Food Bioactive for Gut-Metabolic Axis Regulation and Microbiota Modulation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Mulè, S.; Galla, R.; Parini, F.; Botta, M.; Ferrari, S.; Uberti, F. An In Vitro Gut–Liver–Adipose Axis Model to Evaluate the Anti-Obesity Potential of a Novel Probiotic–Polycosanol Combination. Foods 2025, 14, 2003.
- Kim, S.; Kang, J.Y.; Nguyen, Q.A.; Lee, J.-S. Effects of Prebiotic Dietary Fibers on the Stimulation of the Mucin Secretion in Host Cells by In Vitro Gut Microbiome Consortia. Foods 2024, 13, 3194.
- Shu, S.; Jing, R.; Li, L.; Wang, W.; Zhang, J.; Luo, Z.; Shan, Y.; Liu, Z. Effects of Different Heat Treatments on Yak Milk Proteins on Intestinal Microbiota and Metabolism. Foods 2024, 13, 192.
- Tong, A.; Wang, D.; Liu, X.; Li, Z.; Zhao, R.; Liu, B.; Zhao, C. The Potential Hypoglycemic Competence of Low Molecular Weight Polysaccharides Obtained from Laminaria japonica. Foods 2023, 12, 3809.
- Liu, X.; Feng, Y.; Zhen, H.; Zhao, L.; Wu, H.; Liu, B.; Fan, G.; Tong, A. Agrocybe aegerita Polysaccharide Combined with Bifidobacterium lactis Bb-12 Attenuates Aging-Related Oxidative Stress and Restores Gut Microbiota. Foods 2023, 12, 4381.
- Zhang, F.; Huang, W.; Zhao, L. Regulatory Effects of Ganoderma lucidum, Grifola frondosa, and American ginseng Extract Formulation on Gut Microbiota and Fecal Metabolomics in Mice. Foods 2023, 12, 3804.
- Zhu, R.; Tan, S.; Wang, Y.; Zhang, L.; Huang, L. Physicochemical Properties and Hypolipidemic Activity of Dietary Fiber from Rice Bran Meal Obtained by Three Oil-Production Methods. Foods 2023, 12, 3695.
- Zhang, L.; Zhang, R.; Li, L. Effects of Probiotic Supplementation on Exercise and the Underlying Mechanisms. Foods 2023, 12, 1787.
References
- Chandrakar, N.; Kaur, J.; Banerjee, M. Synergies of Bioactivities, Mechanisms, Dietary Factors and Functional Food Applications of Medicinal Insulin Plant (Costus pictus D.): A Review. Int. J. Food Sci. Technol. 2024, 59, 8933–8942. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Liu, D.; Zhou, H.; Li, Y.; Yuan, W.; Xu, S.; Wang, J.; Liang, X.; Weng, J. Profiling of Antidiabetic Bioactive Flavonoid Compounds from an Edible Plant Kudzu (Pueraria lobata). J. Agric. Food Chem. 2024, 72, 15704–15714. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, B.; Holzapfel, W.; Kang, H. Lactiplantibacillus plantarum APsulloc331261 (GTB1™) Promotes Butyrate Production to Suppress Mucin Hypersecretion in a Murine Allergic Airway Inflammation Model. Front. Microbiol. 2023, 14, 12. [Google Scholar]
- Becht, J.; Kohlleppel, H.; Schins, R.; Kmpfer, A. Effect of Butyrate on Food-Grade Titanium Dioxide Toxicity in Different Intestinal In Vitro Models. Chem. Res. Toxicol. 2024, 37, 14. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhang, Y.; Soladoye, O.; Aluko, R. Maillard Reaction Products Derived from Food Protein-derived Peptides: Insights into Flavor and Bioactivity. Crit. Rev. Food Sci. 2020, 60, 3429–3442. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Wu, Z.; Zhao, Y.; Zhang, S.; Liu, W.; Su, Y. Role of Gut Microbiota in the Pathogenesis and Treatment of Diabetes Mullites: Advanced Research-Based Review. Front. Microbiol. 2022, 13, 1029890. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Liu, X.; Cheng, Y.; Yan, X.; Wu, S. Gut Microbiota and Aging. Crit. Rev. Food Sci. 2022, 62, 3509–3534. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.; Bruijn, I.; Goldman, M.; Erik, V.; Pellikaan, W.; Forlenza, M.; Wiegertjes, G. β-Glucan-Induced Immuno-Modulation: A Role for the Intestinal Microbiota and Short-Chain Fatty Acids in Common Carp. Front. Immunol. 2022, 12, 761820. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, S.; Srinivasan, K. Amelioration of Oxidative Stress by Dietary Fenugreek (Trigonella foenum-graecum L.) Seeds is Potentiated by Onion (Allium cepa L.) in Streptozotocin-Induced Diabetic Rats. Appl. Physiol. Nutr. Metab. 2017, 42, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, Y.; Ma, B.; Wang, Z.; Wei, B. Gut Microbiota and Exercise: Probiotics to Modify the Composition and Roles of the Gut Microbiota in the Context of 3P Medicine. Microb. Ecol. 2025, 88, 38. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, T.; Liu, Z.; Fan, G. Food Bioactive for Gut-Metabolic Axis Regulation and Microbiota Modulation. Foods 2025, 14, 2617. https://doi.org/10.3390/foods14152617
Liu X, Wang T, Liu Z, Fan G. Food Bioactive for Gut-Metabolic Axis Regulation and Microbiota Modulation. Foods. 2025; 14(15):2617. https://doi.org/10.3390/foods14152617
Chicago/Turabian StyleLiu, Xiaoyan, Tianjiao Wang, Ziwei Liu, and Guangsen Fan. 2025. "Food Bioactive for Gut-Metabolic Axis Regulation and Microbiota Modulation" Foods 14, no. 15: 2617. https://doi.org/10.3390/foods14152617
APA StyleLiu, X., Wang, T., Liu, Z., & Fan, G. (2025). Food Bioactive for Gut-Metabolic Axis Regulation and Microbiota Modulation. Foods, 14(15), 2617. https://doi.org/10.3390/foods14152617