Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (263)

Search Parameters:
Keywords = nuclear factor E2-related factor 2 (Nrf2)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4337 KiB  
Article
Cullin-3 and Regulatory Biomolecules Profiling in Vitiligo: Integrated Docking, Clinical, and In Silico Insights
by Hidi A. A. Abdellatif, Mohamed Azab, Eman Hassan El-Sayed, Rwan M. M. M. Halim, Ahmad J. Milebary, Dhaifallah A. Alenizi, Manal S. Fawzy and Noha M. Abd El-Fadeal
Biomolecules 2025, 15(7), 1053; https://doi.org/10.3390/biom15071053 - 21 Jul 2025
Viewed by 316
Abstract
Background: Vitiligo, a chronic depigmentation disorder driven by oxidative stress and immune dysregulation, remains poorly understood mechanistically. The Keap1/NRF2/ARE pathway is critical for melanocyte protection against oxidative damage; however, the role of Cullin-3 (CUL3), a scaffold for E3 ubiquitin ligases that regulate NRF2 [...] Read more.
Background: Vitiligo, a chronic depigmentation disorder driven by oxidative stress and immune dysregulation, remains poorly understood mechanistically. The Keap1/NRF2/ARE pathway is critical for melanocyte protection against oxidative damage; however, the role of Cullin-3 (CUL3), a scaffold for E3 ubiquitin ligases that regulate NRF2 degradation, and its interplay with inflammatory mediators in vitiligo pathogenesis are underexplored. This study investigates CUL3, NRF2, and the associated regulatory networks in vitiligo, integrating clinical profiling and computational docking to identify therapeutic targets. Methods: A case-control study compared non-segmental vitiligo patients with age-/sex-matched controls. Lesional skin biopsies were analyzed by qRT-PCR for the expression of CUL3, NRF2, miRNA-146a, FOXP3, NF-κB, IL-6, TNF-α, and P53. Molecular docking was used to evaluate vitexin’s binding affinity to Keap1, validated by root mean square deviation (RMSD) calculations. Results: Patients with vitiligo exhibited significant downregulation of CUL3 (0.27 ± 0.03 vs. 1 ± 0.58; p = 0.013), NRF2 (0.37 ± 0.26 vs. 1 ± 0.8; p = 0.001), and FOXP3 (0.09 ± 0.2 vs. 1 ± 0.3; p = 0.001), alongside the upregulation of miRNA-146a (4.7 ± 1.9 vs. 1 ± 0.8; p = 0.001), NF-κB (4.7 ± 1.9 vs. 1 ± 0.5; p = 0.001), IL-6 (2.8 ± 1.5 vs. 1 ± 0.4; p = 0.001), and TNF-α (2.2 ± 1.1 vs. 1 ± 0.3; p = 0.001). P53 showed no differential expression (p > 0.05). Docking revealed a strong binding of vitexin to Keap1 (RMSD: 0.23 Å), mirroring the binding of the control ligand CDDO-Im. Conclusions: Dysregulation of the CUL3/Keap1/NRF2 axis and elevated miRNA-146a levels correlate with vitiligo progression, suggesting a role for oxidative stress and immune imbalance. Vitexin’s high-affinity docking to Keap1 positions it as a potential modulator of the NRF2 pathway, offering novel therapeutic avenues. This study highlights the translational potential of targeting the ubiquitin–proteasome and antioxidant pathways in the management of vitiligo. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms in Skin Disorders)
Show Figures

Figure 1

22 pages, 2242 KiB  
Article
Quercetin Can Alleviate ETECK88-Induced Oxidative Stress in Weaned Piglets by Inhibiting Quorum-Sensing Signal Molecule Autoinducer-2 Production in the Cecum
by Hailiang Wang, Min Yao, Dan Wang, Mingyang Geng, Shanshan Nan, Xiangjian Peng, Yuyang Xue, Wenju Zhang and Cunxi Nie
Antioxidants 2025, 14(7), 852; https://doi.org/10.3390/antiox14070852 - 11 Jul 2025
Viewed by 414
Abstract
This study evaluated the inhibitory activity of quercetin at sub-inhibitory concentrations on quorum-sensing (QS) molecules in vitro and the effects of dietary supplementation with quercetin (for 24 consecutive days) on enterotoxigenic Escherichia coli (ETEC)-induced inflammatory and oxidative stress responses in weaned piglets. The [...] Read more.
This study evaluated the inhibitory activity of quercetin at sub-inhibitory concentrations on quorum-sensing (QS) molecules in vitro and the effects of dietary supplementation with quercetin (for 24 consecutive days) on enterotoxigenic Escherichia coli (ETEC)-induced inflammatory and oxidative stress responses in weaned piglets. The piglets were fed one of three diets: the basal diet (Con), ETEC challenge (K88) after the basal diet, or ETEC challenge (quercetin + K88) after the basal diet supplemented with 0.2% quercetin. In vitro experiments revealed that 5 mg/mL quercetin exhibited the strongest QS inhibitory activity and reduced pigment production by Chromobacterium violaceum ATCC12472 by 67.70%. In vivo experiments revealed that quercetin + K88 significantly increased immunoglobulin A (IgA), immunoglobulin M (IgM), and immunoglobulin G (IgG) levels in the serum, ileum mucosa, and colon mucosa; increased glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) levels in the serum, liver, and colon mucosa; and decreased cluster of differentiation 3 (CD3) and cluster of differentiation 8 (CD8)activity in the serum compared with K88 alone. Quercetin + K88 significantly alleviated pathological damage to the liver and spleen and upregulated antioxidant genes (nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1(HO-1), CAT, SOD, and glutathione s-transferase (GST)). Inducible nitric oxide synthase (iNOS) and kelch-like ech-associated protein 1 (Keap1), which cause oxidative damage to the liver and spleen, were significantly downregulated. The acetic acid content in the cecum was significantly increased, and the E. coli count and QS signal molecule autoinducer-2 (AI-2) yield were significantly reduced. In conclusion, 0.2% dietary quercetin can alleviate ETEC-induced inflammation and oxidative stress in weaned piglets. Full article
Show Figures

Figure 1

18 pages, 5392 KiB  
Article
Kaempferol Alleviates Carbon Tetrachloride-Induced Liver Fibrosis in Mice by Regulating Intestinal Short-Chain Fatty Acids
by Siqi Zhang, Fei Tang, Zhe Zhou, Linhui Li, Yang Tang, Kaiwen Fu, Yang Tan and Ling Li
Int. J. Mol. Sci. 2025, 26(14), 6666; https://doi.org/10.3390/ijms26146666 - 11 Jul 2025
Viewed by 276
Abstract
Liver fibrosis remains a critical health concern with limited therapeutic options. Kaempferol (Kae) is a natural flavonoid widely present in natural plants, yet its role in modulating gut–liver axis interactions during fibrosis is unexplored. This study investigates the hepatoprotective effects of Kae on [...] Read more.
Liver fibrosis remains a critical health concern with limited therapeutic options. Kaempferol (Kae) is a natural flavonoid widely present in natural plants, yet its role in modulating gut–liver axis interactions during fibrosis is unexplored. This study investigates the hepatoprotective effects of Kae on alleviating carbon tetrachloride (CCl4)-induced liver fibrosis, and its underlying mechanisms, focusing on oxidative stress, gut microbiota, and short-chain fatty acids (SCFAs), are revealed. A mouse model of hepatic fibrosis was built by the subcutaneous injection of CCl4. Meanwhile, Kae was administered by gavage at doses of 25, 50, and 100 mg/kg body weight. Serum biomarkers, liver histopathology, oxidative damage markers, and nuclear factor erythroid 2-related factor 2 (Nrf2)/kelch-like ECH-associated protein 1 (Keap1)/heme oxygenase 1 (HO-1) signaling were analyzed. AML12 hepatocytes were pretreated with Kae or SCFAs (acetate, propionate, butyrate) before H2O2-induced oxidative injury. The changes in gut microbiota and the levels of SCFAs were assessed via 16S rRNA sequencing and GC-MS, respectively. Kae effectively alleviated the destruction of the liver morphology and tissue structure, reduced the infiltration of inflammatory cells, collagen deposition in the liver, and the expression of fibrotic factors, and downregulated the oxidative stress level in the liver of mice with liver fibrosis by activating the Nrf2/Keap1/HO-1 pathway (p < 0.05 or 0.01). In vitro, Kae significantly mitigated H2O2-induced cytotoxicity and oxidative damage (p < 0.05 or 0.01). Furthermore, Kae restored gut microbiota diversity, increased beneficial genera (e.g., Lactobacillus), and elevated both intestinal and hepatic SCFA levels (p < 0.01). The discrepant SCFA pretreatment similarly protected AML12 cells by activating Nrf2 signaling (p < 0.05 or 0.01). Our research suggests that Kae could inhibit CCl4-induced liver fibrosis by restoring the levels of intestinal metabolite SCFAs to reduce oxidative damage. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

21 pages, 8307 KiB  
Article
Isochlorogenic Acid C Alleviates Allergic Asthma via Interactions Between Its Bioactive Form and the Gut Microbiome
by Jing-Yi Xu, Xiao-Juan Rong, Zhen Shen, Yun-Dan Guo, Yi-Xuan Zhang, Chen-Chen Ding, Yi Wang, Yan-Xing Han, Tian-Le Gao and Cai Tie
Int. J. Mol. Sci. 2025, 26(10), 4864; https://doi.org/10.3390/ijms26104864 - 19 May 2025
Viewed by 636
Abstract
The global prevalence of asthma is approximately 4.3%, and current asthma treatments focus on reducing symptoms, maintaining normal activity levels, and preventing the deterioration of lung function, rather than achieving a cure or complete prevention. We identified isochlorogenic acid C (ICGAC) as a [...] Read more.
The global prevalence of asthma is approximately 4.3%, and current asthma treatments focus on reducing symptoms, maintaining normal activity levels, and preventing the deterioration of lung function, rather than achieving a cure or complete prevention. We identified isochlorogenic acid C (ICGAC) as a potential natural medicine for the treatment of asthma. However, the bioavailability of ICGAC was low, ranging from 14.4% to 16.9%, suggesting the involvement of the gut microbiota. The full spectrum of ICGAC’s anti-asthmatic mechanism remains to be elucidated. This study investigated the mechanism by which ICGAC alleviates allergic asthma through the gut–lung axis. We discovered anti-asthma pathways and targets based on the selective regulation of lipid peroxidation and employed pharmacological tools to preliminarily validate their mechanisms and efficacy. To study the role of ICGAC in regulating the gut microbiota, we performed 16S rRNA gene sequencing and metabolite analysis. Furthermore, by combining molecular biology and lipid metabolomics, we elucidated the underlying anti-asthma mechanisms of ICGAC. The effective form of ICGAC varies between single and long-term administration. The oral administration of ICGAC enhances the gut-microbiota-derived production of short-chain fatty acids (SCFAs) as the active substances, modulates immune cell activity, influences the differentiation of T- and B-cells, and reduces airway inflammation. ICGAC also regulates the metabolic network of lipid mediators (LMs) and polyunsaturated fatty acids (PUFAs), thus exerting anti-inflammatory effects by modulating arachidonate lipoxygenase (ALOX) activity and LM levels. In addition, ICGAC enhanced the antioxidant response by upregulating the expression of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), and nuclear factor erythroid 2-related factor 2 (Nrf2), while inhibiting the release of interleukin-4 (IL-4), thereby suppressing asthma inflammation and IgE production. The anti-asthmatic mechanism of oral ICGAC involves the inhibition of lipid peroxidation by chlorogenic acid (CGA) and SCFAs produced by the gut microbiota. ICGAC suppresses asthma-associated inflammatory and oxidative stress responses through the upregulation of GPX4, SLC7A11, and Nrf2 in lung tissue. This study not only provides a solid foundation for the potential clinical use of ICGAC in asthma treatment but also offers novel insights for future research and therapeutic strategies targeting asthma. Full article
(This article belongs to the Special Issue Natural Products in Drug Discovery and Development)
Show Figures

Graphical abstract

18 pages, 5696 KiB  
Article
Effects of Cnidium officinale, Pueraria lobata Ohwi, and Leonurus japonicus Extract on Vascular Endothelial Dysfunctions in Ovariectomized Rats and Molecular Mechanisms
by Joohee Oh, Minseo Kim, Jinsoo Kim, Jiwon Jang, Dongjin Noh and Hyun-Sook Kim
Int. J. Mol. Sci. 2025, 26(10), 4708; https://doi.org/10.3390/ijms26104708 - 14 May 2025
Viewed by 855
Abstract
Menopause is the natural period of aging in women induced by ovary deterioration, resulting in estrogen deficiency. We evaluated the antioxidative and anti-inflammatory properties of Cnidium officinale, Pueraria lobata Ohwi, and Leonurus japonicus (CPL) extracts on vascular endothelial dysfunction. After treatment, CPL [...] Read more.
Menopause is the natural period of aging in women induced by ovary deterioration, resulting in estrogen deficiency. We evaluated the antioxidative and anti-inflammatory properties of Cnidium officinale, Pueraria lobata Ohwi, and Leonurus japonicus (CPL) extracts on vascular endothelial dysfunction. After treatment, CPL extracts decreased serum lipid profiles, serum vasoactive substances, tail temperatures, and cardiovascular risk indices. In ovariectomized rats, vasodilation significantly increased, with an increase in endothelial nitric oxide synthase (eNOS) in the CPL200 and CPL500 groups compared with the OVX group (p < 0.05). The extracts also significantly reduced vascular cell adhesion protein 1 (VCAM-1) in the CPL50, CPL100, and CPL200 groups compared with the OVX group (p < 0.05, p < 0.01, and p < 0.001, respectively). Intercellular adhesion molecule 1 (ICAM-1) was also reduced in the CPL100 and CPL200 groups compared with the OVX group (p < 0.001 and p < 0.0001, respectively); this was achieved through the downregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inducible nitric oxide (iNOS), which resulted in the synthesis of nuclear factor erythroid 2-related factor 2 (NRF2) and eNOS in HUVECs. Our results show that CPL extracts could provide cardioprotective effects against vascular endothelium dysfunction by decreasing inflammation and upregulating vasodilation, ascertained by evaluating the antioxidant systems of ovariectomized rats. Further studies are needed to explore the long-term cardioprotective effects. Full article
(This article belongs to the Special Issue Bioactive Compounds of Natural Origin: 2nd Edition)
Show Figures

Figure 1

35 pages, 1503 KiB  
Review
Mechanistic Advances in Hypoglycemic Effects of Natural Polysaccharides: Multi-Target Regulation of Glycometabolism and Gut Microbiota Crosstalk
by Liquan Zhou, Jiani Li, Chen Ding, Yimiao Zhou and Zuowei Xiao
Molecules 2025, 30(9), 1980; https://doi.org/10.3390/molecules30091980 - 29 Apr 2025
Cited by 1 | Viewed by 1139
Abstract
Natural polysaccharides (NPs), as a class of bioactive macromolecules with multitarget synergistic regulatory potential, exhibit significant advantages in diabetes intervention. This review systematically summarizes the core hypoglycemic mechanisms of NPs, covering structure–activity relationships, integration of the gut microbiota–metabolism–immunity axis, and regulation of key [...] Read more.
Natural polysaccharides (NPs), as a class of bioactive macromolecules with multitarget synergistic regulatory potential, exhibit significant advantages in diabetes intervention. This review systematically summarizes the core hypoglycemic mechanisms of NPs, covering structure–activity relationships, integration of the gut microbiota–metabolism–immunity axis, and regulation of key signaling pathways. Studies demonstrate that the molecular weight, branch complexity, and chemical modifications of NPs mediate their hypoglycemic activity by influencing bioavailability and target specificity. NPs improve glucose metabolism through multiple pathways: activating insulin signaling, improving insulin resistance (IR), enhancing glycogen synthesis, inhibiting gluconeogenesis, and regulating gut microbiota homeostasis. Additionally, NPs protect pancreatic β-cell function via the nuclear factor E2-related factor 2 (Nrf2)/Antioxidant Response Element (ARE) antioxidant pathway and Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) anti-inflammatory pathway. Clinical application of NPs still requires overcoming challenges such as resolving complex structure–activity relationships and dynamically integrating cross-organ signaling. Future research should focus on integrating multi-omics technologies (e.g., metagenomics, metabolomics) and organoid models to decipher the cross-organ synergistic action networks of NPs, and promote their translation from basic research to clinical applications. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

19 pages, 3612 KiB  
Article
COX-2 Inhibition in Glioblastoma Cells Counteracts Resistance to Temozolomide by Inducing Oxidative Stress
by Francesca Rosaria Augello, Francesca Lombardi, Valeria Ciummo, Alessia Ciafarone, Maria Grazia Cifone, Benedetta Cinque and Paola Palumbo
Antioxidants 2025, 14(4), 459; https://doi.org/10.3390/antiox14040459 - 12 Apr 2025
Cited by 2 | Viewed by 895
Abstract
Oxidative stress critically influences the pathophysiology of glioblastoma (GBM), a deadly and aggressive brain tumor. Reactive oxygen species (ROS) regulate cancer cell homeostasis, influencing the treatment response. The transcription factor Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) activates antioxidant defenses, protecting GBM cells [...] Read more.
Oxidative stress critically influences the pathophysiology of glioblastoma (GBM), a deadly and aggressive brain tumor. Reactive oxygen species (ROS) regulate cancer cell homeostasis, influencing the treatment response. The transcription factor Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) activates antioxidant defenses, protecting GBM cells from therapy-induced oxidative stress and contributing to Temozolomide (TMZ) resistance. Cyclooxygenase-2 (COX-2) plays a key role in GBM chemoresistance by modulating the tumor microenvironment and supporting a pro-survival phenotype. The impact of COX-2 inhibition by celecoxib (CXB), a selective COX-2 inhibitor, combined with TMZ on oxidative stress modulation linked to resistance was investigated in GBM primary cultures and cell lines. The drug combination CXB+TMZ was tested on TMZ-sensitive and -resistant cells, and ROS levels and Nrf2 activation were evaluated via a DCFH-DA probe and Western blotting, respectively. The oxidative stress marker malondialdehyde and antioxidant enzymes were assayed using standard methods. COX-2 inhibition combined with TMZ significantly increased ROS, while TMZ alone induced a compensatory antioxidant response, sustaining resistance. Drug combination reduced this response, restoring oxidative stress even in TMZ-resistant cells. Prostaglandin E2 reversed these effects, confirming the role of the COX-2/PGE2 axis in redox balance. Drug combination increased ROS, disrupted redox homeostasis and overcame TMZ resistance, supporting COX-2 inhibition as a promising GBM therapy strategy. Full article
Show Figures

Figure 1

28 pages, 12104 KiB  
Article
The Ancestral KEAP1-NRF Pathway in Amphioxus Branchiostoma japonicum: Implications for the Evolution of Antioxidant Defense System
by Weichen Li, Xiaoqian Liang, Keyu Xiang, Hongyan Li and Yu Zhang
Int. J. Mol. Sci. 2025, 26(7), 3427; https://doi.org/10.3390/ijms26073427 - 6 Apr 2025
Viewed by 611
Abstract
The Kelch-like ECH-associated protein 1 (KEAP1)/Nuclear factor E2-related factor 2 (NRF2) pathway is a key mechanism that responds to oxidative stress and xenobiotic stimuli in vertebrates. However, knowledge of its evolutionary origins remains limited. In this study, we identify the ancestral homologues of [...] Read more.
The Kelch-like ECH-associated protein 1 (KEAP1)/Nuclear factor E2-related factor 2 (NRF2) pathway is a key mechanism that responds to oxidative stress and xenobiotic stimuli in vertebrates. However, knowledge of its evolutionary origins remains limited. In this study, we identify the ancestral homologues of KEAP1 and NRF (BjKEAP1 and BjNRF) in cephalochordate amphioxus (Branchiostoma japonicum). BjNRF uniquely combines the feature domains of vertebrates NRF1 and NRF2, marking it as an evolutionary intermediate. High expression levels of Bjkeap1 and Bjnrf in the gill, hepatic cecum, and intestine highlight their roles in environmental defense at key interface tissues. Functional studies reveal that BjKEAP1 regulates the cytoplasmic localization of BjNRF. Typical NRF2 activator sulforaphane (SFN) induces its nuclear translocation and significantly elevates the transcriptional expression of BjNRF and phase II detoxification enzymes. Moreover, exposure to the environmental toxin Benzo[a]pyrene (BaP) activates this stress response system. These findings bridge critical gaps in our understanding of this pathway in basal chordates and offer new insights into the evolutionary trajectory of the KEAP1-NRF system. Furthermore, this study highlights crucial implications for the conservation of amphioxus in deteriorating marine environments. Full article
(This article belongs to the Special Issue Gene Regulation in Endocrine Disease)
Show Figures

Figure 1

17 pages, 6271 KiB  
Article
Selenium Yeast Alleviates Escherichia coli-Induced Endometritis in Goats Under High Cortisol Background
by Changning Yuan, Hanqing Li, Min Zhang, Zhihao Wang, Junsheng Dong, Luying Cui, Long Guo, Kangjun Liu, Jianji Li and Heng Wang
Animals 2025, 15(5), 693; https://doi.org/10.3390/ani15050693 - 27 Feb 2025
Cited by 1 | Viewed by 707
Abstract
During the postpartum period, domestic ruminants suffer elevated endogenous cortisol levels, which are associated with an increased risk of uterine infections. Selenium is a trace mineral nutrient with beneficial impacts on animals. The study aimed to investigate whether selenium yeast (SeY) could attenuate [...] Read more.
During the postpartum period, domestic ruminants suffer elevated endogenous cortisol levels, which are associated with an increased risk of uterine infections. Selenium is a trace mineral nutrient with beneficial impacts on animals. The study aimed to investigate whether selenium yeast (SeY) could attenuate Escherichia coli (E. coli)-induced endometrial injury in goats with high cortisol background. Goats were examined after oral SeY administration for 21 days and were treated with glacial acetic acid, E. coli, and hydrocortisone to establish an endometritis model with high cortisol background. The results showed that endometrial injury caused by E. coli was aggravated under high cortisol background. Supplementation with SeY alleviated endometrial inflammation and serum LDH content. The mRNA expression of pro-inflammatory cytokines and defensin beta 2 and the phosphorylation level of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-b (NF-κB) signaling pathways were decreased by SeY supplementation. Total antioxidant capacity and antioxidant enzymes activities were increased by SeY supplementation, but malondialdehyde and 4-hydroxynonenal content were decreased. Moreover, nuclear factor erythroid-2 related factor 2 (NRF2) in the nucleus, heme oxygenase-1, and NAD(P)H quinone dehydrogenase 1 were increased by SeY supplementation. So, supplementation with SeY alleviated E. coli-induced endometritis in goats by activating the NRF2 pathway and inhibiting the activation of the MAPK and NF-κB pathways under postpartum stress. Full article
(This article belongs to the Special Issue Ruminant Health: Management, Challenges, and Veterinary Solutions)
Show Figures

Figure 1

18 pages, 7306 KiB  
Article
The Regulation of γ-Aminobutyric Acid on Antioxidative Defense Response of Pacific Oyster upon High-Temperature Stress
by Ranyang Liu, Lei Gao, Xueshu Zhang, Pingan Ge, Ling Wang, Keli Zhou, Chuanyan Yang, Lingling Wang and Linsheng Song
Antioxidants 2025, 14(2), 222; https://doi.org/10.3390/antiox14020222 - 15 Feb 2025
Viewed by 885
Abstract
Recent studies have found that high temperatures cause oxidative stress and even mass mortality in Pacific oysters (Crassostrea gigas). The role of γ-aminobutyric acid (GABA) in improving antioxidative defense in aquatic animals is increasingly of interest. In the present study, the [...] Read more.
Recent studies have found that high temperatures cause oxidative stress and even mass mortality in Pacific oysters (Crassostrea gigas). The role of γ-aminobutyric acid (GABA) in improving antioxidative defense in aquatic animals is increasingly of interest. In the present study, the oxidative stress of Pacific oysters to high-temperature stress was examined, and the regulation of GABA on the antioxidative defense was further investigated. Following 6 h of exposure to 28 °C seawater, a significant increase in the mRNA expression levels of nuclear factor-E2-related factor 2 (Nrf2), superoxide dismutase (SOD), and catalase (CAT), as well as the activities of SOD and CAT, was observed in the gill, compared to those at 0 h. An increase of glutamate decarboxylase (GAD), GABA receptor (GABAAR-α and GABABR-B) mRNA levels, and GABA contents were also detected after 28 °C exposure compared to those at 0 h. Furthermore, the activities and mRNA expression levels of SOD and CAT were significantly upregulated after GABA treatment, while decreased after either GAD inhibitor or GABA receptor inhibitor treatment under high-temperature stress. Meanwhile, the enhanced effects of GABA on antioxidant enzyme activities were reduced when Nrf2 was inhibited by ML385, accompanied by an increase in MDA content. After high-temperature stress, compared with the GABA treatment group, the activities and mRNA expression levels of SOD and CAT were significantly upregulated by GSK-3β inhibitor treatment. Meanwhile, the elevation of antioxidant enzyme activities by GABA was attenuated by the AKT inhibitor treatment. Collectively, GABA first activated GABA receptors under high-temperature stress and then increased the activities of SOD and CAT and reduced MDA content by AKT/GSK-3β and Nrf2 pathways to protect the oysters against oxidative damage upon stress. The present results offer new insights for understanding the regulation mechanisms of antioxidative defense by the neuroendocrine system in molluscs. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Aquaculture)
Show Figures

Figure 1

16 pages, 2501 KiB  
Article
Protective Effect of Methyl Sulfonyl Methane on the Progression of Age-Induced Bone Loss by Regulating Oxidative Stress-Mediated Bone Resorption
by Duo Zhang, Leilei Wang, Lu Tang, Yeting Zhang, Huaiyong Zhang and Lin Zou
Antioxidants 2025, 14(2), 216; https://doi.org/10.3390/antiox14020216 - 13 Feb 2025
Viewed by 1676
Abstract
Aging is associated with detrimental bone loss, often leading to fragility fractures, which may be driven by oxidative stress. In this study, the outcomes of comparing the differences among young, adult and aged C57BL/6J mice found that the trabecular bone volume was significantly [...] Read more.
Aging is associated with detrimental bone loss, often leading to fragility fractures, which may be driven by oxidative stress. In this study, the outcomes of comparing the differences among young, adult and aged C57BL/6J mice found that the trabecular bone volume was significantly lower in the aged mice compared to young mice, and the bone characteristics were significantly correlated with the oxidative status. To counteract the adverse effects of aging, methyl sulfonyl methane (MSM), a stable metabolite of dimethyl sulfoxide, was used to supplement the drinking water (400 mg/kg/day) of the aged mice (73 weeks old) for 8 weeks. The MSM supplementation improved the maximum load, bone microarchitecture, and mRNA levels of osteocyte-specific genes in the tibia. Furthermore, MSM reduced the serum level of the C-terminal telopeptide of type I collagen, a marker of bone resorption, and downregulated the mRNA levels of genes related to osteoclast proliferation and activity. MSM also decreased the levels of pro-inflammatory cytokines in both the serum and bone marrow. Importantly, the MSM-treated mice exhibited an enhanced antioxidant status, characterized by increased glutathione peroxidase (GPx) activity and glutathione concentration in plasma, erythrocytes and bone marrow. These improvements were linked to the activation of the nuclear factor E2 related factor 2 (Nrf2) pathway and its downstream antioxidant gene expression, including that of superoxide dismutase and GPx. These findings suggested that age-related bone loss is closely tied to oxidative stress, and MSM supplementation effectively reverses bone loss by mitigating oxidative stress-mediated bone resorption. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 3245 KiB  
Article
Weizmannia coagulans BC99 Attenuates Oxidative Stress Induced by Acute Alcoholic Liver Injury via Nrf2/SKN-1 Pathway and Liver Metabolism Regulation
by Ying Wu, Cheng Li, Yinyin Gao, Jie Zhang, Yao Dong, Lina Zhao, Yuwan Li and Shaobin Gu
Antioxidants 2025, 14(1), 117; https://doi.org/10.3390/antiox14010117 - 20 Jan 2025
Cited by 1 | Viewed by 1456
Abstract
Acute alcoholic liver injury (AALI) remains a significant global health concern, primarily driven by oxidative stress. This study investigated the protective mechanisms of Weizmannia coagulans BC99 against alcohol-induced oxidative stress using a dual model in rats and Caenorhabditis elegans. In rats, excessive alcohol [...] Read more.
Acute alcoholic liver injury (AALI) remains a significant global health concern, primarily driven by oxidative stress. This study investigated the protective mechanisms of Weizmannia coagulans BC99 against alcohol-induced oxidative stress using a dual model in rats and Caenorhabditis elegans. In rats, excessive alcohol was predominantly metabolized via the CYP2E1 pathway, leading to severe oxidative stress. However, intervention with BC99 suppressed CYP2E1 expression and enhanced antioxidant enzyme activities through the Nrf2/SKN-1 pathway, thereby alleviating oxidative stress. Additionally, BC99 treatment elevated glutamate and aspartate levels while reducing glycerate and glucose, which collectively increased glutathione levels and mitigated oxidative stress triggered by glucose metabolism disorders. In C. elegans, BC99 reduced excessive ROS by upregulating Nrf2/skn-1, daf-16, and their downstream antioxidant genes, consequently alleviating the biotoxicity associated with alcohol-induced oxidative damage. The protective effects of BC99 were markedly diminished in the skn-1 mutant (GR2245) and daf-16 mutant (CF1038), further confirming the pivotal roles of SKN-1 and DAF-16 pathways in BC99-mediated antioxidant protection. Taken together, these findings reveal that BC99 mitigates alcohol-induced oxidative stress by activating the Nrf2/SKN-1 pathway and regulating liver metabolites to eliminate excess ROS, thereby providing a theoretical basis for the application of probiotics in preventing acute alcoholic liver injury. Full article
(This article belongs to the Special Issue Alcohol-Induced Oxidative Stress in Health and Disease, 2nd Edition)
Show Figures

Figure 1

14 pages, 6567 KiB  
Article
Unraveling the Beneficial Role of Resveratrol in Fructose-Induced Non-Alcoholic Steatohepatitis with a Focus on the AMPK/Nrf2 Signaling Axis
by Soha S. Zakaria and Safaa M. Hanafy
Medicina 2025, 61(1), 139; https://doi.org/10.3390/medicina61010139 - 16 Jan 2025
Cited by 1 | Viewed by 1355
Abstract
Background and Objectives: High fructose intake is associated with non-alcoholic fatty liver disease (NAFLD), a chronic liver disease that is on the rise worldwide. New alternatives for treatment, such as bioactive phytochemicals, are needed. The aim of this study was to investigate [...] Read more.
Background and Objectives: High fructose intake is associated with non-alcoholic fatty liver disease (NAFLD), a chronic liver disease that is on the rise worldwide. New alternatives for treatment, such as bioactive phytochemicals, are needed. The aim of this study was to investigate the beneficial role of resveratrol in treating non-alcoholic steatohepatitis (NASH). Materials and Methods: Sixty male albino rats were allocated to three groups: group I, the normal control group; group II, the fructose-enriched diet group (FED), which was fed a 70% fructose diet for six weeks to induce NASH; and group III, the resveratrol–FED group (RES + FED), which was given the same FED diet plus an oral dose of 70 mg/kg resveratrol (RES) every day for an additional six weeks. We performed histological evaluations and assessed blood lipids and liver enzymes to study resveratrol’s impact on NASH. Quantitative real-time PCR was used to assess the mRNA expression of nuclear factor E2-related factor 2 (Nrf2) in the liver samples. ELISA was used to measure Beclin 1, AMPK, IL-6, and the DNA-binding activity of Nrf2. Oxidative stress indicators, including GSH, SOD, and MDA, were evaluated spectrophotometrically. Results: Resveratrol effectively alleviated the biochemical and histopathological abnormalities associated with NASH, improving autophagy by raising Beclin 1 levels while reducing inflammation by decreasing IL-6 levels. Furthermore, resveratrol restored the liver architecture and the oxidative balance, as evidenced by the decreased MDA levels and improved antioxidant status via elevated GSH and SOD activities, as well as the activation of the AMPK/Nrf2 signaling axis. Conclusions: This study specifically examines resveratrol’s therapeutic effects in a high-fructose diet-induced NASH model, focusing on the AMPK/Nrf2 signaling pathway to address oxidative stress and autophagy, providing novel insights into its molecular mechanism of action. Resveratrol reduces NASH by boosting autophagy and activating the AMPK/Nrf2 pathway. These findings underscore the potential of resveratrol as a promising therapeutic agent that can support treatment alongside conventional medications in the management of non-alcoholic steatohepatitis (NASH). Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 2048 KiB  
Article
Alterations in Autophagic Function and Endoplasmic Reticulum Stress Markers in the Peripheral Blood Mononuclear Cells of Patients on Hemodialysis
by Wen-Chih Liu, Ming-Yin Wu and Paik Seong Lim
Int. J. Mol. Sci. 2025, 26(2), 447; https://doi.org/10.3390/ijms26020447 - 7 Jan 2025
Viewed by 1116
Abstract
Oxidative stress, endoplasmic reticulum (ER) stress, and alterations in autophagy activity have been described as prominent factors mediating many pathological processes in chronic kidney disease (CKD). The accumulation of misfolded proteins in the ER may stimulate the unfolded protein response (UPR). The interplay [...] Read more.
Oxidative stress, endoplasmic reticulum (ER) stress, and alterations in autophagy activity have been described as prominent factors mediating many pathological processes in chronic kidney disease (CKD). The accumulation of misfolded proteins in the ER may stimulate the unfolded protein response (UPR). The interplay between autophagy and UPR in hemodialysis (HD) patients remains unclear. The aim of the present study was to explore the associations between serum oxidative stress markers, autophagy activity, and ER stress markers in the peripheral blood mononuclear cells (PBMCs) of patients on HD. Autophagy and ER stress-related protein expression levels in PBMCs were measured using western blotting. The redox state of human serum albumin was measured via high-performance liquid chromatography. Levels of the microtubule associated protein light chain 3 (LC3)-II, BECLIN1, and p62/SQSTM1 proteins were significantly increased in PBMCs of HD patients compared to healthy subjects. The PBMCs in HD patients also displayed augmented glucose-regulated protein 78 kDa (GRP78), phosphorylated eukaryotic translation initiation factor 2, subunit 1 alpha (p-eIF2α), and activating transcription factor 6 (ATF6) levels (p < 0.05). Additionally, nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) levels were elevated in the PBMCs of HD patients, compared to those of healthy subjects. Correlation analysis showed that the redox status of albumin was significantly correlated with the p62 protein level in PBMCs. Compared to healthy controls, we found elevated autophagosome formation in HD patients. Increased expression of ER stress markers was also observed in HD patients. Furthermore, increased p62 expression was positively correlated with the protein expression of NRF2, as well as a reduced form of serum albumin (human mercaptalbumin; HMA), in HD patients. Full article
(This article belongs to the Special Issue Autophagy and Kidney Diseases)
Show Figures

Figure 1

16 pages, 894 KiB  
Review
Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies
by Jakub Piekara and Dorota Piasecka-Kwiatkowska
Antioxidants 2024, 13(12), 1559; https://doi.org/10.3390/antiox13121559 - 19 Dec 2024
Cited by 3 | Viewed by 2090
Abstract
Xanthohumol (XN) is a phenolic compound found in the largest amount in the flowers of the hop plant, but also in the leaves and possibly in the stalks, which is successfully added to dietary supplements and cosmetics. XN is known as a potent [...] Read more.
Xanthohumol (XN) is a phenolic compound found in the largest amount in the flowers of the hop plant, but also in the leaves and possibly in the stalks, which is successfully added to dietary supplements and cosmetics. XN is known as a potent antioxidant compound, which, according to current research, has the potential to prevent and inhibit the development of diseases, i.e., cancer and neurodegenerative diseases. The review aims to examine the antioxidant role of XN in disease prevention, with an emphasis on the benefits and risks associated with its supplementation. The regulation by XN of the Nrf2/NF-kB/mTOR/AKT (Nuclear factor erythroid 2-related factor 2/Nuclear factor kappa-light-chain-enhancer of activated B cells/Mammalian target of rapamycin/Protein Kinase B) pathways induce a strong antioxidant and anti-inflammatory effect, among others the acceleration of autophagy through increased synthesis of Bcl-2 (B-cell lymphoma 2) proteins, inhibition of the synthesis of VEGF (Vascular-endothelial growth factor) responsible for angiogenesis and phosphorylation of HKII (Hexokinase II). It is the key function of XN to ameliorate inflammation and to promote the healing process in organs. However, existing data also indicate that XN may have adverse effects in certain diseases, such as advanced prostate cancer, where it activates the AMPK (activated protein kinase) pathway responsible for restoring cellular energy balance. This potential risk may explain why XN has not been classified as a therapeutic drug so far and proves that further research is needed to determine the effectiveness of XN against selected disease entities at a given stage of the disease. Full article
Show Figures

Graphical abstract

Back to TopTop