Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = nucleoside modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1448 KB  
Review
Engineering Anti-Tumor Immunity: An Immunological Framework for mRNA Cancer Vaccines
by Olivia Roy and Karen S. Anderson
Vaccines 2025, 13(12), 1222; https://doi.org/10.3390/vaccines13121222 - 3 Dec 2025
Viewed by 1477
Abstract
The landscape of cancer immunotherapy has been redefined by mRNA vaccines as rapid clinically viable strategies that help induce potent, tumor-specific immune responses. This review highlights the current advances in mRNA engineering and antigen design to establish an integrated immunological framework for cancer [...] Read more.
The landscape of cancer immunotherapy has been redefined by mRNA vaccines as rapid clinically viable strategies that help induce potent, tumor-specific immune responses. This review highlights the current advances in mRNA engineering and antigen design to establish an integrated immunological framework for cancer vaccine development. Achieving durable clinical benefit requires more than antigen expression. Effective vaccines need precise epitope selection, optimized delivery systems, and rigorous immune monitoring. The field is shifting from merely inducing immune responses to focusing more on the biochemistry and molecular design principles that combine magnitude, polyfunctionality, and longevity to overcome tumor-induced immune suppression. We examine an integrated immunological framework for mRNA cancer vaccine development, examining how rational molecular engineering of vaccine components, from nucleoside modifications and codon optimization to untranslated regions and linker sequences, shapes immunogenicity and therapeutic efficacy. Future directions will depend on balancing combinatorial strategies combining vaccination with immune checkpoint inhibitors and adoptive cell therapies. Full article
Show Figures

Figure 1

18 pages, 3004 KB  
Article
Calculations of pKa Values for a Series of Fluorescent Nucleobase Analogues
by Sun Jeong Im, Alan J. Mlotkowski, H. Bernhard Schlegel and Christine S. Chow
Compounds 2025, 5(4), 44; https://doi.org/10.3390/compounds5040044 - 22 Oct 2025
Viewed by 1684
Abstract
Nucleobases play diverse structural and functional roles in biological systems. Understanding the fundamental properties of nucleobases is important for their applications as chemical probes of nucleic acid function. As the nucleobases are modified to tune their fluorescence or binding properties, their physical properties [...] Read more.
Nucleobases play diverse structural and functional roles in biological systems. Understanding the fundamental properties of nucleobases is important for their applications as chemical probes of nucleic acid function. As the nucleobases are modified to tune their fluorescence or binding properties, their physical properties such as pKa may also change. Unlike the canonical nucleobases, modified nucleobases are less well understood in terms of their acid-base properties. Previously, theoretical pKa values of canonical, naturally modified, and aza-/deaza-modified nucleobases were determined. In this study, the theoretical pKa values for 25 different fluorescent modified nucleobases (55 total pKa values) were calculated by using an ab initio quantum mechanical method employing the B3LYP density functional with 6-31+G(d,p) basis set along with an implicit–explicit solvation model. The results of these computations are compared to known experimental pKa values. The ability to estimate theoretical pKa values will be beneficial for further development and applications of fluorescent nucleobases. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Graphical abstract

13 pages, 1519 KB  
Article
Thermodynamic Assessment of Prebiotic Molecule Formation Pathways on Comets
by Luca Tonietti
Universe 2025, 11(10), 349; https://doi.org/10.3390/universe11100349 - 18 Oct 2025
Viewed by 630
Abstract
Comets are chemically rich and thermally extreme, spanning surface temperatures from ~50 K in the Oort Cloud to >1000 K for sungrazing bodies. These conditions may support key steps of prebiotic chemistry, including the synthesis of nucleic acid precursors. This study present a [...] Read more.
Comets are chemically rich and thermally extreme, spanning surface temperatures from ~50 K in the Oort Cloud to >1000 K for sungrazing bodies. These conditions may support key steps of prebiotic chemistry, including the synthesis of nucleic acid precursors. This study present a thermodynamic evaluation of seven candidate reactions, producing nitrogenous bases, sugars, nucleosides, and nucleotides, across the cometary temperature spectrum, 50–1000 K. Purine nucleobase synthesis, including adenine formation via aminoacetonitrile polymerization and HCN polymerization, is strongly exergonic at all temperatures. Sugar formation from formaldehyde is also exergonic, while intermediate pathways, e.g., 2-aminooxazole synthesis, become thermodynamically viable only above ~700 K. Nucleoside formation is thermodynamically neutral at low T but becomes favorable at elevated temperatures, whereas phosphorylation to AMP, i.e., adenosine-monophosphate, a nucleotide serving as a critical regulator of cellular energy status, remains highly endergonic under the entire T range studied. My analysis suggests that, under standard-state assumptions, comets can thermodynamically support formation routes of nitrogenous bases and simple sugars but not a complete nucleotide assembly. This supports a dual-phase origin scenario, where comets act as molecular reservoirs, with further polymerization and biological activation occurring post-delivery on planetary surfaces. Importantly, these findings represent purely thermodynamic assessments under standard-state assumptions and do not address kinetic barriers, catalytic influences, or adsorption effects on ice or mineral surfaces. The results should therefore be viewed as a baseline map of feasibility, subject to modifications in more complex chemical environments. Full article
(This article belongs to the Section Planetary Sciences)
Show Figures

Figure 1

23 pages, 4383 KB  
Article
Gaussian Accelerated Molecular Dynamics Simulations Combined with NRIMD to Explore the Mechanism of Substrate Selectivity of Cid1 Polymerase for Different Nucleoside Triphosphates
by Hanwen Liu, Xue Zhou, Haohao Wang, Fuyan Cao and Weiwei Han
Int. J. Mol. Sci. 2025, 26(19), 9325; https://doi.org/10.3390/ijms26199325 - 24 Sep 2025
Viewed by 845
Abstract
Cid1 protein is a crucial component in the RNA interference pathway and abnormal nuclear RNA turnover processes, primarily responsible for adding uridine to the 3′ end of RNA. Cid1 exhibits selective polymerization of UTP over other nucleoside triphosphates. To explore the mechanism of [...] Read more.
Cid1 protein is a crucial component in the RNA interference pathway and abnormal nuclear RNA turnover processes, primarily responsible for adding uridine to the 3′ end of RNA. Cid1 exhibits selective polymerization of UTP over other nucleoside triphosphates. To explore the mechanism of this selectivity, five systems: free-Cid1, Cid1-ATP, Cid1-UTP, Cid1-CTP, and Cid1-GTP with 500 ns Gaussian accelerated molecular dynamics (GaMD) simulations were performed to investigate conformational changes and binding affinities between substrates and Cid1. The results showed that UTP formed stronger and more numerous non-covalent interactions with Cid1 compared to the other three substrates. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding energy analysis revealed a substrate preference for Cid1 polymerase in the order of UTP, followed by ATP, CTP, and GTP. These findings provide theoretical insights into the substrate selectivity mechanism of Cid1 and provide theoretical clues for the design and modification of Cid1 polymerase. Full article
Show Figures

Figure 1

23 pages, 1882 KB  
Review
Epigenetic Drivers of Chemoresistance in Nucleobase and Nucleoside Analog Therapies
by John Kaszycki and Minji Kim
Biology 2025, 14(7), 838; https://doi.org/10.3390/biology14070838 - 9 Jul 2025
Cited by 1 | Viewed by 2230
Abstract
Nucleobase and nucleoside analogs are critical components of antimetabolite chemotherapy treatments used to disrupt DNA replication and induce apoptosis in rapidly proliferating cancer cells. However, the development of resistance to these agents remains a major clinical challenge. This review explores the epigenetic mechanisms [...] Read more.
Nucleobase and nucleoside analogs are critical components of antimetabolite chemotherapy treatments used to disrupt DNA replication and induce apoptosis in rapidly proliferating cancer cells. However, the development of resistance to these agents remains a major clinical challenge. This review explores the epigenetic mechanisms that contribute to acquired chemoresistance, focusing on DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). These epigenetic alterations regulate key processes such as DNA repair, drug metabolism, cell transport, and autophagy, enabling cancer cells to survive and resist therapeutic pressure. We highlight how dysregulation of DNA methyltransferases (DNMTs) and histone acetyltransferases (HATs) modulates expression of transporters (e.g., hENT1, ABCB1), DNA repair enzymes (e.g., Polβ, BRCA1/2), and autophagy-related genes (e.g., CSNK2A1, BNIP3). Furthermore, emerging roles for long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in regulating nucleoside export and DNA damage response pathways underscore their relevance as therapeutic targets. The interplay of these epigenetic modifications drives resistance to agents such as gemcitabine and 5-fluorouracil across multiple tumor types. We also discuss recent progress in therapeutic interventions, including DNMT and HDAC inhibitors, RNA-based therapeutics, and CRISPR-based epigenome editing. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

26 pages, 3052 KB  
Article
Synthesis of New DltA Inhibitors and Their Application as Adjuvant Antibiotics to Re-Sensitize Methicillin-Resistant Staphylococcus aureus
by David Leparfait, Alexandre Mahé, Xiao Feng, Delphine Coupri, Fabien Le Cavelier, Nicolas Verneuil, Emmanuel Pfund, Aurélie Budin-Verneuil and Thierry Lequeux
Molecules 2025, 30(12), 2569; https://doi.org/10.3390/molecules30122569 - 12 Jun 2025
Viewed by 1396
Abstract
The synthesis of a new acyclic and cyclic series of D-Ala-AMP analogues was reported. Chemical modifications were introduced on the carbohydrate, the sulfamate linker, and/or the amino-acid N-terminal moiety in order to increase in vivo stability and cell permeability. These new compounds [...] Read more.
The synthesis of a new acyclic and cyclic series of D-Ala-AMP analogues was reported. Chemical modifications were introduced on the carbohydrate, the sulfamate linker, and/or the amino-acid N-terminal moiety in order to increase in vivo stability and cell permeability. These new compounds were evaluated in vitro as DltA inhibitors and also in vivo as adjuvant antibiotics to re-sensitize methicillin-resistant Staphylococcus aureus. Indeed, we showed that seven nucleosides containing either a fluorine atom, an azido group, a difluorophosphonylated allylic ether moiety onto the 2′-position, or a sulfamate and a triazole as the sulfamate linker had moderate to excellent IC50 values. Among all these new DltA inhibitors, two molecules functionalized by the fluorinated ether or the sulfamide linker were able to efficiently re-sensitize MRSA to imipenem. Quantification of D-alanyl esters confirmed that these two compounds reduced the level of bacterial cell wall D-alanyl residues by 50% and 80%. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

14 pages, 844 KB  
Review
The Role of Chemical Modifications in the Genome of Negative-Sense RNA Viruses on the Innate Immune Response
by María-Alejandra Ceballos and Mónica L. Acevedo
Viruses 2025, 17(6), 795; https://doi.org/10.3390/v17060795 - 30 May 2025
Cited by 1 | Viewed by 1555
Abstract
Negative-sense RNA viruses comprise a wide array of viral families, such as Orthomyxoviridae, Paramyxoviridae, Rhabdoviridae, and Morbillivirus, all of which are adept at inciting significant epidemic outbreaks. Throughout their replication cycle, these viruses engage in a variety of RNA modifications, during both the [...] Read more.
Negative-sense RNA viruses comprise a wide array of viral families, such as Orthomyxoviridae, Paramyxoviridae, Rhabdoviridae, and Morbillivirus, all of which are adept at inciting significant epidemic outbreaks. Throughout their replication cycle, these viruses engage in a variety of RNA modifications, during both the co-transcriptional and post-transcriptional phases, which are mediated by specific enzymatic activities. These chemical alterations play a critical role in shaping viral fitness, particularly in terms of evading innate immune responses. Key chemical modifications, such as adenosine methylation, 2′-O methylation of nucleosides, and adenosine-to-inosine editing, play critical roles in determining the stability, translational efficiency, and immune recognition of viral RNA. These modifications can reduce the activation of immune sensors, thereby suppressing interferon production and broader antiviral responses. In contrast, certain modifications may enhance immune recognition, which opens avenues for novel vaccine and antiviral strategy development. A comprehensive understanding of these RNA chemical modifications and their implications for virus–host interactions is essential for advancing therapeutic strategies aimed at manipulating innate immunity and optimizing the efficacy of RNA-based vaccines. This review examines the mechanisms and implications of RNA chemical modifications in negative-sense RNA viruses, emphasizing their dual roles in either evading or activating the innate immune system. Full article
(This article belongs to the Special Issue Functional and Structural Features of Viral RNA Elements)
Show Figures

Figure 1

20 pages, 2550 KB  
Article
Synthesis and Application of 4′-C-[(N-alkyl)aminoethyl]thymidine Analogs for Optimizing Oligonucleotide Properties
by Kota Fujiki, Yuri Kakisawa, Elsayed M. Mahmoud and Yoshihito Ueno
Molecules 2025, 30(3), 581; https://doi.org/10.3390/molecules30030581 - 27 Jan 2025
Cited by 2 | Viewed by 1897
Abstract
Gapmer-type antisense oligonucleotides (ASOs) are an emerging class of therapeutic agents that directly inhibit pathogenic mRNA. In this study, three new 4′-C-substituted thymidine analogs were generated using a synthetic strategy recently established by our group, namely, 4′-C-(N-ethyl) [...] Read more.
Gapmer-type antisense oligonucleotides (ASOs) are an emerging class of therapeutic agents that directly inhibit pathogenic mRNA. In this study, three new 4′-C-substituted thymidine analogs were generated using a synthetic strategy recently established by our group, namely, 4′-C-(N-ethyl) aminoethyl (4′-EAE-T), 4′-C-(N-butyl) aminoethyl (4′-BAE-T), and 4′-C-(N-octyl) aminoethyl (4′-OAE-T). Their properties were evaluated and compared with those of previously reported analogs, including 4′-C-aminoethyl (4′-AE-T) and 4′-C-(N-methyl) aminoethyl (4′-MAE-T). The novel nucleoside analogs were subsequently incorporated into gapmer-type ASOs featuring phosphorothioate (PS) linkages and locked nucleic acids (LNAs) in the wing regions. The incorporation of 4′-EAE-T and 4′-BAE-T analogs resulted in RNA binding affinities similar to that of the previously reported 4′-MAE-T analog, whereas a marked decrease in RNA affinity was noted for 4′-OAE-T, however, this reduction was mitigated when combined with other chemical modifications. Furthermore, the structural modifications conferred enhanced nuclease resistance under bovine serum conditions, with 4′-EAE-T resulting in the highest stability, followed by 4′-BAE-T and 4′-OAE-T. Additionally, oligonucleotides modified with the developed analogs preserved their RNase H cleavage susceptibility, albeit inducing minor alterations in the cleavage pattern. Finally, the oligonucleotides were applied in a gene silencing experiment targeting the KRAS gene, conducted without the use of transfection agents, displaying gene silencing activities comparable to that of the control, with the exception of the 4′-OAE-modified nucleotide, which exhibited low activity. Full article
Show Figures

Graphical abstract

19 pages, 740 KB  
Article
Synthesis and Antiviral Evaluation of 5-(4-Aryl-1,3-butadiyn-1-yl)-uridines and Their Phosphoramidate Pronucleotides
by Evan Saillard, Otmane Bourzikat, Koffi Assa, Vincent Roy and Luigi A. Agrofoglio
Molecules 2025, 30(1), 96; https://doi.org/10.3390/molecules30010096 - 29 Dec 2024
Viewed by 1900
Abstract
The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from [...] Read more.
The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of hitherto unknown C5-substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs. The modifications at C5 include 4-(trifluoromethyl)benzene (a), 4-pentyl-benzene (b), 3,5-dimethoxy-benzene (c), 4-(trifluoromethoxy)benzene (d), 3-aniline (e), 4-pyridine (f), 3-thiophene (g), C6H13 (h), 2-pyrimidine (i), cyclopropyl (j), and phenyl (k) groups. These compounds were synthesized using Sonogashira palladium-catalyzed reactions and nickel–copper-catalyzed C-H activation between various alkynes, yielding between 25% and 67%. The antiviral activities of obtained compounds were measured through HTS against RNA viruses including influenza H1N1 and H3N2, human respiratory syncytial virus (RSV), SARS-CoV-2, Zika, hepatitis C virus (HCV), Hepatitis E virus (HEV), as well as against coronavirus (HCoV-229E). Unfortunately, none of them showed promising antiviral activity, with less than 85% inhibition observed in the cell viability screening of infected cells. Full article
(This article belongs to the Special Issue Bioorganic Chemistry in Europe)
Show Figures

Figure 1

21 pages, 8334 KB  
Article
A Phosphatidyl Conjugated Telomerase-Dependent Telomere-Targeting Nucleoside Demonstrates Colorectal Cancer Direct Killing and Immune Signaling
by Merve Yilmaz, Sibel Goksen, Ilgen Mender, Gunes Esendagli, Sefik Evren Erdener, Alessandra Ahmed, Ates Kutay Tenekeci, Larisa L. Birichevskaya, Sergei M. Gryaznov, Jerry W. Shay and Z. Gunnur Dikmen
Biomolecules 2024, 14(12), 1616; https://doi.org/10.3390/biom14121616 - 18 Dec 2024
Viewed by 2015
Abstract
Telomerase and telomeres are crucial in cancer cell immortalization, making them key targets for anticancer therapies. Currently, 6-thio-dG (THIO) combined with the anti-PD-1 inhibitor Cemiplimab is under phase II clinical investigation (NCT05208944) in NSCLC patients resistant to prior immunotherapies. This study presents the [...] Read more.
Telomerase and telomeres are crucial in cancer cell immortalization, making them key targets for anticancer therapies. Currently, 6-thio-dG (THIO) combined with the anti-PD-1 inhibitor Cemiplimab is under phase II clinical investigation (NCT05208944) in NSCLC patients resistant to prior immunotherapies. This study presents the design, synthesis, and evaluation of novel bimodular conjugate molecules combining telomere-targeting nucleoside analogs and phosphatidyl diglyceride groups. Among them, dihexanoyl-phosphatidyl-THIO (diC6-THIO) showed high anticancer activity with sub-µM EC50 values in vitro across various cancer cell lines. In mouse colorectal cancer models, diC6-THIO demonstrated strong anticancer effects alone and in combination with PD1/PD-L1 inhibitors. Administration of this compound resulted in the efficient formation of Telomere dysfunction Induced Foci (TIFs) in vitro, indicating an on-target, telomerase-mediated telomere-modifying mechanism of action for the molecule. Systemic treatment also activated CD4+ and CD8+ T cells while reducing regulatory T cells, indicating immune system enhancement. Notably, diC6-THIO exhibits an improved solubility profile while maintaining comparable anticancer properties, further supporting its potential as a promising therapeutic candidate. These findings highlight diC6-THIO as a promising telomere-targeting prodrug with dual effects on telomere modification and immune activation. Full article
(This article belongs to the Special Issue Novel Molecules for Cancer Treatment (3rd Edition))
Show Figures

Figure 1

24 pages, 4541 KB  
Article
Studies on the Oxidative Damage of the Wobble 5-Methylcarboxymethyl-2-Thiouridine in the tRNA of Eukaryotic Cells with Disturbed Homeostasis of the Antioxidant System
by Malgorzata Sierant, Rafal Szewczyk, Agnieszka Dziergowska, Karolina Krolewska-Golinska, Patrycja Szczupak, Przemyslaw Bernat and Barbara Nawrot
Int. J. Mol. Sci. 2024, 25(22), 12336; https://doi.org/10.3390/ijms252212336 - 17 Nov 2024
Cited by 1 | Viewed by 2696
Abstract
We have previously shown that 2-thiouridine (S2U), either as a single nucleoside or as an element of RNA chain, is effectively desulfurized under applied in vitro oxidative conditions. The chemically induced desulfuration of S2U resulted in two products: 4-pyrimidinone nucleoside (H2U) and uridine [...] Read more.
We have previously shown that 2-thiouridine (S2U), either as a single nucleoside or as an element of RNA chain, is effectively desulfurized under applied in vitro oxidative conditions. The chemically induced desulfuration of S2U resulted in two products: 4-pyrimidinone nucleoside (H2U) and uridine (U). Recently, we investigated whether the desulfuration of S2U is a natural process that also occurs in the cells exposed to oxidative stress or whether it only occurs in the test tube during chemical reactions with oxidants at high concentrations. Using different types of eukaryotic cells, such as baker’s yeast, human cancer cells, or modified HEK293 cells with an impaired antioxidant system, we confirmed that 5-substituted 2-thiouridines are oxidatively desulfurized in the wobble position of the anticodon of some tRNAs. The quantitative LC-MS/MS-MRMhr analysis of the nucleoside mixtures obtained from the hydrolyzed tRNA revealed the presence of the desulfuration products of mcm5S2U: mcm5H2U and mcm5U modifications. We also observed some amounts of immature cm5S2U, cm5H2U and cm5U products, which may have indicated a disruption of the enzymatic modification pathway at the C5 position of 2-thiouridine. The observed process, which was triggered by oxidative stress in the living cells, could impair the function of 2-thiouridine-containing tRNAs and alter the translation of genetic information. Full article
(This article belongs to the Special Issue Advanced Research of tRNA)
Show Figures

Figure 1

27 pages, 1883 KB  
Review
Advances in mRNA LNP-Based Cancer Vaccines: Mechanisms, Formulation Aspects, Challenges, and Future Directions
by Eslam Ramadan, Ali Ahmed and Youssef Wahib Naguib
J. Pers. Med. 2024, 14(11), 1092; https://doi.org/10.3390/jpm14111092 - 4 Nov 2024
Cited by 17 | Viewed by 13535
Abstract
After the COVID-19 pandemic, mRNA-based vaccines have emerged as a revolutionary technology in immunization and vaccination. These vaccines have shown remarkable efficacy against the virus and opened up avenues for their possible application in other diseases. This has renewed interest and investment in [...] Read more.
After the COVID-19 pandemic, mRNA-based vaccines have emerged as a revolutionary technology in immunization and vaccination. These vaccines have shown remarkable efficacy against the virus and opened up avenues for their possible application in other diseases. This has renewed interest and investment in mRNA vaccine research and development, attracting the scientific community to explore all its other applications beyond infectious diseases. Recently, researchers have focused on the possibility of adapting this vaccination approach to cancer immunotherapy. While there is a huge potential, challenges still remain in the design and optimization of the synthetic mRNA molecules and the lipid nanoparticle delivery system required to ensure the adequate elicitation of the immune response and the successful eradication of tumors. This review points out the basic mechanisms of mRNA-LNP vaccines in cancer immunotherapy and recent approaches in mRNA vaccine design. This review displays the current mRNA modifications and lipid nanoparticle components and how these factors affect vaccine efficacy. Furthermore, this review discusses the future directions and clinical applications of mRNA-LNP vaccines in cancer treatment. Full article
(This article belongs to the Special Issue Nanomedicine in Cancer Therapy: What's New)
Show Figures

Figure 1

14 pages, 4098 KB  
Article
Nucleoside Analogs in ADAR Guide Strands Enable Editing at 5′-GA Sites
by Aashrita Manjunath, Jeff Cheng, Kristen B Campbell, Casey S. Jacobsen, Herra G. Mendoza, Leila Bierbaum, Victorio Jauregui-Matos, Erin E. Doherty, Andrew J. Fisher and Peter A. Beal
Biomolecules 2024, 14(10), 1229; https://doi.org/10.3390/biom14101229 - 29 Sep 2024
Cited by 6 | Viewed by 3361
Abstract
Adenosine Deaminases Acting on RNA (ADARs) are members of a family of RNA editing enzymes that catalyze the conversion of adenosine into inosine in double-stranded RNA (dsRNA). ADARs’ selective activity on dsRNA presents the ability to correct mutations at the transcriptome level using [...] Read more.
Adenosine Deaminases Acting on RNA (ADARs) are members of a family of RNA editing enzymes that catalyze the conversion of adenosine into inosine in double-stranded RNA (dsRNA). ADARs’ selective activity on dsRNA presents the ability to correct mutations at the transcriptome level using guiding oligonucleotides. However, this approach is limited by ADARs’ preference for specific sequence contexts to achieve efficient editing. Substrates with a guanosine adjacent to the target adenosine in the 5′ direction (5′-GA) are edited less efficiently compared to substrates with any other canonical nucleotides at this position. Previous studies showed that a G/purine mismatch at this position results in more efficient editing than a canonical G/C pair. Herein, we investigate a series of modified oligonucleotides containing purine or size-expanded nucleoside analogs on guide strands opposite the 5′-G (−1 position). The results demonstrate that modified adenosine and inosine analogs enhance editing at 5′-GA sites. Additionally, the inclusion of a size-expanded cytidine analog at this position improves editing over a control guide bearing cytidine. High-resolution crystal structures of ADAR:/RNA substrate complexes reveal the manner by which both inosine and size-expanded cytidine are capable of activating editing at 5′-GA sites. Further modification of these altered guide sequences for metabolic stability in human cells demonstrates that the incorporation of specific purine analogs at the −1 position significantly improves editing at 5′-GA sites. Full article
(This article belongs to the Special Issue RNA Therapeutics)
Show Figures

Figure 1

12 pages, 4005 KB  
Article
Discovery of Novel Amino Acids (Analogues)-Substituted Thiophene[3,2-d]pyrimidine Derivatives as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Design, Synthesis, and Biological Evaluation
by Zongji Zhuo, Zhao Wang, Lanlan Jing, Tao Zhang, Anchao Ge, Zhenzhen Zhou, Ying Liu, Xin Li, Erik De Clercq, Christophe Pannecouque, Peng Zhan, Xinyong Liu and Dongwei Kang
Int. J. Mol. Sci. 2024, 25(16), 9028; https://doi.org/10.3390/ijms25169028 - 20 Aug 2024
Viewed by 1870
Abstract
Inspired by our previous work on the modification of diarylpyrimidine-typed non-nucleoside reverse transcriptase inhibitors (NNRTIs) and the reported crystallographic studies, a series of novel amino acids (analogues)-substituted thiophene[3,2-d]pyrimidine derivatives were designed and synthesized by targeting the solvent-exposed region of the NNRTI-binding [...] Read more.
Inspired by our previous work on the modification of diarylpyrimidine-typed non-nucleoside reverse transcriptase inhibitors (NNRTIs) and the reported crystallographic studies, a series of novel amino acids (analogues)-substituted thiophene[3,2-d]pyrimidine derivatives were designed and synthesized by targeting the solvent-exposed region of the NNRTI-binding pocket. The biological evaluation results showed that compound 5k was the most active inhibitor, exhibiting moderate-to-excellent potency against HIV-1 wild-type (WT) and a panel of NNRTI-resistant strains, with EC50 values ranging from 0.042 μM to 7.530 μM. Of special note, 5k exhibited the most potent activity against single-mutant strains (K103N and E138K), with EC50 values of 0.031 μM and 0.094 μM, being about 4.3-fold superior to EFV (EC50 = 0.132 μM) and 1.9-fold superior to NVP (EC50 = 0.181 μM), respectively. In addition, 5k demonstrated lower cytotoxicity (CC50 = 27.9 μM) and higher selectivity index values. The HIV-1 reverse transcriptase (RT) inhibition assay was further performed to confirm their binding target. Moreover, preliminary structure–activity relationships (SARs) and molecular docking studies were also discussed in order to provide valuable insights for further structural optimizations. In summary, 5k turned out to be a promising NNRTI lead compound for further investigations of treatments for HIV-1 infections. Full article
(This article belongs to the Special Issue Antiviral Drug Discovery)
Show Figures

Figure 1

19 pages, 2909 KB  
Article
Exploring the Impact of mRNA Modifications on Translation Efficiency and Immune Tolerance to Self-Antigens
by Mouldy Sioud, Asta Juzeniene and Stein Sæbøe-Larssen
Vaccines 2024, 12(6), 624; https://doi.org/10.3390/vaccines12060624 - 5 Jun 2024
Cited by 5 | Viewed by 4887
Abstract
Therapeutic modified mRNAs are being developed for a broad range of human diseases. However, the impact of potential miscoding of modified mRNAs on self-tolerance remains unknown. Additionally, more studies are needed to explore the effects of nucleoside alkylation on translation. While all six [...] Read more.
Therapeutic modified mRNAs are being developed for a broad range of human diseases. However, the impact of potential miscoding of modified mRNAs on self-tolerance remains unknown. Additionally, more studies are needed to explore the effects of nucleoside alkylation on translation. While all six tested modifications are tolerated as substrates by T7 RNA polymerase and inhibited mRNA immunogenicity, the translation efficiency varied significantly depending on the type of modification. In contrast to methylation, ethylation at the N1 position of pseudouridine (Ψ) hindered translation, suggesting that the C5-C1’ glycosidic bond alone is not a critical element for high translation. Inhibition of mRNA translation was also observed with 5-methoxyuridine modification. However, this inhibition was partially alleviated through the optimization of mRNA coding sequences. BALB/c mice immunized with syngeneic ψ-modified mRNA encoding for Wilms’ tumor antigen-1 (WT1) developed a low but significant level of anti-WT1 IgG antibodies compared to those immunized with either unmodified or N1-methyl ψ-modified mRNA. Overall, the data indicate that adding a simple ethyl group (-CH2CH3) at the N1 position of ψ has a major negative effect on translation despite its reduced immunogenicity. Additionally, mRNA containing Ψ may alter translation fidelity at certain codons, which could lead to a breakdown of immune tolerance to self-antigens. This concern should be taken into account during gene replacement therapies, although it could benefit mRNA-based vaccines by generating a diverse repertoire of antigens. Full article
(This article belongs to the Special Issue mRNA-Based Vaccine Development)
Show Figures

Figure 1

Back to TopTop