Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,113)

Search Parameters:
Keywords = nutrient-stressed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1605 KB  
Article
Ligilactobacillus agilis LA-V4 Isolated from Vulture Fecal Isolate: A Novel Probiotic Candidate with Broad-Spectrum Antibacterial Activity
by Siyuan Li, Chuxian Quan, Muhammad Farhan Rahim, Ping Sha, Jing Chen, Wenbin Shao and Jiakui Li
Pathogens 2026, 15(2), 148; https://doi.org/10.3390/pathogens15020148 - 30 Jan 2026
Abstract
Vultures are extraordinarily adapted to feed on carrion, providing them with a constant microbiologically hostile environment. This peculiar ecological position has influenced the evolution of their gut microbiota, potentially conferring its uncommon antimicrobial traits and resistance to stress. In this study, we report [...] Read more.
Vultures are extraordinarily adapted to feed on carrion, providing them with a constant microbiologically hostile environment. This peculiar ecological position has influenced the evolution of their gut microbiota, potentially conferring its uncommon antimicrobial traits and resistance to stress. In this study, we report on the isolation and comprehensive characterization of a lactic acid bacterium strain, identified as Ligilactobacillus agilis, from vulture feces via 16S rRNA gene sequencing. This strain exhibited potent antagonistic activity against several clinically relevant bacterial pathogens, including Salmonella enterica Typhimurium (25.26 ± 0.26 mm), Escherichia coli (23.5 ± 0.88 mm), Staphylococcus aureus (23.1 ± 1.8 mm), and Listeria monocytogenes (24.88 ± 0.61 mm), as demonstrated by agar well diffusion assays. Remarkably, it also demonstrated considerable resilience in simulated gastrointestinal conditions, with survival rates of 52.5 ± 7.4% in artificial gastric juice and 61.1 ± 3.7% in intestinal fluids. Antimicrobial susceptibility profiling confirmed its sensitivity to a broad range of commonly used antibiotics, including gentamicin, streptomycin, clindamycin, and penicillin. Whole-genome sequencing further revealed a complete repertoire of core genes associated with genetic information processing, robust carbohydrate metabolism, and nutrient assimilation, underscoring its adaptability and probiotic potential. It is important to note that the analysis of the assembled genome against VFDB did not show the presence of any known virulence factor according to the given criteria, which is preliminary evidence of safety-related aspects that are to be followed with the help of guideline-based analyses. Taken together, the unique ecological origin and in vitro inhibitory activity against the tested pathogens, gastrointestinal robustness, genomic features, and safety credentials position this L. agilis strain as a promising probiotic candidate for mitigating enteric infections in animal production systems, warranting further functional validation and in vivo efficacy studies. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

24 pages, 5579 KB  
Article
Brassinolide Application Mitigates Blossom-End Rot in Tomato by Enhancing Calcium Homeostasis and Antioxidant Defense Under Calcium Deficiency
by Dandan Wang, Xingqiang Fan, Lingdi Dong, Yan Li, Yikang Xue, Hongyu Li, Qingyin Zhang, Lianfen Qi and Yansu Li
Plants 2026, 15(3), 427; https://doi.org/10.3390/plants15030427 - 30 Jan 2026
Abstract
Blossom-end rot (BER) in tomatoes is a physiological disorder primarily caused by the disruption of calcium absorption and transport. This study cultivated tomatoes using a trough-based vermiculite system. Two treatments were established: a calcium-deficient nutrient solution and a calcium-deficient nutrient solution supplemented with [...] Read more.
Blossom-end rot (BER) in tomatoes is a physiological disorder primarily caused by the disruption of calcium absorption and transport. This study cultivated tomatoes using a trough-based vermiculite system. Two treatments were established: a calcium-deficient nutrient solution and a calcium-deficient nutrient solution supplemented with 0.1 mg/L BR (n = 40 plants per treatment). The activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), as well as the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), were measured in the leaves. Calcium ion content was also determined in various plant parts. Statistical analysis of differences was performed using Duncan’s multiple range test at a significance level of p < 0.01. Concurrently, transcriptome sequencing of root, stem, and leaf tissues was conducted via high-throughput sequencing technology. The results showed that foliar application of BR under calcium deficiency significantly reduced the incidence of BER (from 26.67% to 6.67%) and effectively increased calcium ion content in leaves, stems, and roots. At the physiological level, BR treatment markedly enhanced the activities of CAT, POD, and SOD in leaves (by 105.70%, 117.12%, and 82.77%, respectively), while reducing H2O2 and MDA contents (by 36.90% and 16.38%, respectively). This indicates that BR alleviates membrane lipid peroxidation damage by enhancing the antioxidant defense system. Gene Ontology (GO) enrichment analysis revealed that the differentially expressed genes (DEGs) were primarily involved in biological processes, such as secondary metabolic processes, response to oxygen-containing compounds, and cell wall organization. KEGG pathway analysis further indicated significant enrichment in pathways, including phenylpropanoid biosynthesis, plant hormone signal transduction, and plant–pathogen interaction. Additionally, key genes, such as the cytochrome c oxidase (COX) gene (Solyc03g013460.1), exhibited a gradient up-regulation pattern (root > stem > leaf) in the oxidative phosphorylation pathway. In conclusion, BR likely enhances tomato tolerance to calcium deficiency stress and effectively reduces BER incidence through multiple pathways: regulating calcium absorption and distribution, activating the antioxidant system, modulating hormone signaling pathways, and enhancing energy metabolism. These findings provide a theoretical basis for the application of BR in agricultural production. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

30 pages, 2212 KB  
Article
Effects of High Lithium Concentrations on the Growth, Biomass, Mineral Accumulation, Oxidative Stress, Antioxidant and Gene Expression Response, and DNA Methylation in Sunflower Plants
by Francisco Espinosa, Francisco Luis Espinosa-Vellarino, Ilda Casimiro, Carmen Gloria Relinque, Alfonso Ortega and Inmaculada Garrido
Plants 2026, 15(3), 421; https://doi.org/10.3390/plants15030421 - 30 Jan 2026
Abstract
This study demonstrates that sunflower plants display integrated, multilevel responses to excessive lithium (Li) exposure. Li concentrations above 5 mM markedly impair germination, growth, and biomass accumulation. Li is preferentially accumulated in the shoots, showing high translocation and bioaccumulation factors, and disrupts mineral [...] Read more.
This study demonstrates that sunflower plants display integrated, multilevel responses to excessive lithium (Li) exposure. Li concentrations above 5 mM markedly impair germination, growth, and biomass accumulation. Li is preferentially accumulated in the shoots, showing high translocation and bioaccumulation factors, and disrupts mineral nutrient homeostasis, particularly potassium (K) and sodium (Na) uptake, while inducing oxidative stress. Although photosynthetic pigment contents decline, photosynthetic efficiency is largely maintained, except at 10 mM Li. Li treatment enhances superoxide anion (O2.−) and hydrogen peroxide (H2O2) production exclusively in leaves. Consequently, activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) increase in leaves, whereas only APX and GR are stimulated in the roots. Nitric oxide (NO) accumulation is detected only in leaves, while hydrogen sulfide (H2S) and glutathione (GSH) contents decline. Leaf ascorbate (AsA) levels decrease concomitantly with dehydroascorbate (DHA) accumulation. Expression analyses of catalase, DHAR, DHAR-like, and glutathione S-transferase (GST) genes confirm their involvement in Li stress responses. Moreover, global DNA methylation analyses reveal hypomethylation in leaves and hypermethylation in the roots. Overall, Li exposure induces dose- and organ-specific physiological, molecular, and epigenetic adjustments in sunflower plants under environmentally relevant concentrations and controlled experimental conditions in this study. Full article
(This article belongs to the Special Issue Plant Responses to Emerging Contaminants and Remediation Strategies)
Show Figures

Figure 1

19 pages, 6980 KB  
Article
Role of Nitrogen Fertilization in Mitigating Drought-Induced Physiological Stress in Wheat Seedlings
by Wojciech Pikuła, Marta Jańczak-Pieniążek and Ewa Szpunar-Krok
Agriculture 2026, 16(3), 337; https://doi.org/10.3390/agriculture16030337 - 29 Jan 2026
Abstract
Drought stress is one of the major abiotic factors limiting crop growth and yield, particularly in wheat. Water deficit leads to reduced chlorophyll content, impaired photosynthetic performance, and decreased biomass accumulation. Nitrogen fertilization may influence plant physiological responses to drought; however, its capacity [...] Read more.
Drought stress is one of the major abiotic factors limiting crop growth and yield, particularly in wheat. Water deficit leads to reduced chlorophyll content, impaired photosynthetic performance, and decreased biomass accumulation. Nitrogen fertilization may influence plant physiological responses to drought; however, its capacity to alleviate drought-induced growth reduction remains uncertain. A pot experiment was conducted to evaluate the impact of different nitrogen-based fertilizers on wheat seedlings grown under irrigation level 60% PPW (control) and 30% PPW (drought stress) conditions, with balanced levels of phosphorus and potassium maintained in all treatments. Water deficit led to substantial reductions in chlorophyll content compared to optimally irrigated plants. Similarly, the performance index (PI) decreased by 139.3% at Term 1 (1 day after foliar nitrogen application) and 27.2% at Term 2 (7 days after application). The net photosynthetic rate (Pn) declined markedly under drought conditions and was not significantly improved by nitrogen fertilization, indicating a partial and mainly short-term physiological response to nitrogen under water deficit. The application of nitrogen fertilizers, particularly urea and Nitron S, modulated the relative chlorophyll content and selected chlorophyll fluorescence (Fv/Fm, Fv/Fo, PI) and gas-exchange (E, gs, Ci) parameters under drought conditions, mainly shortly after application. However, aboveground dry biomass under drought conditions was not significantly affected by any nitrogen fertilizer. Urea induced the most consistent short-term physiological responses under both irrigation regimes, with effects more pronounced shortly after application, whereas Nitron S showed fertilizer-specific effects under drought stress. Overall, the results demonstrate that foliar nitrogen fertilization can modulate short-term physiological responses of wheat seedlings to drought but does not translate into sustained improvements in Pn or biomass accumulation. In the context of climate change and increasing water scarcity, identifying nitrogen fertilizers that support physiological functioning without overestimating growth benefits has critical implications for sustainable wheat production. Optimizing nitrogen fertilization may, therefore, contribute to improved nutrient management strategies under water-limited conditions. Full article
Show Figures

Figure 1

22 pages, 2455 KB  
Article
Temperature, Nitrogen, and Carbon Constraints on Growth and Metabolism of Regional Microalgae Strains
by Gulnaz Galieva, Mariam El Rawas, Darya Khlebova, Svetlana Selivanovskaya and Polina Galitskaya
Environments 2026, 13(2), 73; https://doi.org/10.3390/environments13020073 - 29 Jan 2026
Abstract
The rapid rise in atmospheric CO2 necessitates strategies for mitigation and valorization. Microalgae offer potential through simultaneous CO2 capture and production of high-value biomolecules. Five Chlorophyta strains (A–E: Micractinium sp., Chlamydomonas sp., Micractinium sp., Chlorococcum sp., and Chlorella vulgaris) were [...] Read more.
The rapid rise in atmospheric CO2 necessitates strategies for mitigation and valorization. Microalgae offer potential through simultaneous CO2 capture and production of high-value biomolecules. Five Chlorophyta strains (A–E: Micractinium sp., Chlamydomonas sp., Micractinium sp., Chlorococcum sp., and Chlorella vulgaris) were isolated from temperate waters and soils and tested for growth and biochemical responses under controlled nitrogen availability (low: 0.346 g L−1 nitrate; high: 0.6 g L−1 nitrate + ammonia), carbon supply (low: 0.04% CO2; high: 4% CO2), and cultivation systems (batch reactors, fermenters, and varied illumination). Over 14 days, maximum dry biomass was achieved in batch cultivation with CO2 sparging, low nitrogen, and continuous light, ranging from 1.47 g L−1 (strain A) to 2.67 g L−1 (strain D). Biomass composition varied: proteins, 25–45%; carbohydrates, 20–35%; and lipids, 18–28%. Nitrogen limitation promoted lipid accumulation (e.g., strain D: +40%) with concurrent protein decline (−25%). Chlorophyll a/b displayed strain-specific plasticity; high CO2 generally increased chlorophyll, while nitrogen stress reduced it up to 50%. Overall, this study demonstrates that locally adapted Chlorophyta strains can achieve high biomass productivity under CO2 enrichment while allowing for flexible redirection of carbon flux toward lipids, carbohydrates, or pigments through nutrient management. Among the tested isolates, strains D and E emerged as the most promising candidates for integrated CO2 sequestration and biomass production, while strains B, C, and D showed strong potential for biodiesel feedstock; strain A for carbohydrate valorization; and strain E for chlorophyll extraction. Future research should focus on scale-up validation in pilot photobioreactors under continuous operation, optimization of two-stage cultivation strategies for lipid production, integration with industrial CO2 point sources, and strain improvement using modern genomics-assisted breeding and genome-editing technologies. These efforts will support the translation of regional microalgal resources into scalable carbon-capture and bioproduct platforms. Full article
Show Figures

Figure 1

16 pages, 1632 KB  
Article
Mechanistic Analysis of Physiological and Metabolic Responses in Non-Jointed Water Dropwort Under Phosphorus Stress
by Bingqing Lu, Zhengnan Cen, Xiyu Zhang, Ting Xue and Yu Guo
Metabolites 2026, 16(2), 101; https://doi.org/10.3390/metabo16020101 - 29 Jan 2026
Abstract
Background: Non-jointed water dropwort (Oenanthe javanica (Blume) DC.) is a widely cultivated aquatic vegetable with notable nutritional and pharmacological properties. Phosphorus (P) is a key nutrient affecting plant growth, photosynthesis, and metabolic balance, yet its role in water dropwort remains understudied. Methods: [...] Read more.
Background: Non-jointed water dropwort (Oenanthe javanica (Blume) DC.) is a widely cultivated aquatic vegetable with notable nutritional and pharmacological properties. Phosphorus (P) is a key nutrient affecting plant growth, photosynthesis, and metabolic balance, yet its role in water dropwort remains understudied. Methods: This study investigated the physiological and metabolic responses of non-jointed water dropwort under P-deficiency treatment (0 mg·L−1) and increasing P supply levels (5, 10, and 30 mg·L−1). Results: Moderate P supply (10 mg·L−1) significantly promoted plant growth, enhanced photosynthetic efficiency, and increased antioxidant enzyme activity, increasing by 55.9%, 20.2%, and 118%, respectively, compared with the P-deficiency treatment. High P levels (30 mg·L−1) inhibited growth and induced oxidative stress. Untargeted metabolomic analysis was conducted on root samples from CK (0 mg·L−1) and HP (30 mg·L−1) groups using UHPLC-MS. A total of 1274 metabolites were identified, with flavonoids, phenylpropanoids, fatty acid and conjugates being predominant. A total of 842 differential metabolites were screened under HP stress, with flavonoids (e.g., narcissin) showing the most significant upregulation. KEGG enrichment revealed key pathways including biosynthesis of amino acids, ABC transporters, and aminoacyl-tRNA biosynthesis, indicating metabolic reprogramming under HP stress. Notably, flavonoid and terpenoid pathways were upregulated, while certain lipid metabolism pathways, including fatty acid conjugates and phenylpropanoids, were downregulated. These findings suggest that non-jointed water dropwort adapts to high P stress by activating defense-related secondary metabolism and adjusting carbon–nitrogen allocation. Conclusions: This study provides a theoretical basis for P management and stress-resistant cultivar selection in non-jointed water dropwort. Full article
(This article belongs to the Special Issue Metabolomics and Plant Defence, 2nd Edition)
Show Figures

Figure 1

20 pages, 2769 KB  
Article
Foliar Application of Protein Hydrolysates Promotes Growth and Affects Leaf Ionome in Olive
by Igor Pasković, Maša Andlovic, Helena Plešnik, Primož Vavpetič, Paula Žurga, Ljiljana Popović, Martin Šala, Mario Franić, Ivan Dlačić, Smiljana Goreta Ban, Marija Polić Pasković, Tina Kosjek and Paula Pongrac
Horticulturae 2026, 12(2), 151; https://doi.org/10.3390/horticulturae12020151 - 29 Jan 2026
Abstract
The foliar application of various biostimulants, such as protein hydrolysates (PHs), has been associated with improved nutrient uptake efficiency and stress tolerance in perennial crops, like olive (Olea europaea L.). In this study, PHs obtained by enzymatic hydrolysis by Alcalase Pure (referred [...] Read more.
The foliar application of various biostimulants, such as protein hydrolysates (PHs), has been associated with improved nutrient uptake efficiency and stress tolerance in perennial crops, like olive (Olea europaea L.). In this study, PHs obtained by enzymatic hydrolysis by Alcalase Pure (referred to as treatment H1), Alcalase Pure and Flavourzyme (referred to as treatment H2), or Alcalase Pure and Protana™ Prime (referred to as treatment H3) with proteins from pumpkin seed cake were tested for their potential beneficial growth, performance, and nutrition effects in one-year-old olive seedlings grown under controlled conditions. Amino acid and element compositions were evaluated in the PHs, which were used for foliar application six times at eight-day intervals. Control (C) plants were treated the same way, but without PHs. Shoot and root growth, leaf reflectance indices, and the composition of micro and macronutrients in different organs and leaf tissues were determined. Plants in the H2 treatment grew significantly better than C plants. They had the highest Photochemical Reflectance Index and a Chlorophyll-Normalized Difference Vegetation Index similar to that of C plants, indicating an optimal growth/photosynthesis balance. A decrease in the concentration of several mineral elements in the lower epidermis in H2- and H3-treated plants compared to C and H1-treated plants was accompanied by their increase in the spongy mesophyll, indicating their redistribution to support increased metabolism, resulting in increased shoot growth in these two treatments. Arguably, these observed effects could be attributed to the amino acid profile of the H2 mixture, which had the highest concentration of L-proline, L-arginine, and L-lysine among the three PH mixtures, and a higher L-asparagine concentration than the H1 mixture. Overall, the results highlight the applicative potential of tailored PH formulations for the optimization of growth, mineral element composition, and physiological performance in olive cultivation. Full article
(This article belongs to the Special Issue Driving Sustainable Agriculture Through Scientific Innovation)
Show Figures

Figure 1

40 pages, 938 KB  
Review
Phytochemicals in Ruminant Diets: Mechanistic Insights, Product Quality Enhancement, and Pathways to Sustainable Milk and Meat Production—Invited Review
by Hasitha Priyashantha, Imasha S. Jayathissa, Janak K. Vidanarachchi, Shishanthi Jayarathna, Cletos Mapiye, Aristide Maggiolino and Eric N. Ponnampalam
Animals 2026, 16(3), 425; https://doi.org/10.3390/ani16030425 - 29 Jan 2026
Abstract
Dietary phytochemicals, primarily derived from grasses, legumes, and agro-industrial byproducts of plant origin, encompass distinct chemical classes such as polyphenols (including tannins, flavonoids, and other polyphenol compounds), saponins, organosulfur compounds, and essential oils (largely composed of terpenoids and phenylpropanoids). These compounds can function [...] Read more.
Dietary phytochemicals, primarily derived from grasses, legumes, and agro-industrial byproducts of plant origin, encompass distinct chemical classes such as polyphenols (including tannins, flavonoids, and other polyphenol compounds), saponins, organosulfur compounds, and essential oils (largely composed of terpenoids and phenylpropanoids). These compounds can function as rumen modifiers, antimethanogenic agents, anthelmintics, growth promoters, stress mitigators, and biopreservatives in ruminant production systems. Thus, they improve feed efficiency, nutrient utilization, and nitrogen retention while mitigating greenhouse gas emissions. In dairy systems specifically, phytogenic feedstuffs enhance milk yield and composition by enriching conjugated linoleic acids (CLAs), omega-3 fatty acids, and antioxidant compounds, leading to superior nutritional and oxidative stability. In meat production systems, they improve tenderness, flavor and shelf life through reduced oxidation and enhanced muscle metabolism. Despite these benefits, dose optimization, bio-efficacy, and species-specific responses remain critical research priorities. Use of phytogenic-based feeding strategies aligns with global sustainability goals by reducing reliance on feed additives, promoting environmentally resilient and circular food systems. This review synthesizes emerging evidence on the mechanisms, production outcomes, and functional benefits of dietary phytochemicals, providing a scientific framework for their strategic application in sustainable ruminant milk and meat production. Full article
Show Figures

Figure 1

24 pages, 2020 KB  
Review
From Structure to Vulnerability: Mitochondrial Supercomplexes in Cancer Cells
by Corinne E. Griguer, Susanne Flor and Claudia R. Oliva
Cells 2026, 15(3), 258; https://doi.org/10.3390/cells15030258 - 29 Jan 2026
Abstract
Mitochondrial respiratory supercomplexes are emerging as key regulators of bioenergetics, redox homeostasis, and metabolic plasticity in cancer. Their assembly enhances electron transport efficiency, limits reactive oxygen species production, and supports the high oxidative and biosynthetic demands of tumor growth. Cancer cells remodel supercomplex [...] Read more.
Mitochondrial respiratory supercomplexes are emerging as key regulators of bioenergetics, redox homeostasis, and metabolic plasticity in cancer. Their assembly enhances electron transport efficiency, limits reactive oxygen species production, and supports the high oxidative and biosynthetic demands of tumor growth. Cancer cells remodel supercomplex organization in response to hypoxia, nutrient limitation, and therapeutic stress, enabling rapid metabolic adaptation. Multiple assembly factors—including COX subunits, HIGD1A/2A, COX7A2L (SCAF1), cardiolipin remodeling enzymes, and Complex I assembly factors such as NDUFAF1 and NDUFAF2—contribute to supercomplex stabilization and can be dysregulated in malignancy. Alterations in these factors enhance respiratory flexibility and therapy resistance, particularly in aggressive tumors such as glioblastoma. However, critical gaps remain, including incomplete understanding of the molecular mechanisms controlling supercomplex assembly and remodeling, limited validation of functional findings in primary patient-derived cells or clinical samples, and uncertainty regarding the contribution of supercomplex to therapy resistance and metabolic adaptation across tumor types. Advances in structural biology and functional imaging have uncovered tumor-specific vulnerabilities within supercomplex architecture that may be exploited therapeutically. Targeting supercomplex assembly, cardiolipin–protein interactions, or electron flux through individual supercomplex modules represents a promising approach to disrupt cancer metabolism and sensitize tumors to treatment. This review synthesizes current knowledge on supercomplex regulation, function, and therapeutic potential in cancer, and outlines key unanswered questions that remain to be addressed. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Figure 1

40 pages, 2561 KB  
Review
LncRNAs at the Crossroads of Precision Nutrition and Cancer Chemoprevention
by Camelia Munteanu, Revathy Nadhan, Sabina Turti, Eftimia Prifti, Larisa Achim, Sneha Basu, Alessandra Ferraresi, Ji Hee Ha, Ciro Isidoro and Danny N. Dhanasekaran
Cancers 2026, 18(3), 430; https://doi.org/10.3390/cancers18030430 - 29 Jan 2026
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, and effective strategies for cancer prevention are urgently needed to complement therapeutic advances. While dietary factors are known to influence cancer risk, the molecular mechanisms that mediate inter-individual responses to nutritional exposures remain [...] Read more.
Cancer remains a leading cause of morbidity and mortality worldwide, and effective strategies for cancer prevention are urgently needed to complement therapeutic advances. While dietary factors are known to influence cancer risk, the molecular mechanisms that mediate inter-individual responses to nutritional exposures remain poorly defined. Emerging evidence identifies long non-coding RNAs (lncRNAs) as pivotal regulators of gene expression, chromatin organization, metabolic homeostasis, immune signaling, and cellular stress responses, the core processes that drive cancer initiation and progression and are highly sensitive to nutritional status. In parallel, advances in precision nutrition have highlighted how variability in genetics, metabolism, microbiome composition, and epigenetic landscapes shape dietary influences on cancer susceptibility. This review integrates these rapidly evolving fields by positioning lncRNAs as molecular conduits that translate dietary exposures into transcriptional and epigenetic programs governing cancer development, progression, and therapeutic vulnerability. We provide mechanistic evidence demonstrating how dietary bioactive compounds and micronutrients, including polyphenols [such as curcumin, resveratrol, epigallocatechin gallate (EGCG)], flavonoids, alkaloids such as berberine, omega-3 (ω-3) fatty acids, folate, vitamin D, probiotic metabolites (such as butyrate and propionate), and trace elements (such as selenium and zinc), modulate oncogenic and tumor-suppressive lncRNAs. These nutrient–lncRNA interactions influence cancer-relevant pathways controlling proliferation, epithelial–mesenchymal transition (EMT), inflammation, oxidative stress, and metabolic rewiring. We further discuss emerging lncRNA signatures that reflect nutritional and metabolic states, their potential utility as biomarkers for individualized dietary interventions, and their integration into liquid biopsy platforms. Leveraging multi-omics datasets and systems biology, we outline AI-driven frameworks to map nutrient–lncRNA regulatory networks and identify targetable nodes for cancer chemoprevention. Finally, we address translational challenges, including compound bioavailability, inter-individual variability, and limited clinical validation, and propose future directions for incorporating lncRNA profiling into precision nutrition-guided cancer prevention trials. Together, these insights position lncRNAs at the nexus of diet and cancer biology and establish a foundation for mechanistically informed precision nutrition strategies in cancer chemoprevention. Full article
(This article belongs to the Special Issue Cancer Causes and Control)
Show Figures

Graphical abstract

16 pages, 3960 KB  
Article
Doubling CO2 Modulates Root Morphology to Enhance Maize Elemental Stoichiometry and Water Use Efficiency Under Soil Drought and Salinity
by Changtong Xu, Haoran Tong, Zesen Gao, Wentong Zhao, Chunshuo Liu, Manyi Zhang and Zhenhua Wei
Agronomy 2026, 16(3), 326; https://doi.org/10.3390/agronomy16030326 - 28 Jan 2026
Viewed by 38
Abstract
This study aimed to explore the effect of doubled CO2 concentration (d[CO2]) on the modulation of root morphological structure, leaf potassium (K)/sodium (Na) ratio, and nutrient stoichiometry, as well as water use efficiency (WUE) of a C4 [...] Read more.
This study aimed to explore the effect of doubled CO2 concentration (d[CO2]) on the modulation of root morphological structure, leaf potassium (K)/sodium (Na) ratio, and nutrient stoichiometry, as well as water use efficiency (WUE) of a C4 maize (Zea mays L.) in response to soil drought and salinity. C4 maize was grown in two atmospheric CO2 concentrations of 400 and 800 ppm (a[CO2] and d[CO2]), subjected to two soil water regimes (well-watered and drought stress) and two soil salinity levels (0 and 100 mM NaCl pot−1 (non-salt and salt stress)). The results indicated that soil drought increased maize root tissue density and specific root length. Both d[CO2] and salt stress reduced leaf phosphorus (P) and K concentrations; conversely, drought stress enhanced leaf nitrogen (N) and K concentrations. The lower specific leaf area, but greater specific leaf N and N/K under soil drought, was amplified by salt stress. In contrast, d[CO2] promoted leaf carbon (C)/N and C/K. Notably, d[CO2] combined with soil drought enhanced leaf K/Na under salt stress. Moreover, d[CO2] ameliorated the adverse impacts of soil drought and salinity on root morphology in terms of enlarged root length and root surface area, contributing to superior leaf C, N, and K use efficiency and consequently improved C4 maize plant dry mass and WUE. These findings would provide essential knowledge to elevate salt tolerance and achieve optimal nutrient homeostasis and WUE in C4 maize, adapting to future drier and more saline soils under a CO2-enriched scenario. Full article
Show Figures

Figure 1

17 pages, 4617 KB  
Article
Integrated mRNA-miRNA Analysis Reveals the Regulatory Network Under Salt–Alkali Stress in Alfalfa (Medicago sativa L.)
by Mengya Liu, Yanran Xu, Lijun Zhao, Haojie Yu, Lijun Shi, Wenxuan Zhu, Bai Du, Xiao Li and Ruicai Long
Agriculture 2026, 16(3), 323; https://doi.org/10.3390/agriculture16030323 - 28 Jan 2026
Viewed by 39
Abstract
Soil salinization and alkalinization critically constrain alfalfa (Medicago sativa L.) productivity, yet the regulatory mechanisms underlying its responses to salt–alkali stress are not fully understood. In this study, the alfalfa variety “Zhongmu No. 1” was used as experimental material. The seeds were [...] Read more.
Soil salinization and alkalinization critically constrain alfalfa (Medicago sativa L.) productivity, yet the regulatory mechanisms underlying its responses to salt–alkali stress are not fully understood. In this study, the alfalfa variety “Zhongmu No. 1” was used as experimental material. The seeds were subjected to salt stress (75 mM NaCl), alkali stress (15 mM NaHCO3), and combined salt–alkali stress (50 mM NaCl + 5 mM NaHCO3) in dishes, with ddH2O serving as the control (CK). After 7 days of germination, the seedlings were transferred to a hydroponic system containing Hoagland nutrient solution supplemented with the corresponding treatments. Following 32 days of stress exposure, leaf and root tissue samples were collected for morphological and physiological measurements, as well as mRNA and miRNA sequencing analyses. Physiological assays revealed significant growth inhibition and increased electrolyte leakage under stress conditions. Transcriptome profiling identified over 5000 common differentially expressed genes (DEGs) in both leaves and roots under stress conditions, mainly enriched in pathways related to “iron ion binding”, “flavonoid biosynthesis”, “MAPK signaling”, and “alpha-Linolenic acid metabolism”. MiRNA sequencing detected 453 miRNAs, including 188 novel candidates, with several differentially expressed miRNAs (DEMs) exhibiting tissue- and stress-specific patterns. Integrated analysis revealed 147, 81, and 140 negatively correlated miRNA–mRNA pairs across three treatment groups, highlighting key regulatory modules in hormone signaling and metabolic pathways. Notably, in the ethylene and abscisic acid signaling pathways, ERF (XLOC_006645) and PP2C (MsG0180000476.01) were found to be regulated by miR5255 and miR172c, respectively, suggesting a post-transcriptional layer of hormonal control. DEM target genes enrichment pathway analyses also identified stress-specific regulation of “Fatty acid degradation”, “Galactose metabolism”, and “Fructose and mannose metabolism”. qRT-PCR validation confirmed the expression trends of selected DEGs and DEMs. Collectively, these findings reveal the complexity of miRNA–mRNA regulatory networks in alfalfa’s response to salt–alkali stress and provide candidate regulators for breeding stress-resilient cultivars. Full article
(This article belongs to the Special Issue Forage Breeding and Cultivation—2nd Edition)
Show Figures

Figure 1

17 pages, 2753 KB  
Article
The Role of Exogenous Methyl Jasmonate in the Morphophysiology and Postharvest Attributes of Drought-Stressed Radish
by Damiana J. Araujo, Vanessa A. Soares, Estephanni F. O. Dantas, Antônio N. Andrade, Cosma J. Araujo, Daniel S. Gomes, Sabrina K. Santos, Adriano S. Lopes, José E. S. Ribeiro, Valquiria C. S. Ferreira, Juliane M. Henschel, Tancredo Souza, Thiago J. Dias and Diego S. Batista
Plants 2026, 15(3), 397; https://doi.org/10.3390/plants15030397 - 28 Jan 2026
Viewed by 62
Abstract
Radish is a nutrient- and antioxidant-rich root vegetable whose growth is strongly affected by water availability, highlighting the need for strategies to enhance drought tolerance. Methyl jasmonate (MeJa) is a bioregulator involved in plant stress responses. This study evaluated the role of MeJa [...] Read more.
Radish is a nutrient- and antioxidant-rich root vegetable whose growth is strongly affected by water availability, highlighting the need for strategies to enhance drought tolerance. Methyl jasmonate (MeJa) is a bioregulator involved in plant stress responses. This study evaluated the role of MeJa in alleviating water deficit effects in radish. Plants were maintained under well-watered conditions (80% water retention capacity) or subjected to total irrigation restriction from 15 to 30 days after sowing (DAS). Foliar applications of 100 µM MeJa or water were performed at 7, 14, and 21 DAS. Growth, gas exchange, chlorophyll fluorescence, photosynthetic pigments, relative water content, electrolyte leakage, and storage root quality were assessed. Water deficit reduced relative water content and increased electrolyte leakage, indicating oxidative damage, which impaired growth and gas exchange. MeJa application reduced electrolyte leakage but did not mitigate drought-induced reductions in growth or gas exchange. Notably, water deficit increased sugar, mineral, and antioxidant contents in roots, regardless of MeJa treatment. Overall, although MeJa modulated some stress-related physiological responses, enhancing antioxidant defenses, it was insufficient alone to improve drought tolerance in radish. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

18 pages, 2043 KB  
Article
Microbial Biostimulants Improve Early Seedling Resilience to Water Stress
by Juliana Melo, Teresa Dias, Ana M. Santos, Sanaa Kamah, Silvia Castillo, Khalid Akdi and Cristina Cruz
Resources 2026, 15(2), 20; https://doi.org/10.3390/resources15020020 - 28 Jan 2026
Viewed by 40
Abstract
Drought poses a major challenge for global agriculture, demanding strategies that improve crop resilience while safeguarding water and nutrient resources. Plant growth-promoting rhizobacteria (PGPR)-based biostimulants offer a sustainable approach to enhance resource-use efficiency under water-limited conditions. This study evaluated two commercial PGPR biostimulants [...] Read more.
Drought poses a major challenge for global agriculture, demanding strategies that improve crop resilience while safeguarding water and nutrient resources. Plant growth-promoting rhizobacteria (PGPR)-based biostimulants offer a sustainable approach to enhance resource-use efficiency under water-limited conditions. This study evaluated two commercial PGPR biostimulants applied to maize (Zea mays L.) and tomato (Solanum lycopersicum L.) seedlings grown under well-watered (80% field capacity) and water-stressed (40% field capacity) conditions. Both products improved plant growth and physiological performance, although responses were crop-specific. Inoculated tomato seedlings accumulated up to 35% more shoot biomass under optimal watering (1.6 g in non-inoculated seedlings compared with 2.5 g in inoculated seedlings), whereas maize maintained biomass production under drought, consistent with its higher intrinsic water-use efficiency, showing increases of approximately 50% (well-watered: 0.5 g versus 0.8 g; water-stressed: 0.3 g versus 0.7 g in non-inoculated and inoculated seedlings, respectively). Biostimulant application enhanced the acquisition and internal utilization of essential mineral resources, increasing leaf concentrations of (i) the macronutrients P (up to 300%), K (up to 70%), Mg (up to 220%), and Ca (up to 85%), and (ii) the micronutrients B (up to 400%), Fe (up to 260%), Mn (up to 240%), and Zn (up to 180%). Maximum nutrient increases were consistently observed in water-stressed maize seedlings inoculated with biostimulant 2. Antioxidant activities, particularly ascorbate peroxidase and catalase, increased by 20–40%, indicating more effective mitigation of oxidative stress. Principal component analysis revealed coordinated adjustments among growth, nutrient-use efficiency, and physiological traits in inoculated plants. Overall, PGPR-based biostimulants improved early drought tolerance and resource-use efficiency, supporting their potential as sustainable tools for climate-resilient agriculture. Field-scale studies remain necessary to confirm long-term agronomic benefits. Full article
Show Figures

Figure 1

20 pages, 1737 KB  
Review
Enhanced Plant Nutrient Acquisition and Stress Tolerance by Ectomycorrhiza: A Review
by Yuanhao Wang, Lanlan Huang, Jing Yuan, Shanping Wan, Shimei Yang, Zhenyan Yang, Chengmo Yang, Xiaofei Shi, Dongqin Dai, Xinhua He, Jesús Pérez-Moreno, Yanliang Wang and Fuqiang Yu
Forests 2026, 17(2), 171; https://doi.org/10.3390/f17020171 - 27 Jan 2026
Viewed by 205
Abstract
Ectomycorrhizal (ECM) fungi form key symbioses with forest trees, strongly regulating plant nutrition and stress tolerance. This review synthesizes how ECM fungi redistribute plant-fixed carbon (C) in soil, interact with soil organic matter (SOM), and mediate the uptake and allocation of nitrogen (N), [...] Read more.
Ectomycorrhizal (ECM) fungi form key symbioses with forest trees, strongly regulating plant nutrition and stress tolerance. This review synthesizes how ECM fungi redistribute plant-fixed carbon (C) in soil, interact with soil organic matter (SOM), and mediate the uptake and allocation of nitrogen (N), phosphorus (P) and other macro- and micronutrients. We highlight mechanisms underlying ECM enhanced organic and mineral N and P mobilization, including oxidative decomposition, enzymatic hydrolysis, and organic acid weathering. Beyond C-N-P dynamics, ECM fungi also enhance acquisition and homeostasis of elements such as K, Ca, Mg, Fe, and Zn, reshaping host nutrient stoichiometry, productivity, and soil microbial community composition. We further summarize multi-layered mechanisms by which ECM improve host plant resistance to pathogens, drought, salinity–alkalinity, and heavy metal stresses via physical protection, ion regulation, hormonal signaling, aquaporins, and antioxidant and osmotic adjustment. Finally, we outline research priorities, such as using trait-based, multi-omics, and microbiome-integrated approaches to better harness ECM in forestry and ecosystem restoration. Full article
Show Figures

Figure 1

Back to TopTop