Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = novel eye drop delivery systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3230 KiB  
Article
Enhanced Ocular Bioavailability and Prolonged Duration via Hydrophilic Surface Nanocomposite Vesicles for Topical Drug Administration
by Sa Huang, Yuan Xu, Yingyao Luo, Zhijiong Wang, Fan Li, Zhenmiao Qin and Junfeng Ban
Pharmaceutics 2024, 16(12), 1496; https://doi.org/10.3390/pharmaceutics16121496 - 21 Nov 2024
Cited by 1 | Viewed by 1220
Abstract
Background: Internal ocular diseases, such as macular edema, uveitis, and diabetic macular edema require precise delivery of therapeutic agents to specific regions within the eye. However, the eye’s complex anatomical structure and physiological barriers present significant challenges to drug penetration and distribution. Traditional [...] Read more.
Background: Internal ocular diseases, such as macular edema, uveitis, and diabetic macular edema require precise delivery of therapeutic agents to specific regions within the eye. However, the eye’s complex anatomical structure and physiological barriers present significant challenges to drug penetration and distribution. Traditional eye drops suffer from low bioavailability primarily due to rapid clearance mechanisms. Methods: The novel ocular drug delivery system developed in this study utilizes poly(lactic-co-glycolic acid) (PLGA) nanoparticles modified with cell-penetrating peptides (CPPs). In vitro drug release studies were conducted to evaluate the sustained-release properties of the nanoparticles. Ex vivo experiments using MDCK cells assessed corneal permeability and uptake efficiency. Additionally, in vivo studies were performed in rabbit eyes to determine the nanoparticles’ resistance to elimination by tears and their retention time in the aqueous humor. Results: In vitro drug release studies demonstrated superior sustained-release properties of the nanoparticles. Ex vivo experiments revealed enhanced corneal permeability and increased uptake efficiency by MDCK cells. In vivo studies in rabbit eyes confirmed the nanoparticles’ resistance to elimination by lacrimal fluid and their ability to extend retention time in the aqueous humor. CPP modification significantly improved ocular retention, corneal penetration, and cellular endocytosis efficiency. Conclusions: The CPP-modified PLGA nanoparticles provide an effective and innovative solution for ocular drug delivery, offering improved bioavailability, prolonged retention, and enhanced drug penetration, thereby overcoming the challenges of traditional intraocular drug administration methods. Full article
(This article belongs to the Special Issue Polymer-Based Delivery System)
Show Figures

Graphical abstract

21 pages, 5375 KiB  
Article
Formulation and Development of Nanofiber-Based Ophthalmic Insert for the Treatment of Bacterial Conjunctivitis
by Eszter Farkas, Houssam Abboud, Nándor Nagy, Bálint Hofmeister, Eszter Ostorházi, Bence Tóth, Balázs Pinke, László Mészáros, Romána Zelkó and Adrienn Kazsoki
Int. J. Mol. Sci. 2024, 25(17), 9228; https://doi.org/10.3390/ijms25179228 - 25 Aug 2024
Cited by 4 | Viewed by 2040
Abstract
A novel ophthalmic delivery system utilizing levofloxacin-loaded, preservative-free, nanofiber-based inserts was investigated. Polyvinyl alcohol (PVA) and Poloxamer 407 (Polox)were employed as matrix materials, while hydroxypropyl-beta-cyclodextrin (HP-β-CD) was a solubilizer. The formulations were prepared via electrospinning and characterized for fiber morphology, drug dissolution, cytotoxicity, [...] Read more.
A novel ophthalmic delivery system utilizing levofloxacin-loaded, preservative-free, nanofiber-based inserts was investigated. Polyvinyl alcohol (PVA) and Poloxamer 407 (Polox)were employed as matrix materials, while hydroxypropyl-beta-cyclodextrin (HP-β-CD) was a solubilizer. The formulations were prepared via electrospinning and characterized for fiber morphology, drug dissolution, cytotoxicity, and antimicrobial activity. Scanning electron microscopy confirmed uniform fibrous structures. Fourier Transform Infrared spectroscopy and X-ray diffraction analyses demonstrated the amorphous state of levofloxacin within the fibers. In vitro dissolution studies revealed a rapid (within 2 min) and complete drug release, with higher HP-β-CD levels slightly delaying the release. Cytotoxicity tests showed increased HP-β-CD concentrations induced irritation, that was mitigated by sodium hyaluronate. The antimicrobial efficacy of the nanofibers was comparable to conventional eye drops, with lower minimum inhibitory concentrations for most tested strains. The nanofibrous formulation prepared from a PVA–Polox-based viscous solution of the drug:CD 1:1 mol ratio, containing 0.4% (w/w) sodium hyaluronate) was identified as a particularly promising alternative formulation due to its rapid and complete dissolution, good biocompatibility, and effective antimicrobial properties. Its gelling properties indicate that the residence time on the eye surface can be increased, potentially reducing discomfort and enhancing therapeutic outcomes. The nanofibrous formulations enhanced antimicrobial efficacy, providing a preservative-free alternative that minimizes the potential eye irritation that might occur because of the preservative agent and reduces the administrated dose frequency by extending the drug’s retention time on the eye’s surface. Subsequently, it improves patients’ adherence, which would reflect positively on the bioavailability. The levofloxacin-HP-β-CD nanofibers demonstrate promise as an alternative to traditional eye drops, offering advantages in solubility, stability, and patient compliance for ocular infection treatment. Full article
Show Figures

Figure 1

35 pages, 1687 KiB  
Review
From Eye Care to Hair Growth: Bimatoprost
by Marco Zeppieri, Caterina Gagliano, Leopoldo Spadea, Carlo Salati, Ekele Caleb Chukwuyem, Ehimare Samuel Enaholo, Fabiana D’Esposito and Mutali Musa
Pharmaceuticals 2024, 17(5), 561; https://doi.org/10.3390/ph17050561 - 27 Apr 2024
Cited by 6 | Viewed by 7118
Abstract
Background: Bimatoprost has emerged as a significant medication in the field of medicine over the past several decades, with diverse applications in ophthalmology, dermatology, and beyond. Originally developed as an ocular hypotensive agent, it has proven highly effective in treating glaucoma and ocular [...] Read more.
Background: Bimatoprost has emerged as a significant medication in the field of medicine over the past several decades, with diverse applications in ophthalmology, dermatology, and beyond. Originally developed as an ocular hypotensive agent, it has proven highly effective in treating glaucoma and ocular hypertension. Its ability to reduce intraocular pressure has established it as a first-line treatment option, improving management and preventing vision loss. In dermatology, bimatoprost has shown promising results in the promotion of hair growth, particularly in the treatment of alopecia and hypotrichosis. Its mechanism of action, stimulating the hair cycle and prolonging the growth phase, has led to the development of bimatoprost-containing solutions for enhancing eyelash growth. Aim: The aim of our review is to provide a brief description, overview, and studies in the current literature regarding the versatile clinical use of bimatoprost in recent years. This can help clinicians determine the most suitable individualized therapy to meet the needs of each patient. Methods: Our methods involve a comprehensive review of the latest advancements reported in the literature in bimatoprost formulations, which range from traditional eye drops to sustained-release implants. These innovations offer extended drug delivery, enhance patient compliance, and minimize side effects. Results: The vast literature published on PubMed has confirmed the clinical usefulness of bimatoprost in lowering intraocular pressure and in managing patients with glaucoma. Numerous studies have shown promising results in dermatology and esthetics in promoting hair growth, particularly in treating alopecia and hypotrichosis. Its mechanism of action involves stimulating the hair cycle and prolonging the growth phase, leading to the development of solutions that enhance eyelash growth. The global use of bimatoprost has expanded significantly, with applications growing beyond its initial indications. Ongoing research is exploring its potential in glaucoma surgery, neuroprotection, and cosmetic procedures. Conclusions: Bimatoprost has shown immense potential for addressing a wide range of therapeutic needs through various formulations and advancements. Promising future perspectives include the exploration of novel delivery systems such as contact lenses and microneedles to further enhance drug efficacy and patient comfort. Ongoing research and future perspectives continue to shape its role in medicine, promising further advancements and improved patient outcomes. Full article
(This article belongs to the Special Issue Ophthalmic Pharmacology)
Show Figures

Figure 1

17 pages, 4838 KiB  
Article
Mucoadhesive Hybrid System of Silk Fibroin Nanoparticles and Thermosensitive In Situ Hydrogel for Amphotericin B Delivery: A Potential Option for Fungal Keratitis Treatment
by Pratthana Chomchalao, Nuttawut Saelim, Supaporn Lamlertthon, Premnapa Sisopa and Waree Tiyaboonchai
Polymers 2024, 16(1), 148; https://doi.org/10.3390/polym16010148 - 3 Jan 2024
Cited by 14 | Viewed by 2820
Abstract
The purpose of this work was to investigate the feasibility of a novel ophthalmic formulation of amphotericin B-encapsulated silk fibroin nanoparticles incorporated in situ hydrogel (AmB-FNPs ISG) for fungal keratitis (FK) treatment. AmB-FNPs ISG composites were successfully developed and have shown optimized physicochemical [...] Read more.
The purpose of this work was to investigate the feasibility of a novel ophthalmic formulation of amphotericin B-encapsulated silk fibroin nanoparticles incorporated in situ hydrogel (AmB-FNPs ISG) for fungal keratitis (FK) treatment. AmB-FNPs ISG composites were successfully developed and have shown optimized physicochemical properties for ocular drug delivery. Antifungal effects against Candida albicans and in vitro ocular irritation using corneal epithelial cells were performed to evaluate the efficacy and safety of the composite formulations. The combined system of AmB-FNPs-ISG exhibited effective antifungal activity and showed significantly less toxicity to HCE cells than commercial AmB. In vitro and ex vivo mucoadhesive tests demonstrated that the combination of silk fibroin nanoparticles with in situ hydrogels could enhance the adhesion ability of the particles on the ocular surface for more than 6 h, which would increase the ocular retention time of AmB and reduce the frequency of administration during the treatment. In addition, AmB-FNP-PEG ISG showed good physical and chemical stability under storage condition for 90 days. These findings indicate that AmB-FNP-PEG ISG has a great potential and be used in mucoadhesive AmB eye drops for FK treatment. Full article
(This article belongs to the Special Issue Development and Application of Bio-Based Polymers)
Show Figures

Graphical abstract

18 pages, 1897 KiB  
Article
Discovery and Potential Utility of a Novel Non-Invasive Ocular Delivery Platform
by Weizhen (Jenny) Wang and Nonna Snider
Pharmaceutics 2023, 15(9), 2344; https://doi.org/10.3390/pharmaceutics15092344 - 19 Sep 2023
Cited by 4 | Viewed by 2221
Abstract
To this day, the use of oily eye drops and non-invasive retinal delivery remain a major challenge. Oily eye drops usually cause ocular irritation and interfere with the normal functioning of the eye, while ocular injections for retinal drug delivery cause significant adverse [...] Read more.
To this day, the use of oily eye drops and non-invasive retinal delivery remain a major challenge. Oily eye drops usually cause ocular irritation and interfere with the normal functioning of the eye, while ocular injections for retinal drug delivery cause significant adverse effects and a high burden on the healthcare system. Here, the authors report a novel topical non-invasive ocular delivery platform (NIODP) through the periorbital skin for high-efficiency anterior and posterior ocular delivery in a non-human primate model (NHP). A single dose of about 7 mg JV-MD2 (omega 3 DHA) was delivered via the NIODP and reached the retina at a Cmax of 111 µg/g and the cornea at a Cmax of 66 µg/g. The NIODP also delivered JV-DE1, an anti-inflammatory agent in development for dry eye diseases, as efficiently as eye drops did to the anterior segments of the NHP. The topical NIODP seems to transport drug candidates through the corneal pathway to the anterior and via the conjunctiva/sclera pathway to the posterior segments of the eye. The novel NIODP method has the potential to reshape the landscape of ocular drug delivery. This is especially the case for oily eye drops and retinal delivery, where the success of the treatment lies in the ocular tolerability and bioavailability of drugs in the target tissue. Full article
(This article belongs to the Topic New Challenges in Ocular Drug Delivery)
Show Figures

Figure 1

18 pages, 4548 KiB  
Article
A Composite System Based upon Hydroxypropyl Cyclodextrins and Soft Hydrogel Contact Lenses for the Delivery of Therapeutic Doses of Econazole to the Cornea, In Vitro
by Anepmete Wong, Melissa Fallon, Vildan Celiksoy, Salvatore Ferla, Carmine Varricchio, David Whitaker, Andrew J. Quantock and Charles M. Heard
Pharmaceutics 2022, 14(8), 1631; https://doi.org/10.3390/pharmaceutics14081631 - 4 Aug 2022
Cited by 11 | Viewed by 3282
Abstract
Fungal keratitis, a disease in which the cornea becomes inflamed due to an invasive fungal infection, remains difficult to treat due in part to limited choices of available treatments. Topical eye drops are first-line treatment, but can be ineffective as low levels of [...] Read more.
Fungal keratitis, a disease in which the cornea becomes inflamed due to an invasive fungal infection, remains difficult to treat due in part to limited choices of available treatments. Topical eye drops are first-line treatment, but can be ineffective as low levels of drug reach the target site due to precorneal losses and the impenetrability of the cornea. The aim of this study was to determine the corneal delivery of econazole using a novel topical enhancement approach using a composite delivery system based upon cyclodextrins and soft hydrogel contact lenses. Excess econazole nitrate was added to hydroxypropyl-α-cyclodextrin (HP-α-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) solutions, and the solubility determined using HPLC. Proprietary soft hydrogel contact lenses were then impregnated with saturated solutions and applied to freshly enucleated porcine eyeballs. Econazole nitrate ‘eye drops’ at the same concentrations served as the control. After 6 h, the corneas were excised and drug-extracted, prior to quantification using HPLC. Molecular dynamic simulations were performed to examine econazole–HP-β-CD inclusion complexation and dissociation. The minimum inhibitory concentration (MIC) of econazole was determined against four fungal species associated with keratitis, and these data were then related to the amount of drug delivered to the cornea, using an average corneal volume of 0.19 mL. The solubility of econazole increased greatly in the presence of HP-β-CD and more so with HP-α-CD (p < 0.001), with ratios >> 2. Hydrogel contact lenses delivered ×2.8 more drug across the corneas in comparison to eye drops alone, and ×5 more drug delivered to the cornea when cyclodextrin was present. Molecular graphics demonstrated dynamic econazole release, which would create transient enhanced drug concentration at the cornea surface. The solution-only drops achieved the least satisfactory result, producing sub-MIC levels with factors of ×0.81 for both Fusarium semitectum and Fusarium solani and ×0.40 for both Scolecobasidium tshawytschae and Bipolaris hawaiiensis. All other treatments delivered econazole at > MIC for all four fungal species. The efficacies of the delivery platforms evaluated were ranked: HP-α-CD contact lens > HP-β-CD contact lens > contact lens = HP-α-CD drops > HP-β-CD drops > solution-only drops. In summary, the results in this study have demonstrated that a composite drug delivery system based upon econazole–HP-β-CD inclusion complexes loaded into contact lenses can achieve significantly greater corneal drug delivery with the potential for improved clinical responses. Full article
(This article belongs to the Special Issue Advances in Ocular Drug Delivery)
Show Figures

Figure 1

20 pages, 1007 KiB  
Review
Intravitreal Injectable Hydrogels for Sustained Drug Delivery in Glaucoma Treatment and Therapy
by Kassahun Alula Akulo, Terin Adali, Mthabisi Talent George Moyo and Tulin Bodamyali
Polymers 2022, 14(12), 2359; https://doi.org/10.3390/polym14122359 - 10 Jun 2022
Cited by 26 | Viewed by 4466
Abstract
Glaucoma is extensively treated with topical eye drops containing drugs. However, the retention time of the loaded drugs and the in vivo bioavailability of the drugs are highly influenced before reaching the targeted area sufficiently, due to physiological and anatomical barriers of the [...] Read more.
Glaucoma is extensively treated with topical eye drops containing drugs. However, the retention time of the loaded drugs and the in vivo bioavailability of the drugs are highly influenced before reaching the targeted area sufficiently, due to physiological and anatomical barriers of the eye, such as rapid nasolacrimal drainage. Poor intraocular penetration and frequent administration may also cause ocular cytotoxicity. A novel approach to overcome these drawbacks is the use of injectable hydrogels administered intravitreously for sustained drug delivery to the target site. These injectable hydrogels are used as nanocarriers to intimately interact with specific diseased ocular tissues to increase the therapeutic efficacy and drug bioavailability of the anti-glaucomic drugs. The human eye is very delicate, and is sensitive to contact with any foreign body material. However, natural biopolymers are non-reactive, biocompatible, biodegradable, and lack immunogenic and inflammatory responses to the host whenever they are incorporated in drug delivery systems. These favorable biomaterial properties have made them widely applicable in biomedical applications, with minimal adversity. This review highlights the importance of using natural biopolymer-based intravitreal hydrogel drug delivery systems for glaucoma treatment over conventional methods. Full article
(This article belongs to the Special Issue Smart Polymeric Systems as Drug Delivery Carriers)
Show Figures

Figure 1

32 pages, 4833 KiB  
Review
Novel Eye Drop Delivery Systems: Advance on Formulation Design Strategies Targeting Anterior and Posterior Segments of the Eye
by Yaru Wang and Changhong Wang
Pharmaceutics 2022, 14(6), 1150; https://doi.org/10.3390/pharmaceutics14061150 - 27 May 2022
Cited by 25 | Viewed by 9451
Abstract
Eye drops are the most common and convenient route of topical administration and the first choice of treatment for many ocular diseases. However, the ocular bioavailability of traditional eye drops (i.e., solutions, suspensions, and ointments) is very low because of ophthalmic physiology and [...] Read more.
Eye drops are the most common and convenient route of topical administration and the first choice of treatment for many ocular diseases. However, the ocular bioavailability of traditional eye drops (i.e., solutions, suspensions, and ointments) is very low because of ophthalmic physiology and barriers, which greatly limits their therapeutic effect. Over the past few decades, many novel eye drop delivery systems, such as prodrugs, cyclodextrins, in situ gels, and nanoparticles, have been developed to improve ophthalmic bioavailability. These novel eye drop delivery systems have good biocompatibility, adhesion, and propermeation properties and have shown superior performance and efficacy over traditional eye drops. Therefore, the purpose of this review was to systematically present the research progress on novel eye drop delivery systems and provide a reference for the development of dosage form, clinical application, and commercial transformation of eye drops. Full article
Show Figures

Figure 1

50 pages, 4966 KiB  
Review
Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System
by Md Habban Akhter, Irfan Ahmad, Mohammad Y. Alshahrani, Alhanouf I. Al-Harbi, Habibullah Khalilullah, Obaid Afzal, Abdulmalik S. A. Altamimi, Shehla Nasar Mir Najib Ullah, Abhijeet Ojha and Shahid Karim
Gels 2022, 8(2), 82; https://doi.org/10.3390/gels8020082 - 28 Jan 2022
Cited by 107 | Viewed by 14440
Abstract
Drug instillation via a topical route is preferred since it is desirable and convenient due to the noninvasive and easy drug access to different segments of the eye for the treatment of ocular ailments. The low dose, rapid onset of action, low or [...] Read more.
Drug instillation via a topical route is preferred since it is desirable and convenient due to the noninvasive and easy drug access to different segments of the eye for the treatment of ocular ailments. The low dose, rapid onset of action, low or no toxicity to the local tissues, and constrained systemic outreach are more prevalent in this route. The majority of ophthalmic preparations in the market are available as conventional eye drops, which rendered <5% of a drug instilled in the eye. The poor drug availability in ocular tissue may be attributed to the physiological barriers associated with the cornea, conjunctiva, lachrymal drainage, tear turnover, blood–retinal barrier, enzymatic drug degradation, and reflex action, thus impeding deeper drug penetration in the ocular cavity, including the posterior segment. The static barriers in the eye are composed of the sclera, cornea, retina, and blood–retinal barrier, whereas the dynamic barriers, referred to as the conjunctival and choroidal blood flow, tear dilution, and lymphatic clearance, critically impact the bioavailability of drugs. To circumvent such barriers, the rational design of the ocular therapeutic system indeed required enriching the drug holding time and the deeper permeation of the drug, which overall improve the bioavailability of the drug in the ocular tissue. This review provides a brief insight into the structural components of the eye as well as the therapeutic challenges and current developments in the arena of the ocular therapeutic system, based on novel drug delivery systems such as nanomicelles, nanoparticles (NPs), nanosuspensions, liposomes, in situ gel, dendrimers, contact lenses, implants, and microneedles. These nanotechnology platforms generously evolved to overwhelm the troubles associated with the physiological barriers in the ocular route. The controlled-drug-formulation-based strategic approach has considerable potential to enrich drug concentration in a specific area of the eye. Full article
(This article belongs to the Special Issue Application of Hydrogels in Therapeutics and Theranostics Delivery)
Show Figures

Figure 1

30 pages, 18278 KiB  
Review
Nanotechnology for Topical Drug Delivery to the Anterior Segment of the Eye
by Alexander Vaneev, Victoria Tikhomirova, Natalia Chesnokova, Ekaterina Popova, Olga Beznos, Olga Kost and Natalia Klyachko
Int. J. Mol. Sci. 2021, 22(22), 12368; https://doi.org/10.3390/ijms222212368 - 16 Nov 2021
Cited by 81 | Viewed by 10657
Abstract
Topical drug delivery is one of the most challenging aspects of eye therapy. Eye drops are the most prevalent drug form, especially for widely distributed anterior segment eye diseases (cataracts, glaucoma, dry eye syndrome, inflammatory diseases, etc.), because they are convenient and easy [...] Read more.
Topical drug delivery is one of the most challenging aspects of eye therapy. Eye drops are the most prevalent drug form, especially for widely distributed anterior segment eye diseases (cataracts, glaucoma, dry eye syndrome, inflammatory diseases, etc.), because they are convenient and easy to apply by patients. However, conventional drug formulations are usually characterized by short retention time in the tear film, insufficient contact with epithelium, fast elimination, and difficulties in overcoming ocular tissue barriers. Not more than 5% of the total drug dose administered in eye drops reaches the interior ocular tissues. To overcome the ocular drug delivery barriers and improve drug bioavailability, various conventional and novel drug delivery systems have been developed. Among these, nanosize carriers are the most attractive. The review is focused on the different drug carriers, such as synthetic and natural polymers, as well as inorganic carriers, with special attention to nanoparticles and nanomicelles. Studies in vitro and in vivo have demonstrated that new formulations could help to improve the bioavailability of the drugs, provide sustained drug release, enhance and prolong their therapeutic action. Promising results were obtained with drug-loaded nanoparticles included in in situ gel. Full article
(This article belongs to the Special Issue Challenges, Opportunities, and Innovation in Local Drug Delivery)
Show Figures

Figure 1

16 pages, 5035 KiB  
Article
A Novel Carbon Dots/Thermo-Sensitive In Situ Gel for a Composite Ocular Drug Delivery System: Characterization, Ex-Vivo Imaging, and In Vivo Evaluation
by Lijie Wang, Hao Pan, Donghao Gu, Haowei Sun, Kai Chen, Guoxin Tan and Weisan Pan
Int. J. Mol. Sci. 2021, 22(18), 9934; https://doi.org/10.3390/ijms22189934 - 14 Sep 2021
Cited by 44 | Viewed by 4009
Abstract
We developed a potential composite ocular drug delivery system for the topical administration of diclofenac sodium (DS). The novel carbon dot CDC-HP was synthesized by the pyrolysis of hyaluronic acid and carboxymethyl chitosan through a one-step hydrothermal method and then embedded in [...] Read more.
We developed a potential composite ocular drug delivery system for the topical administration of diclofenac sodium (DS). The novel carbon dot CDC-HP was synthesized by the pyrolysis of hyaluronic acid and carboxymethyl chitosan through a one-step hydrothermal method and then embedded in a thermosensitive in situ gel of poloxamer 407 and poloxamer 188 through swelling loading. The physicochemical characteristics of these carbon dots were investigated. The results of the in vitro release test showed that this composite ocular drug delivery system (DS-CDC-HP-Gel) exhibited sustained release for 12 h. The study of the ex vivo fluorescence distribution in ocular tissues showed that it could be used for bioimaging and tracing in ocular tissues and prolong precorneal retention. Elimination profiles in tears corresponded to the study of ex vivo fluorescence imaging. The area under the curve of DS in the aqueous humor in the DS-CDC-HP-Gel group was 3.45-fold that in the DS eye drops group, indicating a longer precorneal retention time. DS-CDC-HP with a positive charge and combined with a thermosensitive in situ gel might strengthen adherence to the corneal surface and prolong the ocular surface retention time to improve the bioavailability. This composite ocular delivery system possesses potential applications in ocular imaging and drug delivery. Full article
(This article belongs to the Special Issue Biomedical Applications of Carbon Nanostructures)
Show Figures

Figure 1

26 pages, 4738 KiB  
Review
Promising Approach in the Treatment of Glaucoma Using Nanotechnology and Nanomedicine-Based Systems
by Fidiniaina Rina Juliana, Samuel Kesse, Kofi Oti Boakye-Yiadom, Hanitrarimalala Veroniaina, Huihui Wang and Meihao Sun
Molecules 2019, 24(20), 3805; https://doi.org/10.3390/molecules24203805 - 22 Oct 2019
Cited by 33 | Viewed by 10195
Abstract
Glaucoma is considered a leading cause of blindness with the human eye being one of the body’s most delicate organs. Ocular diseases encompass diverse diseases affecting the anterior and posterior ocular sections, respectively. The human eye’s peculiar and exclusive anatomy and physiology continue [...] Read more.
Glaucoma is considered a leading cause of blindness with the human eye being one of the body’s most delicate organs. Ocular diseases encompass diverse diseases affecting the anterior and posterior ocular sections, respectively. The human eye’s peculiar and exclusive anatomy and physiology continue to pose a significant obstacle to researchers and pharmacologists in the provision of efficient drug delivery. Though several traditional invasive and noninvasive eye therapies exist, including implants, eye drops, and injections, there are still significant complications that arise which may either be their low bioavailability or the grave ocular adverse effects experienced thereafter. On the other hand, new nanoscience technology and nanotechnology serve as a novel approach in ocular disease treatment. In order to interact specifically with ocular tissues and overcome ocular challenges, numerous active molecules have been modified to react with nanocarriers. In the general population of glaucoma patients, disease growth and advancement cannot be contained by decreasing intraocular pressure (IOP), hence a spiking in future research for novel drug delivery systems and target therapeutics. This review focuses on nanotechnology and its therapeutic and diagnostic prospects in ophthalmology, specifically glaucoma. Nanotechnology and nanomedicine history, the human eye anatomy, research frontiers in nanomedicine and nanotechnology, its imaging modal quality, diagnostic and surgical approach, and its possible application in glaucoma will all be further explored below. Particular focus will be on the efficiency and safety of this new therapy and its advances. Full article
Show Figures

Graphical abstract

31 pages, 2486 KiB  
Review
Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases
by Rinda Devi Bachu, Pallabitha Chowdhury, Zahraa H. F. Al-Saedi, Pradeep K. Karla and Sai H. S. Boddu
Pharmaceutics 2018, 10(1), 28; https://doi.org/10.3390/pharmaceutics10010028 - 27 Feb 2018
Cited by 331 | Viewed by 24942
Abstract
Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred [...] Read more.
Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed. Full article
(This article belongs to the Special Issue Advanced Ocular Drug Delivery)
Show Figures

Figure 1

16 pages, 1650 KiB  
Article
Chitosan Nanoparticles as a Mucoadhesive Drug Delivery System for Ocular Administration
by Mariana M. Silva, Raquel Calado, Joana Marto, Ana Bettencourt, António J. Almeida and Lídia M. D. Gonçalves
Mar. Drugs 2017, 15(12), 370; https://doi.org/10.3390/md15120370 - 1 Dec 2017
Cited by 218 | Viewed by 11883
Abstract
Pharmaceutical approaches based on nanotechnologies and the development of eye drops composed of the mucoadhesive polymers chitosan and hyaluronic acid are emerging strategies for the efficient treatment of ocular diseases. These innovative nanoparticulate systems aim to increase drugs’ bioavailability at the ocular surface. [...] Read more.
Pharmaceutical approaches based on nanotechnologies and the development of eye drops composed of the mucoadhesive polymers chitosan and hyaluronic acid are emerging strategies for the efficient treatment of ocular diseases. These innovative nanoparticulate systems aim to increase drugs’ bioavailability at the ocular surface. For the successful development of these systems, the evaluation of mucoahesiveness (the interaction between the ocular delivery system and mucins present on the eye) is of utmost importance. In this context, the aim of the present work was to investigate the mucoadhesivity of a novel nanoparticle eye drop formulation containing an antibiotic (ceftazidime) intended to treat eye infections. Eye drop formulations comprised a polymer (hydroxypropyl) methyl cellulose (HPMC) 0.75% (w/v) in an isotonic solution incorporating chitosan/sodium tripolyphosphate (TPP)-hyaluronic acid-based nanoparticles containing ceftazidime. The viscosity of the nanoparticles, and the gels incorporating the nanoparticles were characterized in contact with mucin at different mass ratios, allowing the calculation of the rheological synergism parameter (∆η). Results showed that at different nanoparticle eye formulation:mucin weight ratios, a minimum in viscosity occurred which resulted in a negative rheological synergism. Additionally, the results highlighted the mucoadhesivity of the novel ocular formulation and its ability to interact with the ocular surface, thus increasing the drug residence time in the eye. Moreover, the in vitro release and permeation studies showed a prolonged drug release profile from the chitosan/TPP-hyaluronic acid nanoparticles gel formulation. Furthermore, the gel formulations were not cytotoxic on ARPE-19 and HEK293T cell lines, evaluated by the metabolic and membrane integrity tests. The formulation was stable and the drug active, as shown by microbiological studies. In conclusion, chitosan/TPP-hyaluronic acid nanoparticle eye drop formulations are a promising platform for ocular drug delivery with enhanced mucoadhesive properties. Full article
(This article belongs to the Special Issue Marine Oligosaccharides and Polysaccharides)
Show Figures

Figure 1

Back to TopTop