Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (213)

Search Parameters:
Keywords = nutrient density index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4255 KiB  
Article
Exploring the Global and Regional Factors Influencing the Density of Trachurus japonicus in the South China Sea
by Mingshuai Sun, Yaquan Li, Zuozhi Chen, Youwei Xu, Yutao Yang, Yan Zhang, Yalan Peng and Haoda Zhou
Biology 2025, 14(7), 895; https://doi.org/10.3390/biology14070895 - 21 Jul 2025
Viewed by 109
Abstract
In this cross-disciplinary investigation, we uncover a suite of previously unexamined factors and their intricate interplay that hold causal relationships with the distribution of Trachurus japonicus in the northern reaches of the South China Sea, thereby extending the existing research paradigms. Leveraging advanced [...] Read more.
In this cross-disciplinary investigation, we uncover a suite of previously unexamined factors and their intricate interplay that hold causal relationships with the distribution of Trachurus japonicus in the northern reaches of the South China Sea, thereby extending the existing research paradigms. Leveraging advanced machine learning algorithms and causal inference, our robust experimental design uncovered nine key global and regional factors affecting the distribution of T. japonicus density. A robust experimental design identified nine key factors significantly influencing this density: mean sea-level pressure (msl-0, msl-4), surface pressure (sp-0, sp-4), Summit ozone concentration (Ozone_sum), F10.7 solar flux index (F10.7_index), nitrate concentration at 20 m depth (N3M20), sonar-detected effective vertical range beneath the surface (Height), and survey month (Month). Crucially, stable causal relationships were identified among Ozone_sum, F10.7_index, Height, and N3M20. Variations in Ozone_sum likely impact surface UV radiation levels, influencing plankton dynamics (a primary food source) and potentially larval/juvenile fish survival. The F10.7_index, reflecting solar activity, may affect geomagnetic fields, potentially influencing the migration and orientation behavior of T. japonicus. N3M20 directly modulates primary productivity by limiting phytoplankton growth, thereby shaping the availability and distribution of prey organisms throughout the food web. Height defines the vertical habitat range acoustically detectable, intrinsically linking directly to the vertical distribution and availability of the fish stock itself. Surface pressures (msl-0/sp-0) and their lagged effects (msl-4/sp-4) significantly influence sea surface temperature profiles, ocean currents, and stratification, all critical determinants of suitable habitats and prey aggregation. The strong influence of Month predominantly reflects seasonal changes in water temperature, reproductive cycles, and associated shifts in nutrient supply and plankton blooms. Rigorous robustness checks (Data Subset and Random Common Cause Refutation) confirmed the reliability and consistency of these causal findings. This elucidation of the distinct biological and physical pathways linking these diverse factors leading to T. japonicus density provides a significantly improved foundation for predicting distribution patterns globally and offers concrete scientific insights for sustainable fishery management strategies. Full article
Show Figures

Figure 1

22 pages, 4025 KiB  
Article
Effects of Different Land Use Types on Soil Quality and Microbial Diversity in Paddy Soil
by Ximei Zhao, Fengyun Xiang, Xicheng Wang, Mengchen Yang and Jifu Li
Agronomy 2025, 15(7), 1628; https://doi.org/10.3390/agronomy15071628 - 3 Jul 2025
Viewed by 320
Abstract
This study investigated the effects of three land use patterns—rice (Oryza sativa L.)–rapeseed (Brassica napus L.) rotation (Rapeseed), rice–shrimp (Procambarus clarkii G.) rotation (Shrimp), and the conversion of paddy fields to forestland (Forestland)—on aggregate structure, nutrient content, and microbial diversity in [...] Read more.
This study investigated the effects of three land use patterns—rice (Oryza sativa L.)–rapeseed (Brassica napus L.) rotation (Rapeseed), rice–shrimp (Procambarus clarkii G.) rotation (Shrimp), and the conversion of paddy fields to forestland (Forestland)—on aggregate structure, nutrient content, and microbial diversity in rice soils in Chuandian Town, Jingzhou District, Jianghan Plain, central China. The results revealed that the Shrimp treatment significantly increased soil organic matter (SOM), available nitrogen (AN), and available phosphorus (AP) content in the surface soil (0–10 cm) while reducing soil bulk density and improving pore structure. Forestland exhibited higher aggregate stability in deeper soil layers (20–40 cm), particularly in the 0.053–0.25 mm size fraction. Microbial diversity analysis showed that bacterial richness (Chao1 index) and diversity (Shannon index) were significantly higher in the Shrimp and Rapeseed treatments compared to those in the Forestland treatment, with Proteobacteria and Chloroflexi being the dominant bacterial phyla. Fungal communities were dominated by Ascomycota, withfForestland showing greater fungal richness in deeper soil. Soil depth significantly influenced aggregates, nutrients, and microbial diversity, with surface soil exhibiting higher values for these parameters than deeper layers. Redundancy analysis indicated that SOM, AP, and pH were the key drivers of bacterial community variation, while fungal communities were more influenced by nitrogen and porosity. Path analysis further demonstrated that land use patterns indirectly affected microbial diversity via altering aggregate structure and nutrient availability. Overall, the Shrimp treatment outperformed others in improving soil structure and nutrient supply, whereas the Forestland treatment was more conducive to promoting aggregate stability in deeper soil. Land use patterns indirectly regulated microbial communities through modifying soil aggregate structure and nutrient status, thereby influencing soil ecosystem health and stability. This study provides a theoretical basis for the sustainable management of rice soils, suggesting the optimization of rotation patterns in agricultural production to synergistically enhance soil physical, chemical, and biological properties. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

13 pages, 2462 KiB  
Communication
Species Interactions Shape Nitrogen Utilization Characteristics and Influence Soil Quality in Jujube–Alfalfa Intercropping System
by Hang Qiao, Hui Cheng, Tiantian Li, Wenxia Fan, Yaru Zhao, Zhengjun Cui, Jinbin Wang, Qingqing Yang, Chengze Jia, Wei Zhang, Guodong Chen and Sumei Wan
Plants 2025, 14(13), 2048; https://doi.org/10.3390/plants14132048 - 3 Jul 2025
Viewed by 363
Abstract
Intercropping legumes offers a sustainable approach to enhance resource efficiency and yields, yet the effects of different legume densities and nitrogen addition levels on soil quality within such systems remain unclear. We conducted a comparative analysis of crop yield, nitrogen use efficiency, and [...] Read more.
Intercropping legumes offers a sustainable approach to enhance resource efficiency and yields, yet the effects of different legume densities and nitrogen addition levels on soil quality within such systems remain unclear. We conducted a comparative analysis of crop yield, nitrogen use efficiency, and soil quality between intercropping and monoculture systems, and further examined the effects of four planting densities (D1: 210 kg ha−1, six rows; D2: 280 kg ha−1, eight rows; D3: 350 kg ha−1, ten rows) and four nitrogen application levels (N0: 0 kg ha−1; N1: 80 kg ha−1; N2: 160 kg ha−1; N3: 240 kg ha−1) within a jujube–alfalfa (Ziziphus jujuba Mill. and Medicago sativa L. respectively) intercropping system. The results showed that intercropping significantly enhanced land productivity within the agricultural system, with the highest yields (alfalfa: 13790 kg ha−1; jujube: 3825 kg ha−1) achieved at an alfalfa planting density of 280 kg ha−1. While the intercropping systems generally improved productivity, an alfalfa planting density of 350 kg ha−1 resulted in an actual yield loss due to excessive nutrient competition at higher densities. As the planting density of alfalfa increased, its competitive ratio declined, whereas the competitive ratio of jujube trees increased. Compared to monocropping systems, intercropping systems demonstrated a clear trend of enhanced nitrogen utilization efficiency and improved soil quality, particularly at an alfalfa planting density of 280 kg ha−1. At an alfalfa density of 280 kg ha−1, the intercropping system exhibited increases of 15.13% in nitrogen use efficiency (NUE), 46.60% in nitrogen partial factor productivity (NPFP), and 32.74% in nitrogen nutrition index (NNI), as well as improvements in soil quality of 19.53% at a depth of 0–20 cm and 15.59% at a depth of 20–40 cm, compared to the monoculture system. Further analysis revealed that nitrogen utilization efficiency initially increased and then decreased with a rising competitive ratio of alfalfa. Accordingly, soil quality was improved along with the enhanced nitrogen utilization efficiency. Thus, at an alfalfa planting density of 280 kg ha−1, resource use efficiency and soil quality were maximized as a result of optimal interspecific competitiveness and the highest nitrogen use efficiency, with minimal influence from the application of nitrogen fertilizer. Full article
Show Figures

Figure 1

14 pages, 1301 KiB  
Article
Jinluo Low-Density Lotus Pond Wetland Water Purification Practice Experiment—A Case of Limited Efficacy
by Bo Liu, Yuan Gao, Jing Zhou, Yun Wang and Junxia He
Water 2025, 17(13), 1985; https://doi.org/10.3390/w17131985 - 1 Jul 2025
Viewed by 264
Abstract
(1) Although lotus ponds exhibit ecological benefits in wetland restoration, their efficacy in water purification and eutrophication mitigation remains unclear. (2) This study utilized Jinluo lotus pond as the experimental group and the adjacent river as the control. Five sampling points were established [...] Read more.
(1) Although lotus ponds exhibit ecological benefits in wetland restoration, their efficacy in water purification and eutrophication mitigation remains unclear. (2) This study utilized Jinluo lotus pond as the experimental group and the adjacent river as the control. Five sampling points were established in each area, with water samples collected in June 2022, April 2025, and May 2025. (3) The pH, BOD, COD, TN, and NH3-N concentrations in Jinluo lotus pond water are higher than those in rivers, while the TP, NO3-N, Chl-a, and algal cell density in rivers are higher. However, there was no significant difference in the nine parameters (p > 0.05) in June 2022. The pH, DO, algal cell density, and algal biomass of the Jinluo lotus pond were significantly higher (p < 0.05 for DO); the concentrations of BOD, COD, TN, TP, NH3-N, NO3-N, PI, and Chl-a in rivers are higher, with significant differences in Chl-a (p < 0.05) in April 2025. The BOD, COD, TP, NO3-N, and PI of the Jinluo lotus pond were relatively high (p < 0.05 for PI); the pH, TN, NH3-N, DO, Chl-a, algal cell density, and algal biomass of rivers are higher, with significant differences in Chl-a (p < 0.05) in May 2025. The results showed that there was no significant difference in the four diversity indicators in June 2022, April 2025, and May 2025. There was no significant difference in the algal diversity indices, including species richness (S), Shannon–Wiener diversity index (H), Simpson diversity index (P), and Pielou evenness index (E) between Jinluo lotus pond and rivers. (4) Conclusions and Recommendations: The Jinluo lotus pond and adjacent rivers suffer from severe nutrient overload, especially with BOD, COD, and TN all being classified as Class 5 water. Expanding natural and constructed reed communities is recommended to enhance nutrient removal. However, given the limited purification capacity of lotus ponds, maintaining or increasing their area may not be justified. Full article
Show Figures

Figure 1

16 pages, 2401 KiB  
Article
Effects of Planting Density and Site Index on Stand and Soil Nutrients in Chinese Fir Plantations
by He Sun, Jie Lei, Juanjuan Liu, Xiaoyan Li, Deyi Yuan, Aiguo Duan and Jianguo Zhang
Sustainability 2025, 17(13), 5867; https://doi.org/10.3390/su17135867 - 26 Jun 2025
Viewed by 212
Abstract
This study investigated the effects of planting density and site index on stand attributes and soil nutrients in mature Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] plantations across Fujian and Sichuan Provinces, elucidating the pathways through which these factors influence standing volume (SV). [...] Read more.
This study investigated the effects of planting density and site index on stand attributes and soil nutrients in mature Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] plantations across Fujian and Sichuan Provinces, elucidating the pathways through which these factors influence standing volume (SV). The results showed that (1) planting density significantly affected stand variables, with average diameter at breast height (ADBH) decreasing and SV initially increasing and then declining with higher density. The number of mortality plants (NMP) and actual stand density (ASD) both increased significantly with higher density. Average tree height (ATH) and dominant height (DH) responses varied by region, with ATH decreasing in Sichuan and DH decreasing in Fujian with higher density. (2) Planting density affected soil nutrients differently in the two provinces, with soil total potassium (TK) increasing in Fujian and phosphorus decreasing in Sichuan. (3) Site index was positively correlated with ATH and ADBH but negatively correlated with ASD and NMP. Its relationship with soil nutrients was province-specific: in Fujian, site index was negatively correlated with total phosphorus (TP) and positively correlated with TK and soil pH, while in Sichuan it was only positively correlated with TK. (4) Structural equation modeling revealed different regulatory pathways: in Fujian, planting density influenced SV through both ASD and soil nutrients, while in Sichuan it affected only through ASD. This study highlights the region-specific interactions between planting density, site index, stand structure, and soil nutrients, providing a foundation for optimized plantation management. Full article
Show Figures

Figure 1

26 pages, 11510 KiB  
Article
Beyond Color: Phenomic and Physiological Tomato Harvest Maturity Assessment in an NFT Hydroponic Growing System
by Dugan Um, Chandana Koram, Prasad Nethala, Prashant Reddy Kasu, Shawana Tabassum, A. K. M. Sarwar Inam and Elvis D. Sangmen
Agronomy 2025, 15(7), 1524; https://doi.org/10.3390/agronomy15071524 - 23 Jun 2025
Viewed by 451
Abstract
Current tomato harvesters rely primarily on external color as the sole indicator of ripeness. However, this approach often results in premature harvesting, leading to insufficient lycopene accumulation and a suboptimal nutritional content for human consumption. Such limitations are especially critical in controlled-environment agriculture [...] Read more.
Current tomato harvesters rely primarily on external color as the sole indicator of ripeness. However, this approach often results in premature harvesting, leading to insufficient lycopene accumulation and a suboptimal nutritional content for human consumption. Such limitations are especially critical in controlled-environment agriculture (CEA) systems, where maximizing fruit quality and nutrient density is essential for both the yield and consumer health. To address that challenge, this study introduces a novel, multimodal harvest readiness framework tailored to nutrient film technology (NFT)-based smart farms. The proposed approach integrates plant-level stress diagnostics and fruit-level phenotyping using wearable biosensors, AI-assisted computer vision, and non-invasive physiological sensing. Key physiological markers—including the volatile organic compound (VOC) methanol, phytohormones salicylic acid (SA) and indole-3-acetic acid (IAA), and nutrients nitrate and ammonium concentrations—are combined with phenomic traits such as fruit color (a*), size, chlorophyll index (rGb), and water status. The innovation lies in a four-stage decision-making pipeline that filters physiologically stressed plants before selecting ripened fruits based on internal and external quality indicators. Experimental validation across four plant conditions (control, water-stressed, light-stressed, and wounded) demonstrated the efficacy of VOC and hormone sensors in identifying optimal harvest candidates. Additionally, the integration of low-cost electrochemical ion sensors provides scalable nutrient monitoring within NFT systems. This research delivers a robust, sensor-driven framework for autonomous, data-informed harvesting decisions in smart indoor agriculture. By fusing real-time physiological feedback with AI-enhanced phenotyping, the system advances precision harvest timing, improves fruit nutritional quality, and sets the foundation for resilient, feedback-controlled farming platforms suited to meeting global food security and sustainability demands. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

23 pages, 49734 KiB  
Article
Integrating Remote Sensing, Landscape Metrics, and Random Forest Algorithm to Analyze Crop Patterns, Factors, Diversity, and Fragmentation in a Kharif Agricultural Landscape
by Surajit Banerjee, Tuhina Nandi, Vishwambhar Prasad Sati, Wiem Mezlini, Wafa Saleh Alkhuraiji, Djamil Al-Halbouni and Mohamed Zhran
Land 2025, 14(6), 1203; https://doi.org/10.3390/land14061203 - 4 Jun 2025
Viewed by 938
Abstract
Despite growing importance, agricultural landscapes face threats, like fragmentation, shrinkage, and degradation, due to climate change. Although remote sensing and GIS are widely used in monitoring croplands, integrating machine learning, remote sensing, GIS, and landscape metrics for the holistic management of this landscape [...] Read more.
Despite growing importance, agricultural landscapes face threats, like fragmentation, shrinkage, and degradation, due to climate change. Although remote sensing and GIS are widely used in monitoring croplands, integrating machine learning, remote sensing, GIS, and landscape metrics for the holistic management of this landscape remains underexplored. Thus, this study monitored crop patterns using random forest (94% accuracy), the role of geographical factors (such as elevation, aspect, slope, maximum and minimum temperature, rainfall, cation exchange capacity, NPK, soil pH, soil organic carbon, soil type, soil water content, proximity to drainage, proximity to market, proximity to road, population density, and profit per hectare production), diversity, combinations, and fragmentation using landscape metrics and a fragmentation index. Findings revealed that slope, rainfall, temperature, and profit per hectare production emerged as significant drivers in shaping crop patterns. However, anthropogenic drivers became deciding factors during spatial overlaps between crop suitability zones. Rice belts were the least fragmented and highly productive with a risk of monoculture. Croplands with a combination of soybean, black grams, and maize were highly fragmented, despite having high diversity with comparatively less production per field. These diverse fields were providing higher profits and low risks of crop failure due to the crop combinations. Equally, intercropping balanced the nutrient uptakes, making the practice sustainable. Thus, it can be suggested that productivity and diversity should be prioritized equally to achieve sustainable land use. The development of the PCA-weighted fragmentation index offers an efficient tool to measure fragmentation across similar agricultural regions, and the integrated approach provides a scalable framework for holistic management, sustainable land use planning, and precision agriculture. Full article
(This article belongs to the Special Issue Digital Earth and Remote Sensing for Land Management)
Show Figures

Figure 1

33 pages, 2794 KiB  
Article
Soil Bulk Density, Aggregates, Carbon Stabilization, Nutrients and Vegetation Traits as Affected by Manure Gradients Regimes Under Alpine Meadows of Qinghai–Tibetan Plateau Ecosystem
by Mahran Sadiq, Nasir Rahim, Majid Mahmood Tahir, Aqila Shaheen, Fu Ran, Guoxiang Chen and Xiaoming Bai
Plants 2025, 14(10), 1442; https://doi.org/10.3390/plants14101442 - 12 May 2025
Viewed by 462
Abstract
Climate change and overgrazing significantly constrain the sustainability of meadow land and vegetation in the livestock industry on the Tibetan–Plateau ecosystem. In context of climate change mitigation, grassland soil C sequestration and forage sustainability, it is important to understand how manure regimes influence [...] Read more.
Climate change and overgrazing significantly constrain the sustainability of meadow land and vegetation in the livestock industry on the Tibetan–Plateau ecosystem. In context of climate change mitigation, grassland soil C sequestration and forage sustainability, it is important to understand how manure regimes influence SOC stability, grassland soil, forage structure and nutritional quality. However, the responses of SOC fractions, soil and forage structure and quality to the influence of manure gradient practices remain unclear, particularly at Tianzhu belt, and require further investigation. A field study was undertaken to evaluate the soil bulk density, aggregate fractions and dynamics in SOC concentration, permanganate oxidizable SOC fractions, SOC stabilization and soil nutrients at the soil aggregate level under manure gradient practices. Moreover, the forage biodiversity, aboveground biomass and nutritional quality of alpine meadow plant communities were also explored. Four treatments, i.e., control (CK), sole sheep manure (SM), cow dung alone (CD) and a mixture of sheep manure and cow dung (SMCD) under five input rates, i.e., 0.54, 1.08, 1.62, 2.16 and 2.70 kg m−2, were employed under randomized complete block design with four replications. Our analysis confirmed the maximum soil bulk density (BD) (0.80 ± 0.05 g cm−3) and micro-aggregate fraction (45.27 ± 0.77%) under CK, whilst the maximum macro-aggregate fraction (40.12 ± 0.54%) was documented under 2.70 kg m−2 of SMCD. The SOC, very-labile C fraction (Cfrac1), labile C fraction (Cfrac2) and non-labile/recalcitrant C fraction (Cfrac4) increased with manure input levels, being the highest in 2.16 kg m−2 and 2.70 kg m−2 applications of sole SM and the integration of 50% SM and 50% CD (SMCD), whereas the less-labile fraction (Cfrac3) was highest under CK across aggregate fractions. However, manures under varying gradients improved SOC pools and stabilization for both macro- and micro-aggregates. A negative response of the carbon management index (CMI) in macro-aggregates was observed, whilst CMI in the micro-aggregate fraction depicted a positive response to manure addition with input rates, being the maximum under sole SM addition averaged across gradients. Higher SOC pools and CMI under the SM, CD and SMCD might be owing to the higher level of soil organic matter inputs under higher doses of manures. Moreover, the highest accumulation of soil nutrients,, for instance, TN, AN, TP, AP, TK, AK, DTPA extractable Zn, Cu, Fe and Mn, was recorded in SM, CD and SMCD under varying gradients over CK at both aggregate fractions. More nutrient accumulation was found in macro-aggregates over micro-aggregates, which might be credited to the physical protection of macro-aggregates. Overall, manure addition under varying input rates improved the plant community structure and enhanced meadow yield, plant community diversity and nutritional quality more than CK. Therefore, alpine meadows should be managed sustainably via the adoption of sole SM practice under a 2.16 kg m−2 input rate for the ecological utilization of the meadow ecosystem. The results of this study deliver an innovative perspective in understanding the response of alpine meadows’ SOC pools, SOC stabilization and nutrients at the aggregate level, as well as vegetation structure, productivity and forage nutritional quality to manure input rate practices. Moreover, this research offers valuable information for ensuring climate change mitigation and the clean production of alpine meadows in the Qinghai–Tibetan Plateau area of China. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

25 pages, 4700 KiB  
Article
Design and Optimization of a Second-Generation Extruded Snack Using Carrot Waste, Blue Corn Flour, and Ellagic Acid as Functional Ingredients
by Yaír Adonaí Sánchez-Nuño, Karla Nuño, Alma Hortensia Martínez-Preciado, Jorge Manuel Silva-Jara, Carlos A. Velázquez-Carriles, Carlos Alberto Gomez-Aldapa and Angélica Villarruel-López
Foods 2025, 14(10), 1657; https://doi.org/10.3390/foods14101657 - 8 May 2025
Viewed by 676
Abstract
Blue maize is rich in bioactive compounds which are at risk of extinction due to monoculture practices. Carrot bagasse, considered a byproduct of the food industry, contains compounds that have been shown to benefit human health while also enhancing sustainability. Ellagic acid can [...] Read more.
Blue maize is rich in bioactive compounds which are at risk of extinction due to monoculture practices. Carrot bagasse, considered a byproduct of the food industry, contains compounds that have been shown to benefit human health while also enhancing sustainability. Ellagic acid can prevent and assist in the treatment of various pathologies. Extrusion is a process characterized by its use of low energy, which minimizes the degradation of nutrients and bioactive compounds compared to other technologies. The objective of this research was to develop a functional food with high value of sensorial acceptance, desirable physicochemical, and antioxidant properties, using an 85:13:2% mixture of nixtamalized blue maize flour, carrot bagasse flour, and ellagic acid, processed with optimal conditions of extrusion determined with a surface response model. Operational conditions using a central rotatable experimental design were die temperature (DT = 120–170 °C), and screw speed (SS = 50–240 rpm), while response variables were physicochemical properties (expansion index, bulk density, breaking force, water absorption index and water solubility index) and antioxidant activity (free phenols inhibition of ABTS and DPPH). Sensory analysis, bromatological characterization and ellagic acid content determination with HPLC-DAD in reversed phase were also made. The optimal operational conditions were found to be DT = 144 °C and SS = 207 rpm, resulting in a mixture with high sensorial acceptability on a five-point hedonic scale. The optimized functional food may be used to promote the utilization of endemic ingredients and reduce food waste in the treatment of pathologies and prevention of diseases due to its high antioxidant activity attributed to phenolic and terpene compounds. Full article
Show Figures

Figure 1

30 pages, 1810 KiB  
Article
Zeolite and Inorganic Nitrogen Fertilization Effects on Performance, Lint Yield, and Fiber Quality of Cotton Cultivated in the Mediterranean Region
by Ioannis Roussis, Antonios Mavroeidis, Panteleimon Stavropoulos, Konstantinos Baginetas, Panagiotis Kanatas, Konstantinos Pantaleon, Antigolena Folina, Dimitrios Beslemes and Ioanna Kakabouki
Crops 2025, 5(3), 27; https://doi.org/10.3390/crops5030027 - 3 May 2025
Viewed by 1951
Abstract
The continuous provision of nitrogen (N) to the crop is critical for optimal cotton production; however, the constant and excessive application of synthetic fertilizers causes adverse impacts on soil, plants, animals, and human health. The current study focused on the short-term effects (one-year [...] Read more.
The continuous provision of nitrogen (N) to the crop is critical for optimal cotton production; however, the constant and excessive application of synthetic fertilizers causes adverse impacts on soil, plants, animals, and human health. The current study focused on the short-term effects (one-year study) of adding different rates of clinoptilolite zeolite, as part of an integrated nutrient management plan, and different rates of inorganic N fertilizer to improve soil and crop performance of cotton in three locations (ATH, MES, and KAR) in Greece. Each experiment was set up according to a split-plot design with three replications, three main plots (zeolite application at rates of 0, 5, and 7.5 t ha−1), and four sub-plots (N fertilization regimes at rates of 0, 100, 150, and 200 kg N ha−1). The results of this study indicated that increasing rates of the examined factors increased cotton yields (seed cotton yield, lint yield, and lint percentage), with the greatest lint yield recorded under the highest rates of zeolite (7.5 t ha−1: 1808, 1723, and 1847 kg ha−1 in ATH, MES, and KAR, respectively) and N fertilization (200 kg N ha−1: 1804, 1768, and 1911 kg ha−1 in ATH, MES, and KAR, respectively). From the evaluated parameters, most soil parameters (soil organic matter, soil total nitrogen, and total porosity), root and shoot development (root length density, plant height, leaf area index, and dry weight), fiber maturity traits (micronaire, maturity, fiber strength, and elongation), fiber length traits (upper half mean length, uniformity index, and short fiber index), as well as color (reflectance and spinning consistency index) and trash traits (trash area and trash grade), were positively impacted by the increasing rates of the evaluated factors. In conclusion, the results of the present research suggest that increasing zeolite and N fertilization rates to 7.5 t ha−1 and 200 kg N ha−1, respectively, improved soil properties (except mean weight diameter), stimulated crop development, and enhanced cotton and lint yield, as well as improved the fiber maturity, length, and color parameters of cotton grown in clay-loam soils in the Mediterranean region. Full article
Show Figures

Figure 1

20 pages, 4096 KiB  
Article
Sentinel-2 Images Discover How Extraordinary Water Inputs Allow the Ephemeral Resurgence of Najas marina in a Shallow Hypertrophic Lagoon (Albufera of Valencia, Spain)
by Juan M. Soria, Noelia Campillo-Tamarit, Juan Víctor Molner and Xavier Soria-Perpinyà
Water 2025, 17(9), 1302; https://doi.org/10.3390/w17091302 - 27 Apr 2025
Viewed by 451
Abstract
Anthropogenic activities represent a significant challenge to macrophyte conservation worldwide. Eutrophication, resulting from excessive nutrient inputs to aquatic ecosystems, is one of the main man-induced disturbances affecting the health of wetlands. Albufera of Valencia has experienced a hypertrophic and turbid state since the [...] Read more.
Anthropogenic activities represent a significant challenge to macrophyte conservation worldwide. Eutrophication, resulting from excessive nutrient inputs to aquatic ecosystems, is one of the main man-induced disturbances affecting the health of wetlands. Albufera of Valencia has experienced a hypertrophic and turbid state since the 1970s, with the consequent disappearance of macrophyte meadows and the predominance of phytoplankton. However, unique episodes of water clarity occurred in 2018 and 2022, leading to the reappearance of Myriophyllum spicatum and Najas marina, respectively. In the present study, the Normalized Difference Vegetation Index (NDVI) is used to monitor the emergence, growth, and disappearance of N. marina in 2022, as was previously done for M. spicatum. In November 2022, we obtained the maximum cover with 48.42 ha and began declining until March 2023. This methodology supports the potential of remote sensing in assessing the cover, density, and health of aquatic vegetation, while allowing us to examine the influence of water quality and quantity on this prominent phenomenon. After removing the outlier data, all variables except for suspended solids presented normal distribution. The results suggest that, by improving the water quality in the Albufera and maintaining an adequate ecological flow, managed by the competent authorities, the recovery of the macrophyte meadows that characterised this ecosystem more than five decades ago could be feasible. Full article
(This article belongs to the Special Issue Application of Satellite Remote Sensing in Water Quality Monitoring)
Show Figures

Figure 1

18 pages, 3958 KiB  
Article
Retained Tree Biomass Rather than Replanted One Determines Soil Fertility in Early Stand Reconstruction in Chinese Fir (Cunninghamia lanceolata) Plantations
by Ziqing Zhao, Yuhao Yang, Huifei Lv, Aibo Li, Yong Zhang and Benzhi Zhou
Forests 2025, 16(4), 654; https://doi.org/10.3390/f16040654 - 9 Apr 2025
Viewed by 375
Abstract
Soil nutrient and fertility assessments provide a direct measure for evaluating forest management effects. In this study, we examined soil nutrient content in Chinese fir (Cunninghamia lanceolata) plantations under four reconstruction patterns: pure plantation, introduced broadleaf, introduced needleleaf, and introduced mixed broadleaf-needleleaf. [...] Read more.
Soil nutrient and fertility assessments provide a direct measure for evaluating forest management effects. In this study, we examined soil nutrient content in Chinese fir (Cunninghamia lanceolata) plantations under four reconstruction patterns: pure plantation, introduced broadleaf, introduced needleleaf, and introduced mixed broadleaf-needleleaf. The soil fertility index (SFI) evaluation model was constructed based on partial least squares path modeling (PLS-PM), revealing the influence of stand characteristics on SFI in early stand reconstruction. The results showed that, compared to pure plantations, total nutrient content increased in the introduced needleleaf pattern by 13.94% to 21.15% and available nutrient content by 18.21% to 26.91%. In contrast, both introduced broadleaf and mixed broadleaf-needleleaf exhibited a declining trend. Significant differences were observed among the reconstruction patterns (p < 0.05). In the SFI evaluation model, soil chemistry total nutrient (SCT) and soil chemistry available nutrient (SCA) made significant contributions. The weights of SCT and SCA in SFI were 0.52 and 0.48, respectively. The SFI of four patterns ranged from 0.43 to 0.58, indicating relatively low soil fertility. Compared to pure plantations, introduced trees did not enhance soil fertility in early stand reconstruction. The SFI of the introduced needleleaf was significantly higher than that of the other two reconstruction patterns (p < 0.05). Stand construction (including diameter at breast height, tree density, and tree biomass) explained 14.69% of SFI variation, with a contribution of 31.72% in the surface soil layer (0~20 cm). Tree biomass significantly influenced SFI variation, accounting for over 40% of the total stand factors. Retained tree biomass had a substantially greater effect than introduced tree biomass, contributing twice as much to SFI variation. PLS-PM could effectively reflect the soil nutrient status and accurately estimate the weight of soil fertility. In early stand reconstruction, retained tree biomass might be the major influence on soil fertility variation. We suggest determining reasonable thinning intensity to retain enough Chinese fir and promote the growth of introduced trees. This study introduces a novel approach to soil fertility assessment and provides theoretical support for formulating effective forest management strategies in the early reconstruction of Chinese fir plantations. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

17 pages, 2218 KiB  
Article
Constructing and Spatially Differentiating Soil Quality Indices in Qiqihar’s Typical Black Soil Zone: A Case Study of Tailai, Longjiang, and Gannan Counties, China
by Lei Wang, Min Pang, Na Wang, Dan Wei, Zhizhuang An, Jianzhi Xie and Liang Jin
Agronomy 2025, 15(4), 773; https://doi.org/10.3390/agronomy15040773 - 21 Mar 2025
Viewed by 578
Abstract
Black soils in Qiqihar City are comprised primarily of black soil. They have been extensively exploited for agriculture. To investigate the spatial distribution of soils in this region, we analyze 72 samples collected from Tailai, Longjiang, and Gannan counties. A soil quality index [...] Read more.
Black soils in Qiqihar City are comprised primarily of black soil. They have been extensively exploited for agriculture. To investigate the spatial distribution of soils in this region, we analyze 72 samples collected from Tailai, Longjiang, and Gannan counties. A soil quality index (SQI) based on a subset of measured soil indicators is constructed to comprehensively evaluate black soil quality. We report an average soil bulk density in these black soil areas of 1.42 g/cm3, indicating relatively high compaction and density. The average soil moisture content (19%) is relatively low. In some areas, soil electrical conductivity reaches 2.92 μS/cm, indicating mild salinization (<4 μS/cm). Overall soil nutrient levels are relatively high, but in some areas they are poor. Principal components and correlation analyses identify five of nine measured indicators (soil bulk density, pH, moisture, nitrate nitrogen, and organic matter contents) that adequately characterize soil quality. The SQI values reveal soil quality to decrease along a north–south gradient, sand to be highest in Gannan County and lowest in Tailai County. Overall, black soil quality in Qiqihar City is relatively low. These results provide a scientific foundation and data support for soil restoration and ecological construction efforts in these areas. Full article
Show Figures

Figure 1

15 pages, 521 KiB  
Article
Effects of Dandelion Flavonoid Extract on the Accumulation of Flavonoids in Layer Hen Meat, Slaughter Performance and Blood Antioxidant Indicators of Spent Laying Hens
by Yuyu Wei, Jingwen Zhang, Yiming Zhang, Dingkuo Liu, Chunxue You, Wenjuan Zhang, Chaoqi Ren, Xin Zhao, Liu’an Li and Xiaoxue Yu
Animals 2025, 15(6), 886; https://doi.org/10.3390/ani15060886 - 20 Mar 2025
Cited by 1 | Viewed by 691
Abstract
This study aimed to investigate the effects of different supplemental amounts of dandelion flavonoid extracts (DFE) in diets on nutrients in chicken, slaughtering performance, blood biochemical indexes and antioxidant capacity of spent laying hens. A total of 180 560-day-old spent Hy-Line Brown laying [...] Read more.
This study aimed to investigate the effects of different supplemental amounts of dandelion flavonoid extracts (DFE) in diets on nutrients in chicken, slaughtering performance, blood biochemical indexes and antioxidant capacity of spent laying hens. A total of 180 560-day-old spent Hy-Line Brown laying hens were randomly divided into five groups. The control group was fed the basal diet, while the experimental groups were supplemented with DFE at levels of 1000, 2000, 4000, and 8000 mg/kg (as T1, T2, T3, and T4 group) in the basal diet, respectively. The variables measured included the content of dandelion flavonoids in layer hen thigh meat and breast meat, slaughter performance, blood biochemical indexes, and antioxidant capacity. Data were subjected to a one-way analysis of variance (one-way ANOVA) to assess the impact of DFE supplementation compared to the control group on study outcomes. The results showed that dietary supplementation with DFE can increase the content of dandelion flavonoids in layer hen meat. The contents of rutin in layer hen breast meat of groups T1, T2, T3, and T4 were 1.37, 4.41, 16.26, and 36.03 ng/g, respectively, and the contents of quercetin was 2.58, 1.36, 4.98, 12.48 ng/g. In layer hen thigh meat of groups T1, T2, T3, and T4, the contents of rutin were 11.48, 15.98, 44.43, 122.32 ng/g, and the contents of quercetin were 9.96, 13.14, 23.15, 38.09 ng/g, respectively. The addition of DFE increased the total phenol content of the feed and highly significantly elevated the total phenol content of layer hen meat (p < 0.01), and the total phenol content of chicken meat was strongly and positively correlated with the total phenol content of the feed. DFE supplementation significantly decreased abdominal fat percentage (p < 0.05) and increased crude fat content in chicken (p < 0.05). The addition of DFE reduced aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities (p < 0.05), decreased triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL) cholesterol (LDL-C), glucose (GLU), and malondialdehyde (MDA) contents (p < 0.05), and increased the content of albumin (ALB), total antioxidant (T-AOC) capacity and total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) activity (p < 0.05). Dietary supplementation of DFE at different concentrations could significantly increase the content of dandelion flavonoids in the muscle of spent laying hens, reduce the abdominal fat rate in hens, effectively reduce blood lipid levels, effectively increase crude fat content in thigh muscle, and enhance the body’s antioxidant capacity and liver function. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

19 pages, 8099 KiB  
Article
Soil Microbial Communities and Their Relationship with Soil Nutrients in Different Density Pinus sylvestris var. mongolica Plantations in the Mu Us Sandy Land
by Long Hai, Mei Zhou, Kai Zhao, Guangyu Hong, Zihao Li, Lei Liu, Xiaowei Gao, Zhuofan Li and Fengzi Li
Forests 2025, 16(3), 547; https://doi.org/10.3390/f16030547 - 19 Mar 2025
Cited by 1 | Viewed by 447
Abstract
In the Mu Us Sandy Land, vegetation is closely related to soil microorganisms and nutrients. However, research on the relationship between soil microbial communities and nutrients in Pinus sylvestris var. mongolica plantations of different densities is still imperfect. This study selected Pinus sylvestris [...] Read more.
In the Mu Us Sandy Land, vegetation is closely related to soil microorganisms and nutrients. However, research on the relationship between soil microbial communities and nutrients in Pinus sylvestris var. mongolica plantations of different densities is still imperfect. This study selected Pinus sylvestris var. mongolica plantations with high, medium, and low densities, as well as bare sandy land, to analyze the relationship between vegetation density and soil nutrients, microbial community structure, and diversity indices. The results show that the following: (1) Medium-density plantations significantly increased soil organic matter, total nitrogen, and total potassium content, which were 4.3 times that of bare sandy land and 1.7 times that of high-density plantations; (2) In high-density plantations, the relative abundance of bacterial phyla Actinobacteriota and fungal phylum Ascomycota was higher; as plantation density decreased, the relative abundance of bacterial phyla Proteobacteria and Acidobacteriota and fungal phylum Basidiomycota increased, with different density plantations significantly affecting soil microbial community structure; (3) High-density plantations significantly increased the abundance of bacterial and fungal genera but also reduced bacterial diversity indices, while medium-density plantations were outstanding in enhancing fungal species richness and diversity, with the highest fungal Shannon index, indicating that medium density is conducive to fungal diversity enhancement; (4) Soil organic matter, total nitrogen, total phosphorus, total potassium, and pH value were the main environmental factors affecting soil microbial community structure. High-density plantations significantly affected soil microbial community structure by changing these soil nutrients and physicochemical properties, especially related to changes in total potassium and pH value. This study clarified the effects of Pinus sylvestris var. mongolica plantation density on soil nutrients and microbial community structure, revealing the intrinsic connection between soil nutrients and microbial communities, providing a theoretical basis for vegetation restoration in the Mu Us Sandy Land ecosystem, and helping to formulate scientific management strategies for Pinus sylvestris var. mongolica plantations to improve sandy land soil quality and promote the sustainable development of sandy land ecosystems. Full article
Show Figures

Figure 1

Back to TopTop