Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,725)

Search Parameters:
Keywords = novel treatment approaches

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2057 KiB  
Review
Therapeutic Opportunities in Overcoming Premature Termination Codons in Epidermolysis Bullosa via Translational Readthrough
by Kathleen L. Miao, Ryan Huynh, David Woodley and Mei Chen
Cells 2025, 14(15), 1215; https://doi.org/10.3390/cells14151215 (registering DOI) - 7 Aug 2025
Abstract
Epidermolysis Bullosa (EB) comprises a group of inherited blistering disorders caused by pathogenic variants in genes essential for skin and mucosal integrity. Nonsense mutations, which generate premature termination codons (PTCs), result in reduced or absent protein expression and contribute to severe disease phenotypes [...] Read more.
Epidermolysis Bullosa (EB) comprises a group of inherited blistering disorders caused by pathogenic variants in genes essential for skin and mucosal integrity. Nonsense mutations, which generate premature termination codons (PTCs), result in reduced or absent protein expression and contribute to severe disease phenotypes in EB. Readthrough therapies, which may continue translation past PTCs to restore full-length functional proteins, have emerged as promising approaches. This review summarizes findings from preclinical studies investigating readthrough therapies in EB models, clinical studies demonstrating efficacy in EB patients, and emerging readthrough agents with potential application to EB. Preclinical and clinical studies with gentamicin have demonstrated restored type VII collagen and laminin-332 expression, leading to measurable clinical improvements. Parallel development of novel compounds—including aminoglycoside analogs (e.g., ELX-02), translation termination factor degraders (e.g., CC-90009, SRI-41315, SJ6986), tRNA post-transcriptional inhibitors (e.g., 2,6-diaminopurine, NV848), and nucleoside analogs (e.g., clitocine)—has expanded the therapeutic pipeline. Although challenges remain regarding toxicity, codon specificity, and variable protein restoration thresholds, continued advances in molecular targeting and combination therapies offer the potential to establish readthrough therapies as localized or systemic treatments addressing both cutaneous and extracutaneous disease manifestations in EB. Full article
Show Figures

Figure 1

21 pages, 1727 KiB  
Review
Immune Evasion in Head and Neck Squamous Cell Carcinoma: Roles of Cancer-Associated Fibroblasts, Immune Checkpoints, and TP53 Mutations in the Tumor Microenvironment
by Chung-Che Tsai, Yi-Chiung Hsu, Tin-Yi Chu, Po-Chih Hsu and Chan-Yen Kuo
Cancers 2025, 17(15), 2590; https://doi.org/10.3390/cancers17152590 (registering DOI) - 7 Aug 2025
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive malignancy characterized by complex interactions within the tumor microenvironment (TME) that facilitate immune evasion and tumor progression. The TME consists of diverse cellular components, including cancer-associated fibroblasts, immune and endothelial cells, and [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive malignancy characterized by complex interactions within the tumor microenvironment (TME) that facilitate immune evasion and tumor progression. The TME consists of diverse cellular components, including cancer-associated fibroblasts, immune and endothelial cells, and extracellular matrix elements, that collectively modulate tumor growth, metastasis, and resistance to therapy. Immune evasion in HNSCC is orchestrated through multiple mechanisms, including the suppression of cytotoxic T lymphocytes, recruitment of immunosuppressive cells, such as regulatory T and myeloid-derived suppressor cells, and upregulation of immune checkpoint molecules (e.g., PD-1/PD-L1 and CTLA-4). Natural killer (NK) cells, which play a crucial role in anti-tumor immunity, are often dysfunctional within the HNSCC TME due to inhibitory signaling and metabolic constraints. Additionally, endothelial cells contribute to tumor angiogenesis and immune suppression, further exacerbating disease progression. Recent advancements in immunotherapy, particularly immune checkpoint inhibitors and NK cell-based strategies, have shown promise in restoring anti-tumor immunity. Moreover, TP53 mutations, frequently observed in HNSCC, influence tumor behavior and therapeutic responses, highlighting the need for personalized treatment approaches. This review provides a comprehensive analysis of the molecular and cellular mechanisms governing immune evasion in HNSCC with a focus on novel therapeutic strategies aimed at improving patient outcomes. Full article
(This article belongs to the Special Issue Oral Cancer: Prevention and Early Detection (2nd Edition))
Show Figures

Figure 1

34 pages, 1221 KiB  
Review
Unmasking Pediatric Asthma: Epigenetic Fingerprints and Markers of Respiratory Infections
by Alessandra Pandolfo, Rosalia Paola Gagliardo, Valentina Lazzara, Andrea Perri, Velia Malizia, Giuliana Ferrante, Amelia Licari, Stefania La Grutta and Giusy Daniela Albano
Int. J. Mol. Sci. 2025, 26(15), 7629; https://doi.org/10.3390/ijms26157629 - 6 Aug 2025
Abstract
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation [...] Read more.
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation of inflammatory pathways contributing to asthma phenotypes and endotypes. This review examines the role of respiratory viruses such as respiratory syncytial virus (RSV), rhinovirus (RV), and other bacterial and fungal infections that are mediators of infection-induced epithelial inflammation that drive epithelial homeostatic imbalance and induce persistent epigenetic alterations. These alterations lead to immune dysregulation, remodeling of the airways, and resistance to corticosteroids. A focused analysis of T2-high and T2-low asthma endotypes highlights unique epigenetic landscapes directing cytokines and cellular recruitment and thereby supports phenotype-specific aspects of disease pathogenesis. Additionally, this review also considers the role of miRNAs in the control of post-transcriptional networks that are pivotal in asthma exacerbation and the severity of the disease. We discuss novel and emerging epigenetic therapies, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, miRNA-based treatments, and immunomodulatory probiotics, that are in preclinical or early clinical development and may support precision medicine in asthma. Collectively, the current findings highlight the translational relevance of including pathogen-related biomarkers and epigenomic data for stratifying pediatric asthma patients and for the personalization of therapeutic regimens. Epigenetic dysregulation has emerged as a novel and potentially transformative approach for mitigating chronic inflammation and long-term morbidity in children with asthma. Full article
(This article belongs to the Special Issue Molecular Research in Airway Diseases)
45 pages, 4319 KiB  
Review
Advancements in Radiomics-Based AI for Pancreatic Ductal Adenocarcinoma
by Georgios Lekkas, Eleni Vrochidou and George A. Papakostas
Bioengineering 2025, 12(8), 849; https://doi.org/10.3390/bioengineering12080849 (registering DOI) - 6 Aug 2025
Abstract
The advancement of artificial intelligence (AI), deep learning, and radiomics has introduced novel methodologies for the detection, classification, prognosis, and treatment evaluation of pancreatic ductal adenocarcinoma (PDAC). As the integration of AI into medical imaging continues to evolve, its potential to enhance early [...] Read more.
The advancement of artificial intelligence (AI), deep learning, and radiomics has introduced novel methodologies for the detection, classification, prognosis, and treatment evaluation of pancreatic ductal adenocarcinoma (PDAC). As the integration of AI into medical imaging continues to evolve, its potential to enhance early detection, refine diagnostic precision, and optimize treatment strategies becomes increasingly evident. However, despite significant progress, various challenges remain, particularly in terms of clinical applicability, generalizability, interpretability, and integration into routine practice. Understanding the current state of research is crucial for identifying gaps in the literature and exploring opportunities for future advancements. This literature review aims to provide a comprehensive overview of the existing studies on AI applications in PDAC, with a focus on disease detection, classification, survival prediction, treatment response assessment, and radiogenomics. By analyzing the methodologies, findings, and limitations of these studies, we aim to highlight the strengths of AI-driven approaches while addressing critical gaps that hinder their clinical translation. Furthermore, this review aims to discuss future directions in the field, emphasizing the need for multi-institutional collaborations, explainable AI models, and the integration of multi-modal data to advance the role of AI in personalized medicine for PDAC. Full article
Show Figures

Figure 1

19 pages, 1217 KiB  
Article
Improving Endodontic Radiograph Interpretation with TV-CLAHE for Enhanced Root Canal Detection
by Barbara Obuchowicz, Joanna Zarzecka, Michał Strzelecki, Marzena Jakubowska, Rafał Obuchowicz, Adam Piórkowski, Elżbieta Zarzecka-Francica and Julia Lasek
J. Clin. Med. 2025, 14(15), 5554; https://doi.org/10.3390/jcm14155554 (registering DOI) - 6 Aug 2025
Abstract
Objective: The accurate visualization of root canal systems on periapical radiographs is critical for successful endodontic treatment. This study aimed to evaluate and compare the effectiveness of several image enhancement algorithms—including a novel Total Variation–Contrast-Limited Adaptive Histogram Equalization (TV-CLAHE) technique—in improving the detectability [...] Read more.
Objective: The accurate visualization of root canal systems on periapical radiographs is critical for successful endodontic treatment. This study aimed to evaluate and compare the effectiveness of several image enhancement algorithms—including a novel Total Variation–Contrast-Limited Adaptive Histogram Equalization (TV-CLAHE) technique—in improving the detectability of root canal configurations in mandibular incisors, using cone-beam computed tomography (CBCT) as the gold standard. A null hypothesis was tested, assuming that enhancement methods would not significantly improve root canal detection compared to original radiographs. Method: A retrospective analysis was conducted on 60 periapical radiographs of mandibular incisors, resulting in 420 images after applying seven enhancement techniques: Histogram Equalization (HE), Contrast-Limited Adaptive Histogram Equalization (CLAHE), CLAHE optimized with Pelican Optimization Algorithm (CLAHE-POA), Global CLAHE (G-CLAHE), k-Caputo Fractional Differential Operator (KCFDO), and the proposed TV-CLAHE. Four experienced observers (two radiologists and two dentists) independently assessed root canal visibility. Subjective evaluation was performed using an own scale inspired by a 5-point Likert scale, and the detection accuracy was compared to the CBCT findings. Quantitative metrics including Peak Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR), image entropy, and Structural Similarity Index Measure (SSIM) were calculated to objectively assess image quality. Results: Root canal detection accuracy improved across all enhancement methods, with the proposed TV-CLAHE algorithm achieving the highest performance (93–98% accuracy), closely approaching CBCT-level visualization. G-CLAHE also showed substantial improvement (up to 92%). Statistical analysis confirmed significant inter-method differences (p < 0.001). TV-CLAHE outperformed all other techniques in subjective quality ratings and yielded superior SNR and entropy values. Conclusions: Advanced image enhancement methods, particularly TV-CLAHE, significantly improve root canal visibility in 2D radiographs and offer a practical, low-cost alternative to CBCT in routine dental diagnostics. These findings support the integration of optimized contrast enhancement techniques into endodontic imaging workflows to reduce the risk of missed canals and improve treatment outcomes. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

23 pages, 3314 KiB  
Article
Functional Express Proteomics for Search and Identification of Differentially Regulated Proteins Involved in the Reaction of Wheat (Triticum aestivum L.) to Nanopriming by Gold Nanoparticles
by Natalia Naraikina, Tomiris Kussainova, Andrey Shelepchikov, Alexey Tretyakov, Alexander Deryabin, Kseniya Zhukova, Valery Popov, Irina Tarasova, Lev Dykman and Yuliya Venzhik
Int. J. Mol. Sci. 2025, 26(15), 7608; https://doi.org/10.3390/ijms26157608 - 6 Aug 2025
Abstract
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, [...] Read more.
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, the molecular mechanisms underlying nanoparticle-induced effects remain poorly understood. In this study, we investigated the impact of gold nanoparticle (Au-NP) seed priming on the proteome of wheat (Triticum aestivum L.) seedlings. Differentially regulated proteins (DRPs) were identified, revealing a pronounced reorganization of the photosynthetic apparatus (PSA). Both the light-dependent reactions and the Calvin cycle were affected, with significant upregulation of chloroplast-associated protein complexes, including PsbC (CP43), chlorophyll a/b-binding proteins, Photosystem I subunits (PsaA and PsaB), and the γ-subunit of ATP synthase. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) exhibited over a threefold increase in expression in Au-NP-treated seedlings. The proteomic changes in the large subunit RuBisCo L were corroborated by transcriptomic data. Importantly, the proteomic changes were supported by physiological and biochemical analyses, ultrastructural modifications in chloroplasts, and increased photosynthetic activity. Our findings suggest that Au-NP nanopriming triggers coordinated molecular responses, enhancing the functional activity of the PSA. Identified DRPs may serve as potential biomarkers for further elucidation of nanopriming mechanisms and for the development of precision strategies to improve crop productivity. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

26 pages, 1203 KiB  
Review
Deciphering the Role of Functional Ion Channels in Cancer Stem Cells (CSCs) and Their Therapeutic Implications
by Krishna Samanta, Gali Sri Venkata Sai Rishma Reddy, Neeraj Kumar Sharma and Pulak Kar
Int. J. Mol. Sci. 2025, 26(15), 7595; https://doi.org/10.3390/ijms26157595 - 6 Aug 2025
Abstract
Despite advances in medicine, cancer remains one of the foremost global health concerns. Conventional treatments like surgery, radiotherapy, and chemotherapy have advanced with the emergence of targeted and immunotherapy approaches. However, therapeutic resistance and relapse remain major barriers to long-term success in cancer [...] Read more.
Despite advances in medicine, cancer remains one of the foremost global health concerns. Conventional treatments like surgery, radiotherapy, and chemotherapy have advanced with the emergence of targeted and immunotherapy approaches. However, therapeutic resistance and relapse remain major barriers to long-term success in cancer treatment, often driven by cancer stem cells (CSCs). These rare, resilient cells can survive therapy and drive tumour regrowth, urging deeper investigation into the mechanisms underlying their persistence. CSCs express ion channels typical of excitable tissues, which, beyond electrophysiology, critically regulate CSC fate. However, the underlying regulatory mechanisms of these channels in CSCs remain largely unexplored and poorly understood. Nevertheless, the therapeutic potential of targeting CSC ion channels is immense, as it offers a powerful strategy to disrupt vital signalling pathways involved in numerous pathological conditions. In this review, we explore the diverse repertoire of ion channels expressed in CSCs and highlight recent mechanistic insights into how these channels modulate CSC behaviours, dynamics, and functions. We present a concise overview of ion channel-mediated CSC regulation, emphasizing their potential as novel diagnostic markers and therapeutic targets, and identifying key areas for future research. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

19 pages, 332 KiB  
Review
Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies
by Nicolò Ciarmatori, Flavia Quaranta Leoni and Francesco M. Quaranta Leoni
J. Clin. Med. 2025, 14(15), 5528; https://doi.org/10.3390/jcm14155528 - 6 Aug 2025
Abstract
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural [...] Read more.
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural changes such as proptosis and diplopia, and are associated with substantial adverse effects. This review aims to synthesize recent developments in understandings of TED pathogenesis and to critically evaluate emerging therapeutic strategies. Methods: A systematic literature review was conducted using MEDLINE, Embase, and international clinical trial registries focusing on pivotal clinical trials and investigational therapies targeting core molecular pathways involved in TED. Results: Current evidence suggests that TED pathogenesis is primarily driven by the autoimmune activation of orbital fibroblasts (OFs) through thyrotropin receptor (TSH-R) and insulin-like growth factor-1 receptor (IGF-1R) signaling. Teprotumumab, a monoclonal IGF-1R inhibitor and the first therapy approved by the U.S. Food and Drug Administration for TED, has demonstrated substantial clinical benefit, including improvements in proptosis, diplopia, and quality of life. However, concerns remain regarding relapse rates and treatment-associated adverse events, particularly hearing impairment. Investigational therapies, including next-generation IGF-1R inhibitors, small-molecule antagonists, TSH-R inhibitors, neonatal Fc receptor (FcRn) blockers, cytokine-targeting agents, and gene-based interventions, are under development. These novel approaches aim to address both inflammatory and fibrotic components of TED. Conclusions: Teprotumumab has changed TED management but sustained control and toxicity reduction remain challenges. Future therapies should focus on targeted, mechanism-based, personalized approaches to improve long-term outcomes and patient quality of life. Full article
(This article belongs to the Section Ophthalmology)
13 pages, 1198 KiB  
Review
The Role of Mitochondrial DNA in Modulating Chemoresistance in Esophageal Cancer: Mechanistic Insights and Therapeutic Potential
by Koji Tanaka, Yasunori Masuike, Yuto Kubo, Takashi Harino, Yukinori Kurokawa, Hidetoshi Eguchi and Yuichiro Doki
Biomolecules 2025, 15(8), 1128; https://doi.org/10.3390/biom15081128 - 5 Aug 2025
Viewed by 14
Abstract
Chemotherapy remains a cornerstone in the treatment of esophageal cancer (EC), yet chemoresistance remains a critical challenge, leading to poor outcomes and limited therapeutic success. Mitochondrial DNA (mtDNA) has emerged as a pivotal player in mediating these responses, influencing cellular metabolism, oxidative stress [...] Read more.
Chemotherapy remains a cornerstone in the treatment of esophageal cancer (EC), yet chemoresistance remains a critical challenge, leading to poor outcomes and limited therapeutic success. Mitochondrial DNA (mtDNA) has emerged as a pivotal player in mediating these responses, influencing cellular metabolism, oxidative stress regulation, and apoptotic pathways. This review provides a comprehensive overview of the mechanisms by which mtDNA alterations, including mutations and copy number variations, drive chemoresistance in EC. Specific focus is given to the role of mtDNA in metabolic reprogramming, including its contribution to the Warburg effect and lipid metabolism, as well as its impact on epithelial–mesenchymal transition (EMT) and mitochondrial bioenergetics. Recent advances in targeting mitochondrial pathways through novel therapeutic agents, such as metformin and mitoquinone, and innovative approaches like CRISPR/Cas9 gene editing, are also discussed. These interventions highlight the potential for overcoming chemoresistance and improving patient outcomes. By integrating mitochondrial diagnostics with personalized treatment strategies, we propose a roadmap for future research that bridges basic mitochondrial biology with translational applications in oncology. The insights offered in this review emphasize the critical need for continued exploration of mtDNA-targeted therapies to address the unmet needs in EC management and other diseases associated with mitochondria. Full article
(This article belongs to the Special Issue Esophageal Diseases: Molecular Basis and Therapeutic Approaches)
Show Figures

Figure 1

13 pages, 1769 KiB  
Article
Antimicrobial Photodynamic Activity of the Zn(II) Phthalocyanine RLP068/Cl Versus Antimicrobial-Resistant Priority Pathogens
by Ilaria Baccani, Sara Cuffari, Francesco Giuliani, Gian Maria Rossolini and Simona Pollini
Int. J. Mol. Sci. 2025, 26(15), 7545; https://doi.org/10.3390/ijms26157545 - 5 Aug 2025
Viewed by 117
Abstract
The emergence and spread of antimicrobial resistance among pathogens are significantly reducing available therapeutic options, highlighting the urgent need for novel and complementary treatment strategies. Antimicrobial photodynamic therapy (aPDT) is a promising alternative approach that can overcome antimicrobial resistance through a multitarget mechanism [...] Read more.
The emergence and spread of antimicrobial resistance among pathogens are significantly reducing available therapeutic options, highlighting the urgent need for novel and complementary treatment strategies. Antimicrobial photodynamic therapy (aPDT) is a promising alternative approach that can overcome antimicrobial resistance through a multitarget mechanism of action, exerting direct bactericidal and fungicidal effects with minimal risk of resistance development. Although aPDT has shown efficacy against a variety of pathogens, data on its activity against large collections of clinical multidrug-resistant strains are still limited. In this study, we assessed the antimicrobial activity of the photosensitizer RLP068/Cl combined with a red light-emitting LED source at 630 nm (Molteni Farmaceutici, Italy) against a large panel of Gram-negative and Gram-positive bacterial strains harboring relevant resistance traits and Candida species. Our results demonstrated the significant microbicidal activity of RLP068/Cl against all of the tested strains regardless of their resistance phenotype, with particularly prominent activity against Gram-positive bacteria (range of bactericidal concentrations 0.05–0.1 µM), which required significantly lower exposure to photosensitizer compared to Candida and Gram-negative species (range 5–20 µM). Overall, these findings support the potential use of RLP068/Cl-mediated aPDT as an effective therapeutic strategy for the management of localized infections caused by MDR organisms, particularly when conventional therapeutic options are limited. Full article
Show Figures

Figure 1

12 pages, 569 KiB  
Systematic Review
Intravascular Lithotripsy in the Aorta and Iliac Vessels: A Literature Review of the Past Decade
by Nicola Troisi, Giulia Bertagna, Sofia Pierozzi, Valerio Artini and Raffaella Berchiolli
J. Clin. Med. 2025, 14(15), 5493; https://doi.org/10.3390/jcm14155493 - 4 Aug 2025
Viewed by 145
Abstract
Background/Objectives: Nowadays, intravascular lithotripsy (IVL) has emerged as a novel technique for treatment of vascular calcifications, first in coronary and then in peripheral arteries. In the current literature there is little evidence that describes IVL as an effective and safe solution in [...] Read more.
Background/Objectives: Nowadays, intravascular lithotripsy (IVL) has emerged as a novel technique for treatment of vascular calcifications, first in coronary and then in peripheral arteries. In the current literature there is little evidence that describes IVL as an effective and safe solution in treating severe aortic and aorto-iliac calcifications. The aim of this study is to report current available data about the use of IVL in treating aortic and aorto-iliac calcified lesions and its application in facilitating other endovascular procedures. Methods: the present review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) Guidelines. Preliminary searches were conducted on MEDLINE and Pubmed from January 2015 to February 2025. Studies were divided into 3 main categories depending on the location of calcifications and the type of treatment: IVL in visceral and infrarenal obstructive disease (group 1), IVL in aorto-iliac obstructive disease (group 2), IVL used to facilitate other endovascular procedures. Main primary outcomes in the perioperative period were technical and clinical successes and perioperative complications. Primary outcomes at 30 days and mid-term (2 years) were overall survival, limb salvage rate, primary patency, primary assisted patency, secondary patency, and residual stenosis. Results: Sixteen studies were identified for a total of 1674 patients. Technical and clinical successes were 100%, with low rates of perioperative complications. Dissection rate reaches up to 16.1% in some studies, without any differences compared to plain old balloon angioplasty (POBA) alone (22.8%; p = 0.47). At 30 days, limb salvage and survival rates were 100%. At 2 years, primary patency, assisted primary patency, and secondary patency were 95%, 98%, and 100%, respectively, with no difference compared to IVL + stenting. Conclusions: IVL has emerged as a novel approach to treat severe calcified lesions in visceral and aorto-iliac atherosclerotic disease and to facilitate other endovascular procedures. This technique seems to offer satisfactory early and mid-term outcomes in terms of primary, primary assisted patency, and secondary patency with low complication rates. Full article
(This article belongs to the Special Issue Endovascular Surgery: State of the Art and Clinical Perspectives)
Show Figures

Figure 1

33 pages, 640 KiB  
Review
Future Pharmacotherapy for Bipolar Disorders: Emerging Trends and Personalized Approaches
by Giuseppe Marano, Francesco Maria Lisci, Gianluca Boggio, Ester Maria Marzo, Francesca Abate, Greta Sfratta, Gianandrea Traversi, Osvaldo Mazza, Roberto Pola, Gabriele Sani, Eleonora Gaetani and Marianna Mazza
Future Pharmacol. 2025, 5(3), 42; https://doi.org/10.3390/futurepharmacol5030042 - 4 Aug 2025
Viewed by 151
Abstract
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse [...] Read more.
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse rates. Methods: This paper is a narrative review aimed at synthesizing emerging trends and future directions in the pharmacological treatment of BD. Results: Future pharmacotherapy for BD is likely to shift toward precision medicine, leveraging advances in genetics, biomarkers, and neuroimaging to guide personalized treatment strategies. Novel drug development will also target previously underexplored mechanisms, such as inflammation, mitochondrial dysfunction, circadian rhythm disturbances, and glutamatergic dysregulation. Physiological endophenotypes, such as immune-metabolic profiles, circadian rhythms, and stress reactivity, are emerging as promising translational tools for tailoring treatment and reducing associated somatic comorbidity and mortality. Recognition of the heterogeneous longitudinal trajectories of BD, including chronic mixed states, long depressive episodes, or intermittent manic phases, has underscored the value of clinical staging models to inform both pharmacological strategies and biomarker research. Disrupted circadian rhythms and associated chronotypes further support the development of individualized chronotherapeutic interventions. Emerging chronotherapeutic approaches based on individual biological rhythms, along with innovative monitoring strategies such as saliva-based lithium sensors, are reshaping the future landscape. Anti-inflammatory agents, neurosteroids, and compounds modulating oxidative stress are emerging as promising candidates. Additionally, medications targeting specific biological pathways implicated in bipolar pathophysiology, such as N-methyl-D-aspartate (NMDA) receptor modulators, phosphodiesterase inhibitors, and neuropeptides, are under investigation. Conclusions: Advances in pharmacogenomics will enable clinicians to predict individual responses and tolerability, minimizing trial-and-error prescribing. The future landscape may also incorporate digital therapeutics, combining pharmacotherapy with remote monitoring and data-driven adjustments. Ultimately, integrating innovative drug therapies with personalized approaches has the potential to enhance efficacy, reduce adverse effects, and improve long-term outcomes for individuals with bipolar disorder, ushering in a new era of precision psychiatry. Full article
Show Figures

Figure 1

34 pages, 1543 KiB  
Review
Treatment Strategies for Cutaneous and Oral Mucosal Side Effects of Oncological Treatment in Breast Cancer: A Comprehensive Review
by Sanja Brnić, Bruno Špiljak, Lucija Zanze, Ema Barac, Robert Likić and Liborija Lugović-Mihić
Biomedicines 2025, 13(8), 1901; https://doi.org/10.3390/biomedicines13081901 - 4 Aug 2025
Viewed by 240
Abstract
Cutaneous and oral mucosal adverse events (AEs) are among the most common non-hematologic toxicities observed during breast cancer treatment. These complications arise across various therapeutic modalities including chemotherapy, targeted therapy, hormonal therapy, radiotherapy, and immunotherapy. Although often underrecognized compared with systemic side effects, [...] Read more.
Cutaneous and oral mucosal adverse events (AEs) are among the most common non-hematologic toxicities observed during breast cancer treatment. These complications arise across various therapeutic modalities including chemotherapy, targeted therapy, hormonal therapy, radiotherapy, and immunotherapy. Although often underrecognized compared with systemic side effects, dermatologic and mucosal toxicities can severely impact the patients’ quality of life, leading to psychosocial distress, pain, and reduced treatment adherence. In severe cases, these toxicities may necessitate dose reductions, treatment delays, or discontinuation, thereby compromising oncologic outcomes. The growing use of precision medicine and novel targeted agents has broadened the spectrum of AEs, with some therapies linked to distinct dermatologic syndromes and mucosal complications such as mucositis, xerostomia, and lichenoid reactions. Early detection, accurate classification, and timely multidisciplinary management are essential for mitigating these effects. This review provides a comprehensive synthesis of current knowledge on cutaneous and oral mucosal toxicities associated with modern breast cancer therapies. Particular attention is given to clinical presentation, underlying pathophysiology, incidence, and evidence-based prevention and management strategies. We also explore emerging approaches, including nanoparticle-based delivery systems and personalized interventions, which may reduce toxicity without compromising therapeutic efficacy. By emphasizing the integration of dermatologic and mucosal care, this review aims to support clinicians in preserving treatment adherence and enhancing the overall therapeutic experience in breast cancer patients. The novelty of this review lies in its dual focus on cutaneous and oral complications across all major therapeutic classes, including recent biologic and immunotherapeutic agents, and its emphasis on multidisciplinary, patient-centered strategies. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

24 pages, 2655 KiB  
Article
Ribosomal RNA-Specific Antisense DNA and Double-Stranded DNA Trigger rRNA Biogenesis and Insecticidal Effects on the Insect Pest Coccus hesperidum
by Vol Oberemok, Nikita Gal’chinsky, Ilya Novikov, Alexander Sharmagiy, Ekaterina Yatskova, Ekaterina Laikova and Yuri Plugatar
Int. J. Mol. Sci. 2025, 26(15), 7530; https://doi.org/10.3390/ijms26157530 - 4 Aug 2025
Viewed by 200
Abstract
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, [...] Read more.
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

18 pages, 7672 KiB  
Article
Molecular Subtypes and Biomarkers of Ulcerative Colitis Revealed by Sphingolipid Metabolism-Related Genes: Insights from Machine Learning and Molecular Dynamics
by Quanwei Li, Junchen Li, Shuyuan Liu, Yunshu Zhang, Jifeng Liu, Xing Wan and Guogang Liang
Curr. Issues Mol. Biol. 2025, 47(8), 616; https://doi.org/10.3390/cimb47080616 - 4 Aug 2025
Viewed by 127
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease associated with disrupted lipid metabolism. This study aimed to uncover novel molecular subtypes and biomarkers by integrating sphingolipid metabolism-related genes (SMGs) with machine learning approaches. Using data from the GEO and GeneCards databases, 29 [...] Read more.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease associated with disrupted lipid metabolism. This study aimed to uncover novel molecular subtypes and biomarkers by integrating sphingolipid metabolism-related genes (SMGs) with machine learning approaches. Using data from the GEO and GeneCards databases, 29 UC-related SMGs were identified. Consensus clustering was employed to define distinct molecular subtypes of UC, and a diagnostic model was developed through various machine learning algorithms. Further analyses—including functional enrichment, transcription factor prediction, single-cell localization, potential drug screening, molecular docking, and molecular dynamics simulations—were conducted to investigate the underlying mechanisms and therapeutic prospects of the identified genes in UC. The analysis revealed two molecular subtypes of UC: C1 (metabolically dysregulated) and C2 (immune-enriched). A diagnostic model based on three key genes demonstrated high accuracy in both the training and validation cohorts. Moreover, the transcription factor FOXA2 was predicted to regulate the expression of all three genes simultaneously. Notably, mebendazole and NVP-TAE226 emerged as promising therapeutic agents for UC. In conclusion, SMGs are integral to UC molecular subtyping and immune microenvironment modulation, presenting a novel framework for precision diagnosis and targeted treatment of UC. Full article
Show Figures

Figure 1

Back to TopTop