 7 days were included. Sensitivity, specificity, and ROC-AUC analyses compared nutritional parameters against SGA-defined malnutrition. Nutritional parameters tested included MST, hand grip strength, upper gastrointestinal symptom burden, poor appetite and a combination of some of these parameters. Results: Among 231 patients (68.8% male, median age 69 years, median eGFR 15), 29.9% were at risk of malnutrition (MST ≥ 2) and 33.8% malnourished (SGA ≤ 5). All potential screening tools had AUC ranging from 0.604 to 0.710, implying a poor-to-moderate discriminator ability to detect malnutrition. Combining HGS ≤ 29.5 kg or MST ≥2 demonstrated high sensitivity (95.5%) and negative predictive value (93.3%), but low specificity (33.3%) for detecting malnutrition, indicating this approach is effective for ruling out malnutrition but may over-identify at-risk individuals. Conclusions: MST and other tested tools showed limited overall accuracy to identify malnutrition. Using combined nutritional markers of HGS or MST score was the most sensitive tool for detecting malnutrition in this advanced CKD without KRT population. Full article
Show Figures

Figure 1

31 pages, 6501 KiB  
Review
From Hormones to Harvests: A Pathway to Strengthening Plant Resilience for Achieving Sustainable Development Goals
by Dipayan Das, Hamdy Kashtoh, Jibanjyoti Panda, Sarvesh Rustagi, Yugal Kishore Mohanta, Niraj Singh and Kwang-Hyun Baek
Plants 2025, 14(15), 2322; https://doi.org/10.3390/plants14152322 - 27 Jul 2025
Viewed by 1224
Abstract
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. [...] Read more.
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. Conventional approaches, including traditional breeding procedures, often cannot handle the complex and simultaneous effects of biotic pressures such as pest infestations, disease attacks, and nutritional imbalances, as well as abiotic stresses including heat, salt, drought, and heavy metal toxicity. Applying phytohormonal approaches, particularly those involving hormonal crosstalk, presents a viable way to increase crop resilience in this context. Abscisic acid (ABA), gibberellins (GAs), auxin, cytokinins, salicylic acid (SA), jasmonic acid (JA), ethylene, and GA are among the plant hormones that control plant stress responses. In order to precisely respond to a range of environmental stimuli, these hormones allow plants to control gene expression, signal transduction, and physiological adaptation through intricate networks of antagonistic and constructive interactions. This review focuses on how the principal hormonal signaling pathways (in particular, ABA-ET, ABA-JA, JA-SA, and ABA-auxin) intricately interact and how they affect the plant stress response. For example, ABA-driven drought tolerance controls immunological responses and stomatal behavior through antagonistic interactions with ET and SA, while using SnRK2 kinases to activate genes that react to stress. Similarly, the transcription factor MYC2 is an essential node in ABA–JA crosstalk and mediates the integration of defense and drought signals. Plants’ complex hormonal crosstalk networks are an example of a precisely calibrated regulatory system that strikes a balance between growth and abiotic stress adaptation. ABA, JA, SA, ethylene, auxin, cytokinin, GA, and BR are examples of central nodes that interact dynamically and context-specifically to modify signal transduction, rewire gene expression, and change physiological outcomes. To engineer stress-resilient crops in the face of shifting environmental challenges, a systems-level view of these pathways is provided by a combination of enrichment analyses and STRING-based interaction mapping. These hormonal interactions are directly related to the United Nations Sustainable Development Goals (SDGs), particularly SDGs 2 (Zero Hunger), 12 (Responsible Consumption and Production), and 13 (Climate Action). This review emphasizes the potential of biotechnologies to use hormone signaling to improve agricultural performance and sustainability by uncovering the molecular foundations of hormonal crosstalk. Increasing our understanding of these pathways presents a strategic opportunity to increase crop resilience, reduce environmental degradation, and secure food systems in the face of increasing climate unpredictability. Full article
Show Figures

Figure 1

18 pages, 1257 KiB  
Article
Analysis of the Recurrence of Adverse Drug Reactions in Pediatric Patients with Epilepsy
by Ernestina Hernández García, Brenda Lambert Lamazares, Gisela Gómez-Lira, Julieta Griselda Mendoza-Torreblanca, Pamela Duke Lomeli, Yessica López Flores, Laura Elena Rangel Escobar, Eréndira Mejía Aranguré, Silvia Ruiz-Velasco Acosta and Lizbeth Naranjo Albarrán
Pharmaceuticals 2025, 18(8), 1116; https://doi.org/10.3390/ph18081116 - 26 Jul 2025
Viewed by 268
Abstract
Epilepsy is a chronic neurological disease with a relatively high incidence in the pediatric population. Anti-seizure medication (ASM) may cause adverse drug reactions (ADRs), which may occur repeatedly. Objective: This study aimed to analyze the recurrence of ADRs caused by ASMs over a [...] Read more.
Epilepsy is a chronic neurological disease with a relatively high incidence in the pediatric population. Anti-seizure medication (ASM) may cause adverse drug reactions (ADRs), which may occur repeatedly. Objective: This study aimed to analyze the recurrence of ADRs caused by ASMs over a period of 122 months in hospitalized Mexican pediatric epilepsy patients. The patients were under monotherapy or polytherapy treatment, with valproic acid (VPA), phenytoin (PHT), and levetiracetam (LEV), among others. A total of 313 patients met the inclusion criteria: 211 experienced ADRs, whereas 102 did not. Patient sex, age, seizure type, nutritional status and related drugs were considered explanatory variables. Methods: Four statistical models were used to analyze recurrent events that were defined as “one or more ADRs occurred on a single day”, considering both the classification of ADR seriousness and the ASM causing the ADR. Results: A total of 499 recurrence events were identified. The recurrence risk was significantly greater among younger patients for both nonsevere and severe ADRs and among those with focal seizures for nonsevere ADRs. Interestingly, malnutrition was negatively associated with the risk of nonsevere ADRs, and obesity was positively associated with the risk of severe ADRs. Finally, LEV was associated with a significantly greater risk of causing nonsevere ADRs than VPA. However, LEV significantly reduced the risk of severe ADRs compared with VPA, and PHT increased the risk in comparison with VPA. In conclusion, this study offers a robust clinical tool to predict risk factors for the presence and recurrence of ASM-ADRs in pediatric patients with epilepsy. Full article
Show Figures

Graphical abstract

3 pages, 160 KiB  
Editorial
Food Bioactive for Gut-Metabolic Axis Regulation and Microbiota Modulation
by Xiaoyan Liu, Tianjiao Wang, Ziwei Liu and Guangsen Fan
Foods 2025, 14(15), 2617; https://doi.org/10.3390/foods14152617 - 26 Jul 2025
Viewed by 228
Abstract
The escalating global burden of metabolic diseases, immune dysfunction, and age-related degeneration underscores the imperative for innovative nutritional interventions [...] Full article
(This article belongs to the Special Issue Dietary Fiber and Gut Microbiota)
24 pages, 743 KiB  
Review
Surgical Treatment, Rehabilitative Approaches and Functioning Assessment for Patients Affected by Breast Cancer-Related Lymphedema: A Comprehensive Review
by Paola Ciamarra, Alessandro de Sire, Dicle Aksoyler, Giovanni Paolino, Carmen Cantisani, Francesco Sabbatino, Luigi Schiavo, Renato Cuocolo, Carlo Pietro Campobasso and Luigi Losco
Medicina 2025, 61(8), 1327; https://doi.org/10.3390/medicina61081327 - 23 Jul 2025
Viewed by 445
Abstract
Introduction: Breast cancer therapy is a common cause of lymphedema. The accumulation of protein-rich fluid in the affected extremity leads to a progressive path—swelling, inflammation, and fibrosis—namely, irreversible changes. Methods: A scientific literature analysis was performed on PubMed/Medline, Scopus, Web of Science (WoS), [...] Read more.
Introduction: Breast cancer therapy is a common cause of lymphedema. The accumulation of protein-rich fluid in the affected extremity leads to a progressive path—swelling, inflammation, and fibrosis—namely, irreversible changes. Methods: A scientific literature analysis was performed on PubMed/Medline, Scopus, Web of Science (WoS), the Cochrane Central Register of Controlled Trials (CENTRAL), and the Physiotherapy Evidence Database (PEDro) from inception until 30 June 2024. Results: Breast cancer-related lymphedema (BCRL) is indeed an important healthcare burden both due to the significant patient-related outcomes and the overall social impact of this condition. Even though lymphedema is not life-threatening, the literature underlined harmful consequences in terms of pain, infections, distress, and functional impairment with a subsequent and relevant decrease in quality of life. Currently, since there is no cure, the therapeutic approach to BCRL aims to slow disease progression and prevent related complications. A comprehensive overview of postmastectomy lymphedema is offered. First, the pathophysiology and risk factors associated with BCRL were detailed; then, diagnosis modalities were depicted highlighting the importance of early detection. According to non-negligible changes in patients’ everyday lives, novel criteria for patients’ functioning assessment are reported. Regarding the treatment modalities, a wide array of conservative and surgical methods both physiologic and ablative were analyzed with their own outcomes and downsides. Conclusions: Combined strategies and multidisciplinary protocols for BCRL, including specialized management by reconstructive surgeons and physiatrists, along with healthy lifestyle programs and personalized nutritional counseling, should be compulsory to address patients’ demands and optimize the treatment of this harmful and non-curable condition. The Lymphedema-specific ICF Core Sets should be included more often in the overall outcome evaluation with the aim of obtaining a comprehensive appraisal of the treatment strategies that take into account the patient’s subjective score. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

Back to TopTop