Retained Tree Biomass Rather than Replanted One Determines Soil Fertility in Early Stand Reconstruction in Chinese Fir (Cunninghamia lanceolata) Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Forest
2.2. Method
2.2.1. Sampling Plot Establishment and Soil Collection
2.2.2. Estimation of Tree Biomass
2.2.3. Determination of Nutrient Content in Soil
2.2.4. Model Construction and Soil Fertility Index Calculation
2.2.5. Statistical Analysis
3. Results
3.1. Stand Characteristics
3.2. Soil Nutrient Content
3.3. Soil Fertility Index
3.4. Effects of Stand Construction on Soil Fertility
4. Discussion
4.1. Soil Nutrient Characteristics in Different Reconstruction Patterns
4.2. Soil Fertility Evaluation Based on PLS-PM Path Model
4.3. Factors Affecting SFI in Stand Reconstruction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CF | Pure Chinese fir plantation |
CF-BL | Chinese fir plantation introduced broadleaf (Phoebe chekiangensis) |
CF-NL | Chinese fir plantation introduced needleleaf (Taxus wallichiana var. Chinensis) |
CF-BN | Chinese fir plantation introduced mixed broadleaf (Phoebe chekiangensis, Cinnamomum chekiangense)-needleleaf (Taxus wallichiana var. Chinensis) |
SFI | Soil fertility index |
PLS-PM | Partial least squares path modeling |
SEM | Structural equation model |
SCT | Soil chemistry total nutrient |
SCA | Soil chemistry available nutrient |
DBH | Diameter at breast height |
DBH-CF | Diameter at breast height of Chinese fir |
DBH-IN | Diameter at breast height of introduced trees |
H | Height |
ELE | Elevation |
SLO | Slope |
ASP | Aspect |
IV | Important value |
BIO | Tree biomass |
BIO-Above | Aboveground biomass |
BIO-Below | Belowground biomass |
BIO-CF | Biomass of Chinese fir |
BIO-IN | Biomass of introduced trees |
DEN | Tree density |
DEN-CF | Density of Chinese fir |
DEN-IN | Density of introduced trees |
SOC | Soil organic carbon |
TN | Soil total nitrogen |
TP | Soil total phosphorus |
AN | Soil available nitrogen |
AP | Soil available phosphorus |
AK | Soil available potassium |
KMO | Kaiser-Meyer-Olkin test |
C.Alpha | Cronbach’s Alpha reliability test |
CR | Composite reliability |
DG.rho | Dillon-Goldstein’s rho |
GoF | Goodness of fit |
AVE | Average variance extracted |
RDA | Canonical analysis |
HP | Hierarchical clustering |
References
- Tang, X.; Pérez-Cruzado, C.; Fehrmann, L.; Álvarez-González, J.G.; Lu, Y.; Kleinn, C. Development of a compatible taper function and stand-level merchantable volume model for Chinese fir plantations. PLoS ONE 2016, 11, e0147610. [Google Scholar] [CrossRef] [PubMed]
- Li, R.H.; Han, J.M.; Duan, X.; Chi, Y.G.; Zhang, W.D.; Chen, L.C.; Wang, Q.K.; Xu, M.; Yang, Q.P.; Wang, S.L. Crown pruning and understory removal did not change the tree growth rate in a Chinese fir (Cunninghamia lanceolata) plantation. For. Ecol. Manag. 2020, 464, 118056. [Google Scholar] [CrossRef]
- Li, W.Y.; Sun, H.M.; Cao, M.M.; Wang, L.Y.; Fang, X.H.; Jiang, J. Diversity and structure of soil microbial communities in Chinese fir plantations and Cunninghamia lanceolata–Phoebe bournei mixed forests at different successional stages. Forests 2023, 14, 1977. [Google Scholar] [CrossRef]
- Yu, Y.C.; Yang, J.Y.; Zeng, S.C.; Wu, D.M.; Jacobs, D.F.; Sloan, J.L. Soil pH, organic matter, and nutrient content change with the continuous cropping of Cunninghamia lanceolata plantations in South China. J. Soils Sediments 2017, 17, 2230–2238. [Google Scholar] [CrossRef]
- Pang, Y.F.; Cao, X.Y.; Li, J.P.; Zhao, W.F.; Xie, Z.C.; Sun, Y.P. Soil fertility analysis and comprehensive evaluation of four typical forest stands in Fushou forest farm. J. West China For. Sci. 2021, 50, 53–60. [Google Scholar] [CrossRef]
- Kang, H.; Lee, D. Inhibition of extracellular enzyme activities in a forest soil by additions of inorganic nitrogen. Commun. Soil Sci. Plant Anal. 2005, 36, 15–16. [Google Scholar] [CrossRef]
- Farooq, T.H.; Kumar, U.; Shakoor, A.; Albasher, G.; Alkahtani, S.; Rizwana, H.; Tayyab, M.; Dobaria, J.; Hussain, M.I.; Wu, P. Influence of intraspecific competition stress on soil fungal diversity and composition in relation to tree growth and soil fertility in sub-tropical soils under Chinese Fir monoculture. Sustainability 2021, 13, 10688. [Google Scholar] [CrossRef]
- Yan, M.M.; Gao, H.D.; Liu, M.H.; Yi, L.T. Research progress on the effect of mixed plantation on the soil fertility in the forests between Cumminghamia lanceolata and other tree species. Ecol. Sci. 2024, 43, 253–259. [Google Scholar] [CrossRef]
- Wang, L.Y.; Sun, Y.Y.; Li, J.; Tigabu, M.; Xu, Q.L.; Ma, X.Q.; Li, M. Rhizosphere soil nutrients and bacterial community diversity of four broad-leaved trees planted under Chinese fir stands with different stocking density levels. Front. For. Glob. Change 2023, 6, 1135692. [Google Scholar] [CrossRef]
- Pan, Y.L.; Lin, G.W.; Chen, Z.W.; Fan, Y.; Chen, X.F.; Wu, C.Z.; Hong, T. Effect of Cunninghamia lanceolata-Aleurites montana mixed forests on soil enzyme activity. Chin. J. Trop. Crops 2018, 39, 846–851. [Google Scholar] [CrossRef]
- Lei, J.; Wu, H.B.; Li, X.Y.; Guo, W.F.; Duan, A.G.; Zhang, J.G. Response of rhizosphere bacterial communities to near-natural forest management and tree species within Chinese fir plantations. Microbiol. Spectr. 2023, 11, e02328-22. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Y.; Lu, S.X.; Lu, Y.M.; Xu, E.L.; Wu, D.M.; Liu, C.H.; Jiang, Z.K.; Guo, J.F. Effects of Chinese fir interplanted with broadleaved trees on soil ecological enzyme activity and stoichiometry. For. Res. 2021, 34, 106–113. [Google Scholar] [CrossRef]
- Chen, J.; Qu, M.K.; Zhang, J.L.; Xie, E.Z.; Huang, B.; Zhao, Y.C. Soil fertility quality assessment based on geographically weighted principal component analysis (GWPCA) in large-scale areas. CATENA 2021, 201, 105197. [Google Scholar] [CrossRef]
- Luo, Y.J.; Zhang, X.Q. The assessment of soil degradation in successive rotations of Chinese fie plantation and the soil amelioration of mixed plantation of Chinese fir and broad-leaved. Acta Ecol. Sin. 2007, 27, 715–724. [Google Scholar] [CrossRef]
- Jiang, H.Y. Fir, Sassafras tree forest biomass and forest soil fertility research. East Chin. For. Manag. 2009, 23, 13–15. [Google Scholar] [CrossRef]
- He, G.P.; Chen, Y.T.; Hu, B.T.; Feng, J.W.; Liu, H.T.; Cai, H.M. Study on the biomass and soil fertility of pure and mixed stands of Cunninghamia lanceolata, Liriodendron chinense and Sassafras tsumu. For. Res. 2001, 14, 540–547. [Google Scholar] [CrossRef]
- Hong, J.N. The preliminary study on the afforestation effect of the Cunninghamia lanceolata mixed with other seven broad-leaved species. J. Fujian For. Sci. Technol. 2008, 1, 120–124. [Google Scholar] [CrossRef]
- Guo, J.H.; Feng, H.L.; McNie, P.; Liu, Q.Y.; Xu, X.; Pan, C.; Yan, K.; Feng, L.; Goitom, E.A.; Yu, Y.C. Species mixing improves soil properties and enzymatic activities in Chinese fir plantations: A meta-analysis. CATENA 2023, 220, 106723. [Google Scholar] [CrossRef]
- Guo, J.H.; Sun, J.J.; Feng, H.L.; Cao, P.H.; Yu, Y.C. Research progress on evolution trends and maintenance measures of soil fertility quality in Cunninghamia lanceolata plantations. J. Zhejiang A F Univ. 2020, 37, 801–809. [Google Scholar] [CrossRef]
- Du, C.Q.; Zhou, G.Q.; Yuan, H.; Wang, L.K.; Lei, J.; Xu, Y.Z. Comprehensive evaluation of soil fertility in different stand ages in a Chinese fir short rotation plantation. J. For. Environ. 2021, 41, 255–262. [Google Scholar] [CrossRef]
- Cao, X.Y.; Mo, Y.J.; Yan, W.D.; Zhang, Z.L.; Peng, Y.Y. Evaluation of soil quality in five ages of Chinese fir plantations in subtropical China based on a structural equation model. Forests 2023, 14, 1217. [Google Scholar] [CrossRef]
- Zhao, W.F.; Cao, X.Y.; Li, J.P.; Xie, Z.C.; Sun, Y.P.; Peng, Y.Y. Novel weighting method for evaluating forest soil fertility index: A structural quation model. Plants 2023, 12, 410. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Duraisamy, V.; Huang, Z.J.; Guo, F.T.; Ma, X.Q. Influence of long-term successive rotations and stand age of Chinese fir (Cunninghamia lanceolata) plantations on soil properties. Geoderma 2017, 306, 127–134. [Google Scholar] [CrossRef]
- Zhang, B.; Zhan, G.Y.; Chen, D.; White, R.E.; Li, L. A quantitative evaluation system of soil productivity for intensive agriculture in China. Geoderma 2004, 123, 319–331. [Google Scholar] [CrossRef]
- Liu, D.H.; Liang, G.Q.; Zhou, W.; Wang, X.B.; Xia, W.J. Fuzzy comprehensive fertility evaluation based on BP artificial network. Soil Fertil. Sci. Chin. 2011, 5, 12–19. [Google Scholar] [CrossRef]
- Ye, H.C.; Zhang, S.W.; Huang, Y.F.; Zhou, Z.M.; Shen, Z.Y. Application of rough set theory to determine weights of soil fertility factor. Sci. Agric. Sin. 2014, 47, 710–717. [Google Scholar] [CrossRef]
- Cao, Y.B.; Wang, B.T.; Wei, T.T.; Ma, H. Ecological stoichiometric characteristics and element reserves of three stands in a closed forest on the Chinese loess plateau. Environ. Monit. Assess 2016, 188, 80. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Wu, L.; Ren, Y.; Zhang, J.; Xu, M. Advance in Indicator Screening and Methodologies of Soil Quality Evaluation. Sci. Agric. Sin. 2021, 54, 3043–3056. [Google Scholar] [CrossRef]
- Bünemanna, E.K.; Bongiorno, G.; Bai, Z.; Creamerb, R.E.; Deyn, G.D.; Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Libório, M.P.; Martinuci, O.D.S.; Laudares, S.; Lyrio, R.D.M.; Machado, A.M.C.; Bernardes, P.; Ekel, P. Measuring intra-urban inequality with structural equation modeling: A theory-grounded indicator. Sustainability 2020, 12, 8610. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- GB/T 43648-2024; National Public Service Platform for Standards Information (SAC/TC 370). Tree Biomass Models and Related Parameters to Carbon Accounting for Major Tree Species. Standards Press of China: Beijing, China, 2024.
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 25–114. ISBN 9787109066441. [Google Scholar]
- Bonett, D.G.; Wright, T.A. Cronbach’s alpha reliability: Interval estimation, hypothesis testing, and sample size planning. J. Organ. Behav 2014, 36, 3–15. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, 2nd ed.; Routledge: New York, NY, USA, 2022; pp. 3–15. ISBN 978-0-8058-6373-4. [Google Scholar]
- Tenenhaus, M.; Esposito, V.V.; Chatelin, Y.M.; Lauro, C. PLS path modeling. Comput. Stat. Data An. 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Shao, G.D.; Ai, J.J.; Sun, Q.W.; Hou, L.Y.; Dong, Y.F. Soil quality assessment under different forest types in the Mount Tai, Central Eastern China. Ecol. Indic. 2020, 115, 106439. [Google Scholar] [CrossRef]
- Lai, J.S.; Zou, Y.; Zhang, J.L.; Peres-Neto, R.P. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol. Evol. 2022, 13, 782–788. [Google Scholar] [CrossRef]
- Bai, Y.F.; Chen, S.Y.; Shi, S.R.; Qi, M.J.; Liu, X.H.; Wang, H.; Wang, Y.X.; Jiang, C.Q. Effects of different management approaches on the stoichiometric characteristics of soil C, N, and P in a mature Chinese fir plantation. Sci. Total Environ. 2020, 723, 137868. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, W.J.; He, Y.M.; Yu, C.X.; Wu, C.Z.; Li, J. Effects of understory Taxus chinensis var. mairei planting on soil fertility of Chinese fir plantations. Chin. J. Appl. Environ. Biol. 2024, 30, 344–352. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, Q.C. Effects of the close-to-nature cultivation of Larix olgensis and Fraxinus mandshurica on the soil physiochemical properties. Sci. Silv. Sin. 2008, 44, 21–27. [Google Scholar] [CrossRef]
- Wang, S.L.; Shen, H.Y.; Sun, Y.; Zhou, Y.Y. Effects of pure Larix olgensis plantation improvement on the soil properties. Sci. Soil Water Conserv. 2009, 7, 98–103. [Google Scholar] [CrossRef]
- Fu, J.Q. Effects of Schima superba interplanting on stand growth and soil properties of Pinus massoniana. Anhui Agric. Sci. Bull. 2012, 18, 126–127. [Google Scholar] [CrossRef]
- Chu, C.J.; Adler, P.B. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecol. Monogr. 2015, 85, 373–392. [Google Scholar] [CrossRef]
- Yamawo, A. Relatedness of neighboring plants alters the expression of indirect defense traits in an extrafloral nectary-bearing plant. Evol. Biol. 2015, 42, 12–19. [Google Scholar] [CrossRef]
- Lu, D.L.; Wang, G.G.; Yan, Q.L.; Gao, T.; Zhu, J.J. Effects of gap size and within-gap position on seedling growth and biomass allocation: Is the gap partitioning hypothesis applicable to the temperate secondary forest ecosystems in Northeast China? For. Ecol. Manag. 2018, 429, 351–362. [Google Scholar] [CrossRef]
- Jiao, J.J.; Sheng, W.X.; Su, G.L.; Xu, Y.H.; Wu, C.P.; Wang, Z.G.; Yang, L.J.; Zhu, J.R.; Jiang, B.; Li, L.H. Stand increment and diversity of understory species in Cunninghamia lanceolata plantation mixed with different rare tree species. J. Zhejiang For. Sci. Technol. 2022, 42, 1–8. [Google Scholar] [CrossRef]
- Zou, H.L. Preliminary Study on the Species and Stand Feature of 5 Phoebe Trees in Zhejiang Province. Master’ Thesis, Zhejiang A&F University, Hangzhou, China, 2012. [Google Scholar]
- He, J.N.; Xie, J.T. Research on nitrogen and phosphorus content in soil of different forest types in Mangshan. J. Cent. South Univ. For. Technol. 2015, 35, 83–88. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.P.; Cao, X.Y.; Yan, J.R. Research on the relationship between spatial structure and soil nutrients of Cunninghamia lanceolata forest based on path analysis method. J. Cent. South Univ. For. Technol. 2020, 40, 41–47. [Google Scholar] [CrossRef]
- Planavsky, N.J.; Rouxel, O.J.; Bekker, A.; Lalonde, S.V.; Konhauser, K.O.; Reinhard, C.T.; Lyons, T.W. The evolution of the marine phosphate reservoir. Nature 2010, 467, 1088–1090. [Google Scholar] [CrossRef]
- Chen, S.; Lin, B.W.; Li, Y.Q.; Zhou, S.M. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China. Geoderma 2020, 357, 113937. [Google Scholar] [CrossRef]
- Dǎnescu, A.; Albrecht, A.T.; Bauhus, J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 2016, 182, 319–333. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, S.T.; Sun, Z.B.; Zhang, H.R.; Wang, J.; Liu, Y. Evaluation of cultivated land soil fertility based on membership function and principal component analysis. Chin. Agric. Sci. Bull. 2023, 39, 22–27. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Xu, X.L.; Li, Z.W.; Liu, M.X.; Xu, C.H.; Zhang, R.F.; Luo, W. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Sci. Total Environ. 2019, 650, 2657–2665. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, W.; Wu, M.; Ye, Y.Y.; Wang, K.L.; Li, D.J. Changes in soil nitrogen stocks following vegetation restoration in a typical karst catchment. Land Degrad. Dev. 2019, 30, 60–72. [Google Scholar] [CrossRef]
- Liu, S.N.; Yu, H.; Li, S.M.; Wei, X.L. A review on soil fertility in mixed Chinese fir and broad forest. Chin. For. Sci. Technol. 2005, 5, 4–6. [Google Scholar] [CrossRef]
- Yang, Y.S.; Cai, L.P.; Chen, G.S.; He, Z.M.; Chen, Y.X. Dynamics of standing crop of N and P for fine roots of mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum. For. Res. 2002, 15, 575–581. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Liu, Z.F.; Rao, X.Q.; Wang, X.L.; Liang, C.F.; Lin, Y.B.; Zhou, L.X.; Cai, X.A.; Fu, S.L. Carbon storage and allocation pattern in plant biomass among different forest plantation stands in Guangdong, China. Forests 2015, 6, 794–808. [Google Scholar] [CrossRef]
- Yu, Q.S.; Rao, X.Q.; Chu, C.J.; Liu, S.P.; Lin, Y.B.; Sun, D.; Tan, X.P.; Hanif, A.; Shen, W.J. Species dominance rather than species asynchrony determines the temporal stability of productivity in four subtropical forests along 30 years of restoration. For. Ecol. Manag. 2020, 457, 117687. [Google Scholar] [CrossRef]
- Chang, E.H.; Chen, T.H.; Tian, G.H.; Hsu, C.K.; Chiu, C.Y. Effect of 40 and 80 years of conifer regrowth on soil microbial activities and community structure in subtropical low mountain forests. Forests 2016, 7, 244. [Google Scholar] [CrossRef]
- Huang, Z.Q.; He, Z.M.; Wan, X.H.; Hu, Z.H.; Fan, S.H.; Yang, Y.S. Harvest residue management effects on tree growth and ecosystem carbon in a Chinese fir plantation in subtropical China. Plant Soil 2013, 364, 303–314. [Google Scholar] [CrossRef]
- Sun, Y.K.; Tang, J.M.; Wang, Y. Soil physical-chemical properties and comprehensive evaluation of Larix kaempferi plantations under different management models. J. Northeast For. Univ. 2022, 50, 70–75. [Google Scholar] [CrossRef]
- Chen, C.; Fang, X.; Xiang, W.H.; Lei, P.F.; Ouyang, S.; Kuzyalov, Y. Soil-plant co-stimulation during forest vegetation restoration in a subtropical area of southern China. For. Ecosyst. 2020, 7, 32. [Google Scholar] [CrossRef]
- Žifčáková, L.; Větrovský, T.; Howe, A.; Baldrian, P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 2016, 18, 288–301. [Google Scholar] [CrossRef]
- Camenzind, T.; Mason-Jones, K.; Mansour, I.; Rilling, M.C.; Lehmann, J. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nat. Geosci. 2023, 16, 115–122. [Google Scholar] [CrossRef]
Type | Patterns | ELE/m | SLO/° | ASP | Tree | ||
---|---|---|---|---|---|---|---|
Dominant Species (IV/%) | Chinese Fir Mean DBH/cm | Chinese Fir Mean H/m | |||||
CF | Pure plantation | 103 | 35 | North | Chinese fir (100) | 13.55 ± 5.83 | 12.69 ± 1.23 |
CF-BL | Introduced broadleaf | 105 | 35 | North | Chinese fir (50.72) Phoebe chekiangensis (49.28) | 19.26 ± 2.49 | 16.76 ± 0.95 |
CF-NL | Introduced needleleaf | 102 | 35 | North | Chinese fir (59.60) Taxus wallichiana var. chinensis (40.40) | 22.56 ± 3.12 | 18.62 ± 1.18 |
CF-BN | Introduced mixed broadleaf-needleleaf | 103 | 35 | North | Chinese fir (45.89) Phoebe chekiangensis (24.53) Cinnamomum chekiangense (15.63) Taxus wallichiana var. chinensis (13.95) | 19.42 ± 3.36 | 15.85 ± 0.76 |
Type | SOC/g·kg−1 | TN/g·kg−1 | TP/g·kg−1 | AN/mg·kg−1 | AP/mg·kg−1 | AK/mg·kg−1 |
---|---|---|---|---|---|---|
CF | 13.13 ± 6.10 AB | 1.04 ± 0.35 AB | 0.19 ± 0.05 A | 98.86 ± 39.25 AB | 3.24 ± 2.29 AB | 47.68 ± 12.63 B |
CF-BL | 10.58 ± 5.39 AB | 0.87 ± 0.33 B | 0.14 ± 0.03 B | 76.73 ± 30.83 BC | 2.14 ± 1.96 BC | 37.06 ± 10.13 BC |
CF-NL | 14.96 ± 6.70 A | 1.26 ± 0.42 A | 0.18 ± 0.05 A | 119.36 ± 43.78 A | 3.83 ± 2.67 A | 60.51 ± 19.80 A |
CF-BN | 8.91 ± 4.36 B | 0.76 ± 0.28 B | 0.14 ± 0.02 B | 62.17 ± 25.80 C | 1.32 ± 1.04 C | 34.29 ± 8.85 C |
Latent Variables | Eigenvalues | C.Alpha | CR | DG.rho | AVE | |
---|---|---|---|---|---|---|
Eig.1st | Eig.2nd | |||||
SFI | 5.06 | 0.440 | 0.962 | 0.999 | 0.969 | 0.843 |
Exogenous Latent Variable | Endogenous Latent Variables | Weighting | Observed Variable | Weighting |
---|---|---|---|---|
SFI | SCT | 0.516 | SOC | 0.338 |
TN | 0.351 | |||
TP | 0.311 | |||
SCA | 0.484 | AN | 0.373 | |
AP | 0.348 | |||
AK | 0.279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Yang, Y.; Lv, H.; Li, A.; Zhang, Y.; Zhou, B. Retained Tree Biomass Rather than Replanted One Determines Soil Fertility in Early Stand Reconstruction in Chinese Fir (Cunninghamia lanceolata) Plantations. Forests 2025, 16, 654. https://doi.org/10.3390/f16040654
Zhao Z, Yang Y, Lv H, Li A, Zhang Y, Zhou B. Retained Tree Biomass Rather than Replanted One Determines Soil Fertility in Early Stand Reconstruction in Chinese Fir (Cunninghamia lanceolata) Plantations. Forests. 2025; 16(4):654. https://doi.org/10.3390/f16040654
Chicago/Turabian StyleZhao, Ziqing, Yuhao Yang, Huifei Lv, Aibo Li, Yong Zhang, and Benzhi Zhou. 2025. "Retained Tree Biomass Rather than Replanted One Determines Soil Fertility in Early Stand Reconstruction in Chinese Fir (Cunninghamia lanceolata) Plantations" Forests 16, no. 4: 654. https://doi.org/10.3390/f16040654
APA StyleZhao, Z., Yang, Y., Lv, H., Li, A., Zhang, Y., & Zhou, B. (2025). Retained Tree Biomass Rather than Replanted One Determines Soil Fertility in Early Stand Reconstruction in Chinese Fir (Cunninghamia lanceolata) Plantations. Forests, 16(4), 654. https://doi.org/10.3390/f16040654