Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = normalized Species Sensitivity Distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3118 KB  
Article
Reconstruction Modeling and Validation of Brown Croaker (Miichthys miiuy) Vocalizations Using Wavelet-Based Inversion and Deep Learning
by Sunhyo Kim, Jongwook Choi, Bum-Kyu Kim, Hansoo Kim, Donhyug Kang, Jee Woong Choi, Young Geul Yoon and Sungho Cho
Sensors 2025, 25(19), 6178; https://doi.org/10.3390/s25196178 - 6 Oct 2025
Viewed by 380
Abstract
Fish species’ biological vocalizations serve as essential acoustic signatures for passive acoustic monitoring (PAM) and ecological assessments. However, limited availability of high-quality acoustic recordings, particularly for region-specific species like the brown croaker (Miichthys miiuy), hampers data-driven bioacoustic methodology development. In this [...] Read more.
Fish species’ biological vocalizations serve as essential acoustic signatures for passive acoustic monitoring (PAM) and ecological assessments. However, limited availability of high-quality acoustic recordings, particularly for region-specific species like the brown croaker (Miichthys miiuy), hampers data-driven bioacoustic methodology development. In this study, we present a framework for reconstructing brown croaker vocalizations by integrating fk14 wavelet synthesis, PSO-based parameter optimization (with an objective combining correlation and normalized MSE), and deep learning-based validation. Sensitivity analysis using a normalized Bartlett processor identified delay and scale (length) as the most critical parameters, defining valid ranges that maintained waveform similarity above 98%. The reconstructed signals matched measured calls in both time and frequency domains, replicating single-pulse morphology, inter-pulse interval (IPI) distributions, and energy spectral density. Validation with a ResNet-18-based Siamese network produced near-unity cosine similarity (~0.9996) between measured and reconstructed signals. Statistical analyses (95% confidence intervals; residual errors) confirmed faithful preservation of SPL values and minor, biologically plausible IPI variations. Under noisy conditions, similarity decreased as SNR dropped, indicating that environmental noise affects reconstruction fidelity. These results demonstrate that the proposed framework can reliably generate acoustically realistic and morphologically consistent fish vocalizations, even under data-limited scenarios. The methodology holds promise for dataset augmentation, PAM applications, and species-specific call simulation. Future work will extend this framework by using reconstructed signals to train generative models (e.g., GANs, WaveNet), enabling scalable synthesis and supporting real-time adaptive modeling in field monitoring. Full article
Show Figures

Figure 1

25 pages, 6248 KB  
Article
Analysis of Disruption of Airflow and Particle Distribution by Surgical Personnel and Lighting Fixture in Operating Rooms
by Vikas Valsala Krishnankutty, Chandrasekharan Muraleedharan and Arun Palatel
Fluids 2025, 10(9), 225; https://doi.org/10.3390/fluids10090225 - 27 Aug 2025
Viewed by 690
Abstract
Surgical procedures have significantly contributed to the increased life expectancy of the global population. The surgical procedures are carried out in specialised rooms within a healthcare facility normally designated as operating rooms or operating theatres. These rooms require meticulously designed heating, ventilating, and [...] Read more.
Surgical procedures have significantly contributed to the increased life expectancy of the global population. The surgical procedures are carried out in specialised rooms within a healthcare facility normally designated as operating rooms or operating theatres. These rooms require meticulously designed heating, ventilating, and air conditioning systems to ensure optimal thermal comfort, strict sterility, and effective removal of airborne contaminants and anaesthetic gases. The performance of the system directly affects the risk of surgical site infections and associated post-operative complications. This study presents a computational fluid dynamics analysis of disturbance on airflow and particulate distribution within a representative operating room by the surgical staff and lighting fixtures concerning supply air velocity. The removal of the maximum possible particulate matter, precise control of air temperature and humidity, and unidirectional airflow in the surgical field were incorporated as key design strategies. The species transport model simulations revealed that while laminar airflow offers superior protection in terms of surgical site sterility, its performance is sensitive to disruptions caused by surgical lighting configurations and variations in supply air velocity. The findings highlight the complexities involved in maintaining optimal airflow conditions and underscore the need for integrative air conditioning design approaches that account for optimal design of surgical lighting and operational setups. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

25 pages, 7157 KB  
Article
Climate Change Drives Northwestward Migration of Betula alnoides: A Multi-Scenario MaxEnt Modeling Approach
by Yangzhou Xiang, Qiong Yang, Suhang Li, Ying Liu, Yuan Li, Jun Ren, Jiaxin Yao, Xuqiang Luo, Yang Luo and Bin Yao
Plants 2025, 14(16), 2539; https://doi.org/10.3390/plants14162539 - 15 Aug 2025
Cited by 1 | Viewed by 579
Abstract
Climate change poses unprecedented challenges to forest ecosystems. Betula alnoides, a tree species with significant ecological and economic value in southern China, has been the subject of studies on its distribution pattern and response to climate change. However, research on the distribution [...] Read more.
Climate change poses unprecedented challenges to forest ecosystems. Betula alnoides, a tree species with significant ecological and economic value in southern China, has been the subject of studies on its distribution pattern and response to climate change. However, research on the distribution pattern of B. alnoides and its response to climate change remains relatively limited. In this study, we developed a MaxEnt model incorporating multiple environmental variables, including climate, topography, soil, vegetation, and human activities, to evaluate model performance, identify key factors influencing the distribution of B. alnoides, and project its potential distribution under various future climate scenarios. Species occurrence data and environmental layers were compiled for China, and model parameters were optimized using the ENMeval package. The results showed that the optimized model achieved an AUC value of 0.956, indicating extremely high predictive accuracy. The four key factors affecting the distribution of B. alnoides were standard deviation of temperature seasonality (Bio4), normalized difference vegetation index (NDVI), mean temperature of driest quarter (Bio9), and annual precipitation (Bio12). Among them, the cumulative contribution rate of climatic factors reached 68.9%, but the influence of NDVI was significantly higher than that of precipitation factors. The current suitable habitat of B. alnoides is mainly concentrated in the southwestern region, covering an area of 179.32 × 104 km2, which accounts for 18.68% of China’s land area. Under the SSP126 scenario, the suitable habitat area first decreases and then increases in the future, while under the SSP370 and SSP585 scenarios, the suitable habitat area continues to shrink, with significant losses in high-suitability areas. In addition, the centroid of the suitable habitat of B. alnoides shows an overall trend of shifting northwestward. This indicates that B. alnoides is highly sensitive to climate change and its distribution pattern will undergo significant changes in the future. In conclusion, the distribution pattern of B. alnoides shows a significant response to climate change, with particularly prominent losses in high-suitability areas in the future. Therefore, it is recommended to strengthen the protection of high-suitability areas in the southwestern region and consider B. alnoides as an alternative tree species for regions facing warming and drying trends to enhance its climate adaptability. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

9 pages, 1701 KB  
Proceeding Paper
Phenological Evaluation in Ravine Forests Through Remote Sensing and Topographic Analysis: Case of Los Nogales Nature Sanctuary, Metropolitan Region of Chile
by Jesica Garrido-Leiva, Leonardo Durán-Gárate, Dylan Craven and Waldo Pérez-Martínez
Eng. Proc. 2025, 94(1), 9; https://doi.org/10.3390/engproc2025094009 - 22 Jul 2025
Viewed by 459
Abstract
Ravine forests are key to conserving biodiversity and maintaining ecosystem processes in fragmented landscapes. Here, we evaluated the phenology of plant species in the Los Nogales Nature Sanctuary (Lo Barnechea, Chile) using Sentinel-2 images (2019–2024) and the Alos Palsar DEM (12.5 m). We [...] Read more.
Ravine forests are key to conserving biodiversity and maintaining ecosystem processes in fragmented landscapes. Here, we evaluated the phenology of plant species in the Los Nogales Nature Sanctuary (Lo Barnechea, Chile) using Sentinel-2 images (2019–2024) and the Alos Palsar DEM (12.5 m). We calculated the Normalized Difference Vegetation Index (NDVI), the Topographic Position Index (TPI), and Diurnal Anisotropic Heat (DAH) to assess vegetation dynamics across different topographic and thermal gradients. Generalized Additive Models (GAM) revealed that tree species exhibited more stable, regular seasonal NDVI trajectories, while shrubs showed moderate fluctuations, and herbaceous species displayed high interannual variability, likely reflecting sensitivity to climatic events. Spatial analysis indicated that trees predominated on steep slopes and higher elevations, herbs were concentrated in low-lying, moisture-retaining areas, and shrubs were more common in areas with higher thermal load. These findings highlight the significant role of terrain and temperature in shaping plant phenology and distribution, underscoring the utility of remote sensing and topographic indices for monitoring ecological processes in complex mountainous environments. Full article
Show Figures

Figure 1

25 pages, 2638 KB  
Article
Kidneys Under Siege: Pesticides Impact Renal Health in the Freshwater Fish Common Carp (Cyprinus carpio Linnaeus, 1758)
by Stela Stoyanova, Elenka Georgieva, Eleonora Kovacheva, László Antal, Dóra Somogyi, Ifeanyi Emmanuel Uzochukwu, László Nagy, Krisztián Nyeste and Vesela Yancheva
Toxics 2025, 13(7), 518; https://doi.org/10.3390/toxics13070518 - 20 Jun 2025
Viewed by 3298
Abstract
This study evaluated the histopathological impact of three commonly used pesticides—pirimiphos-methyl, propamocarb hydrochloride, and 2,4-dichlorophenoxyacetic acid (2,4-D)—on the kidneys of common carp (Cyprinus carpio Linnaeus, 1758) after 96-h acute exposure. The histopathological analysis demonstrated that all three tested pesticides induced structural changes. [...] Read more.
This study evaluated the histopathological impact of three commonly used pesticides—pirimiphos-methyl, propamocarb hydrochloride, and 2,4-dichlorophenoxyacetic acid (2,4-D)—on the kidneys of common carp (Cyprinus carpio Linnaeus, 1758) after 96-h acute exposure. The histopathological analysis demonstrated that all three tested pesticides induced structural changes. The histopathological changes were assessed using a semi-quantitative scoring system and categorised into circulatory, degenerative, proliferative, and inflammatory alterations. While circulatory alterations were absent in all treatments, clear and statistically significant degenerative, proliferative, and inflammatory responses were recorded, which escalated with increasing pesticide concentrations. Additionally, various statistical analyses were conducted to evaluate the lesions in kidney structure and function. Before the statistical analysis, normality and variance homogeneity were assessed using the Shapiro–Wilk and Levene’s tests, respectively. Due to non-normal data distribution, non-parametric methods were applied. Hence, the non-parametric statistical methods showed distinct group-level differences in the kidney damage indices. The Kruskal–Wallis test revealed significant differences across treatments (p < 0.001), and Mann–Whitney U tests identified specific pairwise differences. The degenerative and proliferative lesions were most prominent in fish exposed to 2,4-D at 100 µg/L (IK = 34), followed by pirimiphos-methyl and propamocarb hydrochloride. Inflammatory changes were mainly observed in the pirimiphos-methyl groups. The histopathological lesions were concentration-dependent, with 2,4-D causing irreversible renal damage at higher concentrations. These findings highlight the nephrotoxic risks posed by common pesticides and validate that the use of histopathological indices, combined with robust non-parametric testing, provides a reliable approach to evaluating organ-specific pesticide toxicity. These biomarkers offer sensitive early warning indicators of environmental risk, reinforcing the suitability of common carp as a model species for ecotoxicological assessment. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

28 pages, 2526 KB  
Article
Baselining Urban Ecosystems from Sentinel Species: Fitness, Flows, and Sinks
by Matteo Convertino, Yuhan Wu and Hui Dong
Entropy 2025, 27(5), 486; https://doi.org/10.3390/e27050486 - 30 Apr 2025
Cited by 3 | Viewed by 850
Abstract
How can the shape of biodiversity inform us about cities’ ecoclimatic fitness and guide their development? Can we use species as the harbingers of climatic extremes? Eco-climatically sensitive species carry information about hydroclimatic change in their distribution, fitness, and preferential gradients of habitat [...] Read more.
How can the shape of biodiversity inform us about cities’ ecoclimatic fitness and guide their development? Can we use species as the harbingers of climatic extremes? Eco-climatically sensitive species carry information about hydroclimatic change in their distribution, fitness, and preferential gradients of habitat suitability. Conversely, environmental features outside of the species’ fitness convey information on potential ecological anomalies in response to extremes to adapt or mitigate, such as through urban parks. Here, to quantify ecosystems’ fitness, we propose a novel computational model to extract multivariate functional ecological networks and their basins, which carry the distributed signature of the compounding hydroclimatic pressures on sentinel species. Specifically, we consider butterflies and their habitat suitability (HS) to infer maximum suitability gradients that are meaningful of potential species networks and flows, with the smallest hydroclimatic resistance across urban landscapes. These flows are compared to the distribution of urban parks to identify parks’ ecological attractiveness, actual and potential connectivity, and park potential to reduce hydroclimatic impacts. The ecosystem fitness index (EFI) is novelly introduced by combining HS and the divergence of the relative species abundance (RSA) from the optimal log-normal Preston plot. In Shenzhen, as a case study, eco-flow networks are found to be spatially very extended, scale-free, and clustering for low HS gradient and EFI areas, where large water bodies act as sources of ecological corridors draining into urban parks. Conversely, parks with higher HS, HS gradients, and EFIs have small-world connectivity non-overlapping with hydrological networks. Diverging patterns of abundance and richness are inferred as increasing and decreasing with HS. HS is largely determined by temperature and precipitation of the coldest quarter and seasonality, which are critical hydrologic variables. Interestingly, a U-shape pattern is found between abundance and diversity, similar to the one in natural ecosystems. Additionally, both abundance and richness are mildly associated with park area according to a power function, unrelated to longitude but linked to the degree of urbanization or park centrality, counterintuitively. The Preston plot’s richness–abundance and abundance-rank patterns were verified to reflect the stationarity or ecological meta-equilibrium with the environment, where both are a reflection of community connectivity. Ecological fitness is grounded on the ecohydrological structure and flows where maximum HS gradients are indicative of the largest eco-changes like climate-driven species flows. These flows, as distributed stress-response functions, inform about the collective eco-fitness of communities, like parks in cities. Flow-based networks can serve as blueprints for designing ecotones that regulate key ecosystem functions, such as temperature and evapotranspiration, while generating cascading ecological benefits across scales. The proposed model, novelly infers HS eco-networks and calculates the EFI, is adaptable to diverse sensitive species and environmental layers, offering a robust tool for precise ecosystem assessment and design. Full article
Show Figures

Graphical abstract

23 pages, 4842 KB  
Article
Environmental DNA-Based Ecological Risk Assessment of PAHs in Aged Petroleum-Contaminated Soils
by Jinrong Huang, Chang Zhou, Fanyong Song, Tianyuan Li, Jianing Wang and Xiaowen Fu
Toxics 2025, 13(5), 357; https://doi.org/10.3390/toxics13050357 - 29 Apr 2025
Viewed by 669
Abstract
(1) Background: Polycyclic aromatic hydrocarbons (PAHs) are important components of petroleum and pose a serious threat to the soil environment of oil production well sites. Therefore, scientific risk thresholds and ecological risk assessment methods must be established for PAHs in petroleum-contaminated soils. (2) [...] Read more.
(1) Background: Polycyclic aromatic hydrocarbons (PAHs) are important components of petroleum and pose a serious threat to the soil environment of oil production well sites. Therefore, scientific risk thresholds and ecological risk assessment methods must be established for PAHs in petroleum-contaminated soils. (2) Methods: In this study, based on the environmental DNA (eDNA) method, the soil bacterial community was considered as a receptor to assess the ecological risks of PAH contamination in aged petroleum-polluted soils. A combination of the risk quotient and the equivalent toxicity factor was used to assess the ecological risk of PAHs. (3) Results: A dose–response curve was plotted to determine the 50% effective concentration (EC50) of the total equivalent toxicity for 16 PAHs (∑TEQBaP) in petroleum-contaminated soils. Following the plot of the species sensitivity distribution (SSD) curve, the hazardous concentration for protecting 95% species values (HC5) of petroleum hydrocarbons (TPHs), electrical conductivity (EC), and total equivalent toxicity of PAHs were calculated to be 892.1 μs·cm−1, 149.9 mg·kg−1, and 0.2601 mg·kg−1, respectively. The regression models of the distribution factor (DF) and aging factor (AF) were defined as DF = −1.132 SOM + 0.033PAHs + 9.968 and AF = 242.518 SOM + 1256.029 lgpH + 0.024 EC − 1415.447. Following calibrations of the DF and AF, the value of HC5 was determined as 0.1956 mg·kg−1, which could be considered the risk threshold of the total toxicity of PAHs. The calibrated toxicity data distribution was consistent with that of the normal cumulative probability distribution model. The results showed that 50% of the aged petroleum-contaminated soils showed high-risk levels of bacterial communities exposed to PAHs. (4) Conclusions: This study provides a reference for deriving the ecological risk threshold of soil pollutants and explores alternative methods for the ecological risk assessment of PAHs at specific sites. Full article
Show Figures

Graphical abstract

19 pages, 14460 KB  
Article
Temporal and Spatial Dynamics of Rodent Species Habitats in the Ordos Desert Steppe, China
by Rui Hua, Qin Su, Jinfu Fan, Liqing Wang, Linbo Xu, Yuchuang Hui, Miaomiao Huang, Bobo Du, Yanjun Tian, Yuheng Zhao and Manduriwa
Animals 2025, 15(5), 721; https://doi.org/10.3390/ani15050721 - 3 Mar 2025
Viewed by 1080
Abstract
Climate change is driving the restructuring of global biological communities. As a species sensitive to climate change, studying the response of small rodents to climate change is helpful to indirectly understand the changes in ecology and biodiversity in a certain region. Here, we [...] Read more.
Climate change is driving the restructuring of global biological communities. As a species sensitive to climate change, studying the response of small rodents to climate change is helpful to indirectly understand the changes in ecology and biodiversity in a certain region. Here, we use the MaxEnt (maximum entropy) model to predict the distribution patterns, main influencing factors, and range changes of various small rodents in the Ordos desert steppe in China under different climate change scenarios in the future (2050s: average for 2041–2060). The results show that when the parameters are FC = LQHPT, and RM = 4, the MaxEnt model is optimal and AUC = 0.833. We found that NDVI (normalized difference vegetation index), Bio 12 (annual precipitation), and TOC (total organic carbon) are important driving factors affecting the suitability of the small rodent habitat distribution in the region. At the same time, the main influencing factors were also different for different rodent species. We selected 4 dominant species for analysis and found that, under the situation of future climate warming, the high-suitability habitat area of Allactaga sibirica and Phodopus roborovskii will decrease, while that of Meriones meridianus and Meriones unguiculatus will increase. Our research results suggest that local governments should take early preventive measures, strengthen species protection, and respond to ecological challenges brought about by climate change promptly. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

16 pages, 3140 KB  
Article
Hardness-Dependent Freshwater Quality Criteria for the Protection of Aquatic Organisms for Cadmium in China
by Zeya Zhang, Rui Huang, Zhongjie Shen, Yili Fan, Chenglian Feng and Yingchen Bai
Toxics 2024, 12(12), 892; https://doi.org/10.3390/toxics12120892 - 8 Dec 2024
Viewed by 1503
Abstract
Cadmium poses a significant threat to freshwater aquatic organisms and ecosystems, making it essential to establish regional freshwater quality criteria (FWQC) in China to safeguard these organisms. The toxicity database for cadmium covered 249 acute toxicity data from 52 species (seven phyla and [...] Read more.
Cadmium poses a significant threat to freshwater aquatic organisms and ecosystems, making it essential to establish regional freshwater quality criteria (FWQC) in China to safeguard these organisms. The toxicity database for cadmium covered 249 acute toxicity data from 52 species (seven phyla and 27 families) and 62 chronic toxicity data from 21 species (four phyla and 12 families). During short-term exposure, Morone saxatilis displayed the most sensitivity to cadmium, whereas Daphnia magna showed the most sensitivity in long-term exposure scenarios. Significant correlations were identified between water hardness and the toxicity data for cadmium, with the acute toxicity coefficient (KATD) at 1.0227 (n = 52, p < 0.05) and the chronic toxicity coefficient (KCTD) at 0.4983 (n = 21, p < 0.05). With the species sensitivity distribution method, the short-term freshwater quality criteria (S-FWQC) were derived with a normal distribution as the best fit (R2 0.9793), while the long-term freshwater quality criteria (L-FWQC) were calculated using a logistic distribution as the best fit (R2 0.9686). The formulas for the S-FWQC and L-FWQC were represented as 10(1.0227×lg(H)1.5444) and 10(0.4983×lg(H)1.7549), respectively, with water hardness serving as an independent variable. This study offers valuable insights for improving the management of cadmium to protect freshwater aquatic organisms in China. Full article
(This article belongs to the Special Issue Cadmium and Trace Elements Toxicity)
Show Figures

Graphical abstract

15 pages, 1416 KB  
Article
A New Approach to Differentiate the Causes of Excessive Cadmium in Rice: Soil Cadmium Extractability or Rice Variety
by Erdange Li, Kun Li, Jumei Li, Yang Wu and Yibing Ma
Agronomy 2024, 14(11), 2519; https://doi.org/10.3390/agronomy14112519 - 26 Oct 2024
Cited by 1 | Viewed by 1667
Abstract
In order to effectively decrease cadmium (Cd) in rice grains in contaminated paddy soil and maintain the safe production of rice, identifying excessive Cd in rice caused by rice varieties or soil Cd is critical, but it is currently lacking. In the present [...] Read more.
In order to effectively decrease cadmium (Cd) in rice grains in contaminated paddy soil and maintain the safe production of rice, identifying excessive Cd in rice caused by rice varieties or soil Cd is critical, but it is currently lacking. In the present study, the soil ethylenediaminetetraacetic acid (EDTA)-extractable Cd (EDTA-Cd) and the bioaccumulation factors of rice based on EDTA-Cd (BCFEDTA-Cd) were used to develop an approach to identify excessive Cd in rice caused by rice varieties or soil Cd. Based on an empirical soil–plant transfer model and species sensitivity distribution (SSD), BCFEDTA-Cd and EDTA-Cd were divided into five grades. The results showed that the five grades of the EDTA-Cd (minimum value less than 0.11 mg/kg and maximum value greater than 2.93 mg/kg) and BCFEDTA-Cd (minimum value less than 0.09 and maximum value greater than 1.40) were classified in the normal soil pH range. Further, the conversion equation between EDTA-Cd and diethylene triamine pentaacetic acid (DTPA)-Cd was obtained through linear regression analysis using 67 sets of soil data from the literature. In addition, the four selected rounding thresholds for the percentage of EDTA-Cd to total soil Cd (EDTA-Cd) (%) were 52.5, 67.5, 82.5, and 97.5%. A selected soil EDTA-Cd (%) (about 75%) can be used to identify the status of soil bioavailability, especially in soil with high background Cd. Finally, a set of 1084 pairs of rice and soil data for Cd-contaminated soils was used to investigate the respective contributions of rice varieties and soil Cd when Cd in rice exceeds the limit (0.2 mg/kg). Based on field experiment data, a systematic identification approach for the causes of rice Cd exceeding the limit, soil Cd or rice variety, was established and applied. In conclusion, under Cd exposure conditions, the importance of the causes of Cd in soil and rice varieties can be identified, and their contributions can be distinguished, thus helping to identify the causes of Cd contamination in rice. Full article
(This article belongs to the Topic Effect of Heavy Metals on Plants, 2nd Volume)
Show Figures

Figure 1

18 pages, 3161 KB  
Article
Bluetongue Risk Map for Vaccination and Surveillance Strategies in India
by Mohammed Mudassar Chanda, Bethan V. Purse, Luigi Sedda, David Benz, Minakshi Prasad, Yella Narasimha Reddy, Krishnamohan Reddy Yarabolu, S. M. Byregowda, Simon Carpenter, Gaya Prasad and David John Rogers
Pathogens 2024, 13(7), 590; https://doi.org/10.3390/pathogens13070590 - 16 Jul 2024
Cited by 3 | Viewed by 2640
Abstract
Bluetongue virus (BTV, Sedoreoviridae: Orbivirus) causes an economically important disease, namely, bluetongue (BT), in domestic and wild ruminants worldwide. BTV is endemic to South India and has occurred with varying severity every year since the virus was first reported in 1963. [...] Read more.
Bluetongue virus (BTV, Sedoreoviridae: Orbivirus) causes an economically important disease, namely, bluetongue (BT), in domestic and wild ruminants worldwide. BTV is endemic to South India and has occurred with varying severity every year since the virus was first reported in 1963. BT can cause high morbidity and mortality to sheep flocks in this region, resulting in serious economic losses to subsistence farmers, with impacts on food security. The epidemiology of BTV in South India is complex, characterized by an unusually wide diversity of susceptible ruminant hosts, multiple vector species biting midges (Culicoides spp., Diptera: Ceratopogonidae), which have been implicated in the transmission of BTV and numerous co-circulating virus serotypes and strains. BT presence data (1997–2011) for South India were obtained from multiple sources to develop a presence/absence model for the disease. A non-linear discriminant analysis (NLDA) was carried out using temporal Fourier transformed variables that were remotely sensed as potential predictors of BT distribution. Predictive performance was then characterized using a range of different accuracy statistics (sensitivity, specificity, and Kappa). The top ten variables selected to explain BT distribution were primarily thermal metrics (land surface temperature, i.e., LST, and middle infrared, i.e., MIR) and a measure of plant photosynthetic activity (the Normalized Difference Vegetation Index, i.e., NDVI). A model that used pseudo-absence points, with three presence and absence clusters each, outperformed the model that used only the recorded absence points and showed high correspondence with past BTV outbreaks. The resulting risk maps may be suitable for informing disease managers concerned with vaccination, prevention, and control of BT in high-risk areas and for planning future state-wide vector and virus surveillance activities. Full article
Show Figures

Figure 1

19 pages, 3756 KB  
Article
Analysis of the Skin and Brain Transcriptome of Normally Pigmented and Pseudo-Albino Southern Flounder (Paralichthys lethostigma) Juveniles to Study the Molecular Mechanisms of Hypopigmentation and Its Implications for Species Survival in the Natural Environment
by Ivonne R. Blandon, Elizabeth DiBona, Anna Battenhouse, Sean Vargas, Christopher Mace and Frauke Seemann
Int. J. Mol. Sci. 2024, 25(14), 7775; https://doi.org/10.3390/ijms25147775 - 16 Jul 2024
Viewed by 1843
Abstract
Southern flounder skin pigmentation is a critical phenotypic characteristic for this species’ survival in the natural environment. Normal pigmentation allows rapid changes of color for concealment to capture prey and UV light protection. In contrast, highly visible hypopigmented pseudo-albinos exhibit a compromised immune [...] Read more.
Southern flounder skin pigmentation is a critical phenotypic characteristic for this species’ survival in the natural environment. Normal pigmentation allows rapid changes of color for concealment to capture prey and UV light protection. In contrast, highly visible hypopigmented pseudo-albinos exhibit a compromised immune system and are vulnerable to predation, sensitive to UV exposure, and likely have poor survival in the wild. Skin and brain tissue samples from normally pigmented and hypopigmented individuals were analyzed with next-generation RNA sequencing. A total of 1,589,613 transcripts were used to identify 952,825 genes to assemble a de novo transcriptome, with 99.43% of genes mapped to the assembly. Differential gene expression and gene enrichment analysis of contrasting tissues and phenotypes revealed that pseudo-albino individuals appeared more susceptible to environmental stress, UV light exposure, hypoxia, and osmotic stress. The pseudo-albinos’ restricted immune response showed upregulated genes linked to cancer development, signaling and response, skin tissue formation, regeneration, and healing. The data indicate that a modified skin collagen structure likely affects melanocyte differentiation and distribution, generating the pseudo-albino phenotype. In addition, the comparison of the brain transcriptome revealed changes in myelination and melanocyte stem cell activity, which may indicate modified brain function, reduced melanocyte migration, and impaired vision. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

36 pages, 1996 KB  
Review
A Review on Fluoroquinolones’ Toxicity to Freshwater Organisms and a Risk Assessment
by Marianna Pauletto and Marco De Liguoro
J. Xenobiot. 2024, 14(2), 717-752; https://doi.org/10.3390/jox14020042 - 4 Jun 2024
Cited by 10 | Viewed by 3546
Abstract
Fluoroquinolones (FQs) have achieved significant success in both human and veterinary medicine. However, regulatory authorities have recommended limiting their use, firstly because they can have disabling side effects; secondly, because of the need to limit the spread of antibiotic resistance. This review addresses [...] Read more.
Fluoroquinolones (FQs) have achieved significant success in both human and veterinary medicine. However, regulatory authorities have recommended limiting their use, firstly because they can have disabling side effects; secondly, because of the need to limit the spread of antibiotic resistance. This review addresses another concerning consequence of the excessive use of FQs: the freshwater environments contamination and the impact on non-target organisms. Here, an overview of the highest concentrations found in Europe, Asia, and the USA is provided, the sensitivity of various taxa is presented through a comparison of the lowest EC50s from about a hundred acute toxicity tests, and primary mechanisms of FQ toxicity are described. A risk assessment is conducted based on the estimation of the Predicted No Effect Concentration (PNEC). This is calculated traditionally and, in a more contemporary manner, by constructing a normalized Species Sensitivity Distribution curve. The lowest individual HC5 (6.52 µg L−1) was obtained for levofloxacin, followed by ciprofloxacin (7.51 µg L−1), sarafloxacin and clinafloxacin (12.23 µg L−1), and ofloxacin (17.12 µg L−1). By comparing the calculated PNEC with detected concentrations, it is evident that the risk cannot be denied: the potential impact of FQs on freshwater ecosystems is a further reason to minimize their use. Full article
(This article belongs to the Special Issue Environmental Toxicology and Animal Health)
Show Figures

Figure 1

20 pages, 4513 KB  
Article
Novel Photoluminescence and Optical Thermometry of Solvothermally Derived Tetragonal ZrO2:Ti4+,Eu3+ Nanocrystals
by Lu Li, Xuesong Qu, Guo-Hui Pan and Jung Hyun Jeong
Chemosensors 2024, 12(4), 62; https://doi.org/10.3390/chemosensors12040062 - 15 Apr 2024
Cited by 3 | Viewed by 2453
Abstract
In this paper, we report on the solvothermal preparation and detailed characterization of pristine and intentionally doped zirconium dioxide (ZrO2) nanocrystals (NCs, ~5 nm) with Eu3+ or Ti4+/Eu3+ ions using alkoxide precursors. The results indicated that the [...] Read more.
In this paper, we report on the solvothermal preparation and detailed characterization of pristine and intentionally doped zirconium dioxide (ZrO2) nanocrystals (NCs, ~5 nm) with Eu3+ or Ti4+/Eu3+ ions using alkoxide precursors. The results indicated that the ZrO2 NCs were dominantly of a tetragonal phase (t-ZrO2) with a small proportion of monoclinic ZrO2 (m-ZrO2). The high purity of t-ZrO2 NCs could be synthesized with more Eu3+ doping. It was found that the as-obtained ZrO2 NCs contain some naturally present Ti4+ ions originating from precursors, but were being overlooked commonly, and some carbon impurities produced during synthesis. These species showed distinct photoluminescence (PL) properties. At least two types of Eu3+, located at low- and high-symmetry sites (probably sevenfold and eightfold oxygen coordination), respectively, were demonstrated to build into the lattice structure of t-ZrO2 NCs together. The cationic dopants were illustrated to be distributed non-randomly over the sites normally occupied by Zr, while Ti impurities preferentially occupied the sites near the low-symmetry site of Eu3+, yielding efficient energy transfer from the titanate groups to the neighboring Eu3+. Luminescence nanothermometry could measure temperature in a non-contact and remote way and could find great potentials in micro/nano-electronics, integrated photonics, and biomedicine. On the basis of the dual-emitting combination strategy involving the white broadband CT (Ti3+→O) emissions of the titanate groups and red sharp Eu3+ emissions, t-ZrO2:Eu3+ nanophosphors were demonstrated to be ratiometric self-referencing optical thermometric materials, with a working range of 130–230 K and a maxima of relative sensitivity of ~1.9% K1 at 230 K. Full article
(This article belongs to the Section Optical Chemical Sensors)
Show Figures

Graphical abstract

23 pages, 16386 KB  
Article
Spatial Planning of Marine Protected Areas (MPAs) in the Southern Caspian Sea: Comparison of Multi-Criteria Evaluation (MCE) and Simulated Annealing Algorithm
by Dariush Ashtab, Mehdi Gholamalifard, Parviz Jokar, Andrey G. Kostianoy and Aleksander V. Semenov
J. Mar. Sci. Eng. 2024, 12(1), 123; https://doi.org/10.3390/jmse12010123 - 8 Jan 2024
Cited by 4 | Viewed by 2659
Abstract
Protected areas are referred to around the world as the basis of conservation strategies. Designation of marine protected areas (MPAs) is to preserve marine biodiversity and protect species, habitats in the seas, and oceans. The simulated annealing algorithm (SAA) with other algorithms (swap [...] Read more.
Protected areas are referred to around the world as the basis of conservation strategies. Designation of marine protected areas (MPAs) is to preserve marine biodiversity and protect species, habitats in the seas, and oceans. The simulated annealing algorithm (SAA) with other algorithms (swap iterative improvement, normal followed by two step, two step iterative improvement, and normal iterative improvement) in MARXAN conservation solutions software and the multi-criteria evaluation (MCE) method were used to locate MPAs in the Southern Caspian Sea. Then, four methods were examined for site selection that include: (1) Simulated annealing algorithm, (2) MCE with zonal land suitability (ZLS), (3) MCE with compactness and contiguity, and (4) combined method of multi-criteria evaluation with spatial constraints and a simulated annealing algorithm (improved MCE). In the MCE method, we applied different weighted scenarios to locate MPAs. The criteria for determining the desired regions of MPAs included 12 factors gathered in three groups, including: (1) Ecological criteria (distribution of fish Huso huso, Acipenser persicus, Acipenser stellatus, Rutilus frisii kutum, and Alosa braschnikowi; location of coastal protected areas, distance from coastal rivers (Coastline), distance from estuaries and deltas); (2) Physical criteria (distance from the coast, shore sensitive areas); and (3) Socio-economic criteria (distance from densely populated coastal cities, distance from industries near the coast). The results of comparing the algorithms in MARXAN 4.0.6 software showed that the simulated annealing algorithm has a better ratio of border-length/area than other algorithms. Also, the combined method of MCE (improved MCE) selects the best protection patches in terms of location, taking into account the seascape ecology metrics (e.g., patch compactness, edge density, normalized entropy, area metric for patches). Moreover, the results of the comparison of four methods for proposing MPAs based on seascape metrics showed that the combined method of MCE considers a protection network with more contiguity and compactness than the simulated annealing algorithm. The use of seascape ecology can help to preserve and create larger and denser patches in the arrangement of protective areas, because such a selection of protective areas is nature-inspired and can be more bold and appropriate in the course of conservation planning. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

Back to TopTop