Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (564)

Search Parameters:
Keywords = nuclear chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 732 KiB  
Article
L-Arginine Effect as an Additive on Overall Performance, Health Status, and Expression of Stress Molecular Markers in Nile Tilapia (Oreochromis niloticus) Under Chronic Salinity Exposure
by Andrea Itzel Munguía-Casillas, María Teresa Viana, Miroslava Vivanco-Aranda, Luis Eduardo Ruiz-González, Emyr Saul Peña-Marín and Oscar Basilio Del Rio-Zaragoza
Fishes 2025, 10(8), 387; https://doi.org/10.3390/fishes10080387 - 6 Aug 2025
Abstract
Growing freshwater fish in saline environments is being explored as a potential solution to the freshwater shortage. However, growing these organisms in suboptimal salinity conditions leads to chronic stress that can be challenging to manage. To address this goal, it is crucial to [...] Read more.
Growing freshwater fish in saline environments is being explored as a potential solution to the freshwater shortage. However, growing these organisms in suboptimal salinity conditions leads to chronic stress that can be challenging to manage. To address this goal, it is crucial to improve the health of fish through the use of dietary supplements. This study evaluated the effects of varying levels of arginine supplementation on the growth, health status, and expression of stress-related molecular markers in juveniles of Nile tilapia exposed to chronic salinity stress. The tilapia were fed four experimental diets supplemented with 0, 1, 2, and 3% of L-arginine (T0, T1, T2, and T3). After an acclimatization period, the tilapias were exposed to a salinity level of 20‰ for 57 days in a recirculating aquaculture system. Our findings revealed that overall performance parameters were significantly influenced by L-arginine supplementation, except for the condition factor, viscerosomatic index, and hepatosomatic index. Additionally, intermediate levels of L-arginine supplementation positively influenced various blood parameters, including hematological profiles (hemoglobin and leukocytes), blood chemistry (total protein, albumin, globulin, and triglycerides), and the frequency of certain nuclear abnormalities. Furthermore, L-arginine supplementation appeared to regulate the expression of molecular markers related to stress and the immune system. In conclusion, this study indicates that L-arginine supplementation can help alleviate the chronic stress caused by salinity in juvenile Nile tilapia. Full article
(This article belongs to the Special Issue Fish Hematology)
Show Figures

Figure 1

4 pages, 140 KiB  
Editorial
Computational Chemistry in Nuclear Magnetic Resonance
by Irina L. Rusakova and Yuriy Yu. Rusakov
Magnetochemistry 2025, 11(8), 66; https://doi.org/10.3390/magnetochemistry11080066 - 4 Aug 2025
Viewed by 63
Abstract
Determining molecular structure via nuclear magnetic resonance (NMR) spectral analysis has become an integral part of physical–chemical research in organic and inorganic chemistry [...] Full article
(This article belongs to the Special Issue Computational Chemistry in Nuclear Magnetic Resonance)
23 pages, 2231 KiB  
Review
Advanced Nuclear Reactors—Challenges Related to the Reprocessing of Spent Nuclear Fuel
by Katarzyna Kiegiel, Tomasz Smoliński and Irena Herdzik-Koniecko
Energies 2025, 18(15), 4080; https://doi.org/10.3390/en18154080 - 1 Aug 2025
Viewed by 319
Abstract
Nuclear energy can help stop climate change by generating large amounts of emission-free electricity. Nuclear reactor designs are continually being developed to be more fuel efficient, safer, easier to construct, and to produce less nuclear waste. The term advanced nuclear reactors refers either [...] Read more.
Nuclear energy can help stop climate change by generating large amounts of emission-free electricity. Nuclear reactor designs are continually being developed to be more fuel efficient, safer, easier to construct, and to produce less nuclear waste. The term advanced nuclear reactors refers either to Generation III+ and Generation IV or small modular reactors. Every reactor is associated with the nuclear fuel cycle that must be economically viable and competitive. An important matter is optimization of fissile materials used in reactor and/or reprocessing of spent fuel and reuse. Currently operating reactors use the open cycle or partially closed cycle. Generation IV reactors are intended to play a significant role in reaching a fully closed cycle. At the same time, we can observe the growing interest in development of small modular reactors worldwide. SMRs can adopt either fuel cycle; they can be flexible depending on their design and fuel type. Spent nuclear fuel management should be an integral part of the development of new reactors. The proper management methods of the radioactive waste and spent fuel should be considered at an early stage of construction. The aim of this paper is to highlight the challenges related to reprocessing of new forms of nuclear fuel. Full article
Show Figures

Figure 1

5 pages, 159 KiB  
Editorial
Editorial for Special Issue “Adsorption Properties and Environmental Applications of Clay Minerals”
by Dušan Vopálka and Bin Mu
Minerals 2025, 15(8), 791; https://doi.org/10.3390/min15080791 - 28 Jul 2025
Viewed by 139
Abstract
Clay minerals play a fundamental role in various environmental processes, particularly in controlling the movement of various ions and molecules in soils, waters and natural and/or engineered barriers of waste storage facilities [...] Full article
(This article belongs to the Special Issue Adsorption Properties and Environmental Applications of Clay Minerals)
13 pages, 1650 KiB  
Article
A Fast TaqMan® Real-Time PCR Assay for the Detection of Mitochondrial DNA Haplotypes in a Wolf Population
by Rita Lorenzini, Lorenzo Attili, Martina De Crescenzo and Antonella Pizzarelli
Genes 2025, 16(8), 897; https://doi.org/10.3390/genes16080897 - 28 Jul 2025
Viewed by 226
Abstract
Background/Objectives: The gene pool of the Apennine wolf is affected by admixture with domestic variants due to anthropogenic hybridisation with dogs. Genetic monitoring at the population level involves assessing the extent of admixture in single individuals, ranging from pure wolves to recent [...] Read more.
Background/Objectives: The gene pool of the Apennine wolf is affected by admixture with domestic variants due to anthropogenic hybridisation with dogs. Genetic monitoring at the population level involves assessing the extent of admixture in single individuals, ranging from pure wolves to recent hybrids or wolf backcrosses, through the analysis of nuclear and mitochondrial DNA (mtDNA) markers. Although individually non-diagnostic, mtDNA is nevertheless essential for completing the final diagnosis of genetic admixture. Typically, the identification of wolf mtDNA haplotypes is carried out via sequencing of coding genes and non-coding DNA stretches. Our objective was to develop a fast real-time PCR assay to detect the mtDNA haplotypes that occur exclusively in the Apennine wolf population, as a valuable alternative to the demanding sequence-based typing. Methods: We validated a qualitative duplex real-time PCR that exploits the combined presence of diagnostic point mutations in two mtDNA segments, the NDH-4 gene and the control region, and is performed in a single-tube step through TaqMan-MGB chemistry. The aim was to detect mtDNA multi-fragment haplotypes that are exclusive to the Apennine wolf, bypassing sequencing. Results: Basic validation of 149 field samples, consisting of pure Apennine wolves, dogs, wolf × dog hybrids, and Dinaric wolves, showed that the assay is highly specific and sensitive, with genomic DNA amounts as low as 10−5 ng still producing positive results. It also proved high repeatability and reproducibility, thereby enabling reliable high-throughput testing. Conclusions: The results indicate that the assay presented here provides a valuable alternative method to the time- and cost-consuming sequencing procedure to reliably diagnose the maternal lineage of the still-threatened Apennine wolf, and it covers a wide range of applications, from scientific research to conservation, diagnostics, and forensics. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2182 KiB  
Article
Assessment of Hydroxyl Radical Reactivity in Sulfur-Containing Amino Acid Models Under Acidic pH
by Chryssostomos Chatgilialoglu, Piotr Filipiak, Tomasz Szreder, Ireneusz Janik, Gordon L. Hug, Magdalena Grzelak, Franciszek Kazmierczak, Jerzy Smorawinski, Krzysztof Bobrowski and Bronislaw Marciniak
Int. J. Mol. Sci. 2025, 26(15), 7203; https://doi.org/10.3390/ijms26157203 - 25 Jul 2025
Viewed by 183
Abstract
Methionine residues in proteins and peptides are frequently oxidized by losing one electron. The presence of nearby amide groups is crucial for this process, enabling methionine to participate in long-range electron transfer. Hydroxyl radical (HO) plays an important role being generated [...] Read more.
Methionine residues in proteins and peptides are frequently oxidized by losing one electron. The presence of nearby amide groups is crucial for this process, enabling methionine to participate in long-range electron transfer. Hydroxyl radical (HO) plays an important role being generated in aerobic organisms by cellular metabolisms as well as by exogenous sources such as ionizing radiations. The reaction of HO with methionine mainly affords the one-electron oxidation of the thioether moiety through two consecutive steps (HO addition to the sulfur followed by HO elimination). We recently investigated the reaction of HO with model peptides mimicking methionine and its cysteine-methylated counterpart, i.e., CH3C(O)NHCHXC(O)NHCH3, where X = CH2CH2SCH3 or CH2SCH3 at pH 7. The reaction mechanism varied depending on the distance between the sulfur atom and the peptide backbone, but, for a better understanding of various suggested equilibria, the analysis of the flux of protons is required. We extended the previous study to the present work at pH 4 using pulse radiolysis techniques with conductivity and optical detection of transient species, as well as analysis of final products by LC-MS and high-resolution MS/MS following γ-radiolysis. Comparing all the data provided a better understanding of how the presence of nearby amide groups influences the one-electron oxidation mechanism. Full article
Show Figures

Figure 1

16 pages, 2998 KiB  
Article
Synthesis of Novel Tetra-Substituted Pyrazole Derivatives Using Microwave Irradiation and Their Anti-Leukemic Activity Against Jurkat Cells
by Felipe P. Machado, Maria Clara Campos, Juliana Echevarria-Lima, Diego P. Sangi, Carlos Serpa, Otávio Augusto Chaves and Aurea Echevarria
Molecules 2025, 30(13), 2880; https://doi.org/10.3390/molecules30132880 - 7 Jul 2025
Viewed by 531
Abstract
Three previously synthesized ketene dithioacetals were used as intermediates to obtain four nucleophiles to synthesize ten tetra-substituted pyrazoles (1120). This was achieved through microwave irradiation in ethanol as the solvent, yielding superb results ranging from 68.4% to 90.1%, in [...] Read more.
Three previously synthesized ketene dithioacetals were used as intermediates to obtain four nucleophiles to synthesize ten tetra-substituted pyrazoles (1120). This was achieved through microwave irradiation in ethanol as the solvent, yielding superb results ranging from 68.4% to 90.1%, in agreement with some of the principles of green chemistry. The proposed structures were determined using various spectroscopic techniques, including infrared spectroscopy and hydrogen and carbon-13 nuclear magnetic resonance. Furthermore, the compounds underwent in-silico evaluations using CLC-Pred and AdmetSAR software to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. This was combined with molecular docking calculations for four main cancer-related targets for pyrazole core, to facilitate screening for subsequent biological assessments. Based on the data generated from these analyses, it was identified two pyrazoles (11 and 18) likely to exhibit anti-tumor activity, while also demonstrating low toxicity levels. Upon selection, these two pyrazoles were subjected to toxicity assessments using the Artemia salina method and evaluated for their effects on the viability of Jurkat cancer cells with a potency of 45.05 and 14.85 µM to 11 and 18, respectively, and with a potency of above 100 µM for the non-carcinogenic cells HEK 293. Overall, the findings from these studies indicate pyrazole derivatives as potential anti-tumor candidates. Full article
Show Figures

Figure 1

11 pages, 2164 KiB  
Article
Study of Corrosion Characteristics of AlMg3.5 Alloy by Hydrogen-Induced Pressure and Mass Loss Evaluation Under Simulated Cementitious Repository Conditions
by Marvin Schobel, Christian Ekberg, Teodora Retegan Vollmer, Fredrik Wennerlund, Svante Hedström and Anders Puranen
Corros. Mater. Degrad. 2025, 6(3), 27; https://doi.org/10.3390/cmd6030027 - 30 Jun 2025
Viewed by 410
Abstract
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which [...] Read more.
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which leads to alkaline conditions with pH values of 12 and higher. This can be advantageous for some radionuclides due to their precipitation at high pH. For other materials, such as reactive metals, however, it can be disadvantageous because it might foster their corrosion. The Studsvik R2 research reactor contained an AlMg3.5 alloy with a composition close to that of commercial Al5154 for its core internals and the reactor tank. Aluminum corrosion is known to start rapidly due to the formation of an oxidation layer, which later functions as natural protection for the surface. The corrosion can lead to pressure build-up through the accompanied production of hydrogen gas. This can lead to cracks in the concrete, which can be pathways for radioactive nuclides to migrate and must therefore be prevented. In this study, unirradiated rod-shaped samples were cut from the same material as the original reactor tank manufacture. They were embedded in concrete with elevated water–cement ratios of 0.7 compared to regular commercial concrete (ca. 0.45) to ensure water availability throughout all of the experiments. The sample containers were stored in pressure vessels with attached high-definition pressure gauges to read the hydrogen-induced pressure build-up. A second set of samples were exposed in simplified artificial cement–water to study similarities in corrosion characteristics between concrete and cement–water. Additionally, the samples were exposed to concrete and cement–water in free-standing sample containers for deconstructive examinations. In concrete, the corrosion rates started extremely high, with values of more than 10,000 µm/y, and slowed down to less than 500 µm/y after 2000 h, which resulted in visible channels inside the concrete. In the cement–water, the samples showed similar behavior after early fluctuations, most likely caused by the surface coverage of hydrogen bubbles. These trends were further supported by mass loss evaluations. Full article
Show Figures

Figure 1

31 pages, 3600 KiB  
Review
Emerging Electron Beam Technology Targeting Hazardous Micropollutants as Quaternary Treatment in Wastewater Treatment Plants
by Andrzej G. Chmielewski, Yongxia Sun, Jianlong Wang and Shizong Wang
Sustainability 2025, 17(13), 5963; https://doi.org/10.3390/su17135963 - 28 Jun 2025
Viewed by 870
Abstract
Wastewater treatment plays a very important role in striving to reach the internationally agreed United Nations (UN) sustainable development goals. One of the critical challenges in achieving Sustainable Development Goal 6 is the effective removal of micropollutants (MPs), including microplastics, organic contaminants, and [...] Read more.
Wastewater treatment plays a very important role in striving to reach the internationally agreed United Nations (UN) sustainable development goals. One of the critical challenges in achieving Sustainable Development Goal 6 is the effective removal of micropollutants (MPs), including microplastics, organic contaminants, and pharmaceuticals, from wastewater. Additionally, the presence of biological hazards such as antibiotic resistance genes (ARGs), antibiotic-resistant bacteria (ARBs), parasites, and their eggs poses significant risks to public health and aquatic ecosystems. The forthcoming European Union (EU) wastewater directive mandates the implementation of quaternary treatment processes to effectively remove micropollutants (MPOs) from wastewater. This regulatory shift underscores the need for advanced treatment technologies capable of addressing emerging contaminants to ensure environmental and public health protection. This paper presents a critical review of the present situation concerning the fate of MPOs and possible methods of their removal. Based on their experimental research, the authors propose electron beam (EB) technology as a universal solution for the treatment of wastewater and sludge. The findings demonstrate that this approach effectively meets the emerging regulatory requirements for the removal of micropollutants and biological hazards. Full article
(This article belongs to the Special Issue Water Pollution and Risk Assessment)
Show Figures

Figure 1

14 pages, 5300 KiB  
Article
Synthesis and Antibacterial Evaluation of Silver-Coated Magnetic Iron Oxide/Activated Carbon Nanoparticles Derived from Hibiscus esculentus
by Müslüm Güneş, Erdal Ertaş, Seyhmus Tumur, Parvin Zulfugarova, Fidan Nuriyeva, Taras Kavetskyy, Yuliia Kukhazh, Pavlo Grozdov, Ondrej Šauša, Oleh Smutok, Dashgin Ganbarov and Arnold Kiv
Magnetochemistry 2025, 11(7), 53; https://doi.org/10.3390/magnetochemistry11070053 - 21 Jun 2025
Viewed by 492
Abstract
The increasing prevalence of antimicrobial resistance alongside the pharmacological limitations and adverse effects associated with conventional antibiotics necessitates the development of novel and efficacious antimicrobial agents. In this study, magnetic iron oxide nanoparticles (MIONPs) were synthesized via a chemical co-precipitation method. Activated carbon [...] Read more.
The increasing prevalence of antimicrobial resistance alongside the pharmacological limitations and adverse effects associated with conventional antibiotics necessitates the development of novel and efficacious antimicrobial agents. In this study, magnetic iron oxide nanoparticles (MIONPs) were synthesized via a chemical co-precipitation method. Activated carbon (AC) derived from Hibiscus esculentus (HE) fruit was coated onto the nanoparticle surfaces to fabricate MIONPs/HEAC nanocomposites. To augment their antimicrobial properties, silver ions were chemically reduced and deposited onto the MIONPs/HEAC surface, yielding MIONPs/HEAC@Ag nanocomposites. Comprehensive characterization of the synthesized nanocomposites was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), and zeta potential analysis. DLS measurements indicated average particle sizes of approximately 122 nm and 164 nm for MIONPs/HEAC and MIONPs/HEAC@Ag, respectively. Saturation magnetization values were determined to be 73.6 emu/g for MIONPs and 65.5 emu/g for MIONPs/HEAC. Antibacterial assays demonstrated that MIONPs/HEAC@Ag exhibited significant inhibitory effects against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, with inhibition zone diameters of 11.50 mm and 13.00 mm, respectively. In contrast, uncoated MIONPs/HEAC showed negligible antibacterial activity against both bacterial strains. These findings indicate that MIONPs/HEAC@Ag nanocomposites possess considerable potential as antimicrobial agents for biomedical applications, particularly in addressing infections caused by antibiotic-resistant bacteria. Full article
Show Figures

Figure 1

15 pages, 831 KiB  
Article
Overcoming Multidrug Resistance Using DNA-Localized Auger Emitters: A Comparative Analysis of Radiotoxicity in Breast Cancer Cells
by Klaus Schomäcker, Beate Zimmermanns, Thomas Fischer, Markus Dietlein, Ferdinand Sudbrock, Feodor Braun, Felix Dietlein, Melanie von Brandenstein and Alexander Drzezga
Int. J. Mol. Sci. 2025, 26(13), 5958; https://doi.org/10.3390/ijms26135958 - 20 Jun 2025
Viewed by 402
Abstract
Multidrug resistance (MDR) represents a major obstacle to successful chemotherapy and, due to overlapping defense mechanisms, such as enhanced DNA repair and the evasion of apoptosis, can also be associated with radioresistance. In this study, we investigated whether MDR breast cancer cells (MCF-7/CMF) [...] Read more.
Multidrug resistance (MDR) represents a major obstacle to successful chemotherapy and, due to overlapping defense mechanisms, such as enhanced DNA repair and the evasion of apoptosis, can also be associated with radioresistance. In this study, we investigated whether MDR breast cancer cells (MCF-7/CMF) exhibit reduced susceptibility to radiation-induced DNA fragmentation compared to their non-resistant parental counterpart (MCF-7). Using a nucleosome-based ELISA, we quantified the chromatin fragmentation in MCF-7 and MCF-7/CMF cells following their exposure to four radiopharmaceuticals: [99mTc]pertechnetate, [131I]NaI (sodium iodide), [125I]NaI, and the DNA-incorporating compound [125I]iododeoxyuridine ([125I]IdU). Each radioactive preparation was assessed across a range of activity concentrations, using a two-way ANOVA. For [99mTc]pertechnetate and [131I]NaI, significantly higher DNA fragmentation was observed in the sensitive cell line, whereas [125I]NaI showed no significant difference between the two phenotypes. In contrast to the other radiopharmaceuticals, [125I]IdU induced greater fragmentation in resistant cells. This finding was supported by the statistical analysis (a 63.7% increase) and visualized in the corresponding dose–response plots. These results highlight the critical role of the intranuclear enrichment of Auger emitters and support further development of radiopharmaceuticals in accordance with this principle. Our data suggest that radiotoxicity is governed not by linear energy transfer (LET) alone, but, fundamentally, by the spatial proximity of the radionuclide to the DNA. Targeting tumor cell DNA with precision radiotherapeutics may, therefore, offer a rational strategy to overcome MDR in breast cancer. Full article
Show Figures

Figure 1

17 pages, 1481 KiB  
Article
Radiolysis of Sub- and Supercritical Water Induced by 10B(n,α)7Li Recoil Nuclei at 300–500 °C and 25 MPa
by Md Shakhawat Hossen Bhuiyan, Jintana Meesungnoen and Jean-Paul Jay-Gerin
J. Nucl. Eng. 2025, 6(2), 17; https://doi.org/10.3390/jne6020017 - 9 Jun 2025
Viewed by 492
Abstract
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, [...] Read more.
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, and enhance safety. Boron, widely used as a neutron absorber, plays a significant role in reactor performance and safety. This study focuses on the yields of radiolytic species in subcritical and supercritical water exposed to 4He and 7Li recoil ions from the 10B(n,α)7Li fission reaction in SCWR/SCW-SMR environments. (2) Methods: We use Monte Carlo track chemistry simulations to calculate yields (G values) of primary radicals (eaq, H, and OH) and molecular species (H2 and H2O2) from water radiolysis by α-particles and Li3⁺ recoils across 1 picosecond to 0.1 millisecond timescales. (3) Results: Simulations show substantially lower radical yields, notably eaq and OH, alongside higher molecular product yields compared to low linear energy transfer (LET) radiation, underscoring the high-LET nature of 10B(n,α)7Li recoil nuclei. Key changes include elevated G(OH) and G(H2), and a decrease in G(H), primarily driven during the homogeneous chemical stage of radiolysis by the reaction H + H2O → OH + H2. This reaction significantly contributes to H2 production, potentially reducing the need for added hydrogen in coolant water to mitigate oxidizing species. In supercritical conditions, low G(H₂O₂) suggests that H2O2 is unlikely to be a major contributor to material oxidation. (4) Conclusions: The 10B(n,α)7Li reaction’s yield estimates could significantly impact coolant chemistry strategies in SCWRs and SCW-SMRs. Understanding radiolytic behavior in these conditions aids in refining reactor models and coolant chemistry to minimize corrosion and radiolytic damage. Future experiments are needed to validate these predictions. Full article
Show Figures

Figure 1

19 pages, 3564 KiB  
Article
Differential lncRNA Expression in Undifferentiated and Differentiated LUHMES Cells Following Co-Exposure to Silver Nanoparticles and Nanoplastic
by Kamil Brzóska, Malwina Czerwińska and Marcin Kruszewski
Materials 2025, 18(12), 2690; https://doi.org/10.3390/ma18122690 - 7 Jun 2025
Viewed by 485
Abstract
Human exposure to micro- and nanoplastic (MNP) has become an increasing concern due to its accumulation in the environment and human body. In the human organism, MNP accumulates in various tissues, including the central nervous system, where it is associated which neurotoxic effects. [...] Read more.
Human exposure to micro- and nanoplastic (MNP) has become an increasing concern due to its accumulation in the environment and human body. In the human organism, MNP accumulates in various tissues, including the central nervous system, where it is associated which neurotoxic effects. Beyond its inherent toxicity, MNP also acts as a carrier for various chemical contaminants, including metals. Consequently, recent studies emphasize the importance of the evaluation of co-exposure scenarios involving MNP and other types of nanoparticles. In this study, we investigated effects of co-exposure to 20 nm silver nanoparticles (AgNPs) and 20 nm polystyrene nanoparticles (PSNPs) on cell viability and the expression of inflammation-related long non-coding RNAs (lncRNAs) in undifferentiated and differentiated Lund human mesencephalic (LUHMES) cells. While PSNPs alone did not significantly affect cell viability or lncRNA expression, AgNPs markedly reduced viability and deregulated lncRNA expression in both cell types. Notably, in differentiated cells, co-exposure to AgNPs and high concentrations of PSNPs led to a significantly greater reduction in viability compared to AgNPs alone, suggesting a synergistic effect. At the molecular level, both synergistic and antagonistic interactions between AgNPs and PSNPs were observed in the regulation of lncRNA expression, depending on the cell differentiation status. These findings highlight the complex biological interactions between AgNPs and PSNPs and emphasize the importance of considering nanoparticle co-exposures in toxicological evaluations, as combined exposures may significantly affect cellular and molecular responses. Full article
Show Figures

Figure 1

16 pages, 2858 KiB  
Article
Heterobimetallic Uranium(V)-Alkali Metal Alkoxides: Expanding the Chemistry of f-Block Elements
by Andreas Lichtenberg, Lidia Inderdühnen, Aida Lichtenberg and Sanjay Mathur
Molecules 2025, 30(11), 2361; https://doi.org/10.3390/molecules30112361 - 29 May 2025
Viewed by 542
Abstract
Heterobimetallic uranium(V) alkoxides incorporating monovalent alkali metal counterions display remarkable structural versatility, dictated by the steric demands of the alkoxide ligands and the ionic radius of the alkali metal. Compounds of the general formula [UM(OtBu)6] (UM-OtBu [...] Read more.
Heterobimetallic uranium(V) alkoxides incorporating monovalent alkali metal counterions display remarkable structural versatility, dictated by the steric demands of the alkoxide ligands and the ionic radius of the alkali metal. Compounds of the general formula [UM(OtBu)6] (UM-OtBu-type: M = Na, K, Rb, Cs) were obtained by: (i) reacting [U(OtBu)5(py)] with equimolar amounts of alkali metal silylamides in tert-butyl alcohol, and (ii) oxidative transformation of [UM2(OtBu)6] (M = Na, K, Rb, Cs) upon reaction with iodine. Trans-alcoholysis of uranium heterobimetallic tert-butoxides with sterically less demanding iso-propyl alcohol yields oligomeric or polymeric iso-propoxide derivatives of the general formula [UM(OiPr)6]n, where the nuclearity depends on the alkali metal (n = 2 for M = Li; n = ∞ for M = Na, K, Rb). The capacity of alkali metal ions to adopt flexible coordination geometries results in different structural types ranging from finite clusters to infinite chains, with [ULi(OiPr)6]2 (ULi-OiPr-1) found to be dimeric, whereas [UM(OiPr)6] (UM-OiPr-2-type, M = Na, K) and [URb(OiPr)6] (URb-OiPr-3) exhibit a polymeric architecture. These findings provide fresh insights into the structure-directing influence of alkali metals on actinide coordination chemistry and broaden the chemistry of actinide alkoxides. All compounds were unambiguously characterized in both solution and solid-state through NMR and IR spectroscopic studies, as well as single crystal X-ray diffraction analysis. Full article
Show Figures

Graphical abstract

15 pages, 2264 KiB  
Article
Kinetic Analysis and Transformation Pathways of Sulfamethoxazole Degradation in Water and Wastewater Under Electron Beam Irradiation
by Boris Tende Kengne, Yongxia Sun, Shizong Wang, Jianlong Wang, Sylwester Bulka, Marta Pyszynska and Marcin Sudlitz
Water 2025, 17(11), 1596; https://doi.org/10.3390/w17111596 - 25 May 2025
Cited by 1 | Viewed by 683
Abstract
Sulfamethoxazole (SMX), a widely used antibiotic, persists in aquatic environments due to its resistance to conventional wastewater treatments. This work examined the breakdown of SMX in both purified water and urban wastewater through the application of electron beam irradiation (EBI). Experiments were conducted [...] Read more.
Sulfamethoxazole (SMX), a widely used antibiotic, persists in aquatic environments due to its resistance to conventional wastewater treatments. This work examined the breakdown of SMX in both purified water and urban wastewater through the application of electron beam irradiation (EBI). Experiments were conducted across doses of 0.5–3.0 kGy and varying pHs (2.70, 6.13, 9.00 and 11.10) and initial concentrations (5, 10, 15, 20 and 30 mg/L), and the role of reactive species was investigated with the help of scavengers. The results showed that SMX degradation followed pseudo-first-order kinetics and was most efficient at lower pH and concentrations. The scavenger experiments confirmed hydroxyl radicals as the dominant oxidizing agents responsible for SMX degradation, while wastewater constituents slightly inhibited the process. Nevertheless, over 99% SMX degradation was achieved at higher doses (1.5–3.0 kGy). TOC analysis revealed the partial mineralization of SMX, indicating the persistence of intermediate by-products despite high degradation efficiency. LC-MS analysis revealed multiple transformation products including hydroxylated sulfonamides and nitro-substituted derivatives, reflecting diverse degradation pathways. These results demonstrate that EBI is a highly effective laboratory-scale method for degrading SMX from water and wastewater, with promising potential for practical application. Full article
Show Figures

Figure 1

Back to TopTop