Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (685)

Search Parameters:
Keywords = nonpoint source

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12126 KB  
Article
Optimization of Synergistic Water Resources, Water Environment, and Water Ecology Remediation and Restoration Project: Application in the Jinshan Lake Basin
by Wenyang Jiang, Xin Liu, Yue Wang, Yue Zhang, Xinxin Chen, Yuxing Sun, Jun Chen and Wanshun Zhang
Water 2025, 17(20), 2986; https://doi.org/10.3390/w17202986 - 16 Oct 2025
Abstract
The concept of synergistic water resources, water environment, water ecology remediation, and restoration (3WRR) is essential for addressing the interlinked challenges of water scarcity, pollution, and ecological degradation. An intelligent platform of remediation and restoration project optimization was developed, integrating multi-source data fusion, [...] Read more.
The concept of synergistic water resources, water environment, water ecology remediation, and restoration (3WRR) is essential for addressing the interlinked challenges of water scarcity, pollution, and ecological degradation. An intelligent platform of remediation and restoration project optimization was developed, integrating multi-source data fusion, a coupled air–land–water model, and dynamic decision optimization to support 3WRR in river basins. Applied to the Jinshan Lake Basin (JLB) in China’s Greater Bay Area, the platform assessed 894 scenarios encompassing diverse remediation and restoration plans, including point/non-point source reduction, sediment dredging, recycled water reuse, ecological water replenishment, and sluice gate control, accounting for inter-annual meteorological variability. The results reveal that source control alone (95% reduction in point and non-point loads) leads to limited improvement, achieving less than 2% compliance with Class IV water quality standards in tributaries. Integrated engineering–ecological interventions, combining sediment dredging with high-flow replenishment from the Xizhijiang River (26.1 m3/s), increases compliance days of Class IV water quality standards by 10–51 days. Concerning the lake plans, including sluice regulation and large-volume water exchange, the lake area met the Class IV standard for COD, NH3-N, and TP by over 90%. The platform’s multi-objective optimization framework highlights that coordinated, multi-scale interventions substantially outperform isolated strategies in both effectiveness and sustainability. These findings provide a replicable and data-driven paradigm for 3WRR implementation in complex river–lake systems. The platform’s application and promotion in other watersheds worldwide will serve to enable the low-cost and high-efficiency management of watershed water environments. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

21 pages, 13748 KB  
Article
Integrated Assessment of Anthropogenic Carbon, Nitrogen, and Phosphorus Inputs: A Panjin City Case Study
by Tianxiang Wang, Simiao Wang, Li Ye, Guangyu Su, Tianzi Wang, Rongyue Ma and Zipeng Zhang
Water 2025, 17(20), 2962; https://doi.org/10.3390/w17202962 - 15 Oct 2025
Abstract
Energy consumption and environmental pollution pose significant challenges to sustainable development. This study develops a comprehensive coupled framework model that advances the quantitative integration of carbon (C), nitrogen (N), and phosphorus (P) cycles driven by multiple anthropogenic pollution sources. This paper used Panjin [...] Read more.
Energy consumption and environmental pollution pose significant challenges to sustainable development. This study develops a comprehensive coupled framework model that advances the quantitative integration of carbon (C), nitrogen (N), and phosphorus (P) cycles driven by multiple anthropogenic pollution sources. This paper used Panjin city as a case study to analyze the dynamic changes and interconnections among C, N, and P. Results indicated that net anthropogenic carbon inputs (NAIC) increased by 33% from 2016–2020, while net anthropogenic nitrogen inputs (NAIN) and net anthropogenic phosphorus inputs (NAIP) decreased by 14% and 28%, respectively. The primary driver of NAIC was energy consumption, while wetlands were the dominant carbon sequestration sink. Agricultural production was identified as the primary source of NAIN and NAIP, and approximately 4.5% of NAIN and 2.9% of NAIP were discharged into receiving water bodies. We demonstrate that human activities and natural processes exhibit dual attributes, producing positive and negative environmental effects. The increase in carbon emissions drives economic growth and industrial restructuring; however, the enhanced economic capacity also strengthens the ability to mitigate pollution through environmental protection measures. Similarly, natural ecosystems, including forests and grasslands, contribute to carbon sequestration and the release of non-point source pollution. The comprehensive environmental impact assessment of C, N, and P revealed that the comprehensive environmental index for Panjin city exhibited an improved trend. The factors of energy structure, energy efficiency, and economic scale promoted NAIC growth, with the economic scale factor alone accounting for 93% of the total increment. Environmental efficiency factor and population size factor were the primary drivers in reducing NAIN and NAIP discharges into the receiving water bodies. We propose a novel management model, ecological restoration, clean energy utilization, resource recycling, and pollution source reduction to achieve systemic governance of C, N, and P inputs. Full article
(This article belongs to the Special Issue Science and Technology for Water Purification, 2nd Edition)
Show Figures

Figure 1

19 pages, 3248 KB  
Article
Effects of Riparian Zone Width and Soil Depth: Soil Environmental Factors Drive Changes in Soil Enzyme Activity
by Zixuan Yan, Peng Li, Chaohong Feng, Yongxiang Cao, Kunming Lu, Chenxu Zhao and Zhanbin Li
Land 2025, 14(10), 2056; https://doi.org/10.3390/land14102056 - 15 Oct 2025
Abstract
Functioning as a critical ecotone between terrestrial and aquatic ecosystems, riparian zones exhibit soil enzyme activities that serve as key biomarkers of their nutrient cycling processes. However, despite considerable focus on riparian soil properties, the dynamics and underlying drivers of these enzymatic activities [...] Read more.
Functioning as a critical ecotone between terrestrial and aquatic ecosystems, riparian zones exhibit soil enzyme activities that serve as key biomarkers of their nutrient cycling processes. However, despite considerable focus on riparian soil properties, the dynamics and underlying drivers of these enzymatic activities are not yet fully characterized. To this end, soils were systematically sampled across varying widths and depths from three representative riparian zones to quantify the driving forces of physicochemical properties on enzyme activity dynamics. The results showed that the soil enzyme activity was highest in the forest riparian zone and lowest in the farmland riparian zone, with average enzyme activities of 37.95 (μmol·g−1·h−1) and 26.85 (μmol·g−1·h−1), respectively. The width of the riparian zone changes the spatial distribution of soil enzyme activity. The soil enzyme activity is higher in the land edge area far from the river (profile-1) and lower in the water edge area near the river (profile-4), with average enzyme activities of 47.4384 (μmol·g−1·h−1) and 17.0017 (μmol·g−1·h−1), respectively. Moreover, soil water content (SWC) has a strong impact on enzyme activity changes. The increase in soil depth reduces soil enzyme activity, with enzyme activity in the 0–20 cm soil layer being 1.5 times higher than in the 20–50 cm soil layer. Meanwhile, the primary factors influencing changes in soil enzyme activity have gradually shifted from total nitrogen (TN), nitrate nitrogen (NO3-N), and soil organic carbon (SOC) to the sole control of SOC. Research has shown that human influence strongly interferes with soil enzyme activity in riparian zones. The width of the riparian zone and soil depth serve as key drivers of the spatial distribution of soil enzyme activity by modulating soil environmental factors. The patterns revealed in this study indicate that maintaining appropriate riparian zone width and reducing anthropogenic disturbances can enhance nutrient cycling dynamics at the micro-scale by increasing soil enzyme activity. This process is crucial for strengthening the riparian zone’s macro-level ecosystem services, particularly by effectively enhancing its capacity to sequester and transform nutrients like nitrogen and phosphorus from agricultural nonpoint sources, thereby safeguarding downstream water quality. Consequently, soil enzyme activity serves as a key indicator, providing essential scientific basis for assessing riparian health and guiding ecological restoration efforts. Full article
Show Figures

Figure 1

31 pages, 6434 KB  
Article
Research on the Impact of Landscape Pattern in Haikou City on Urban Water Body Quality
by Yingping Zhong, Yunxia Du, Ya Huang, Shusong Huang and Jing Pu
Water 2025, 17(20), 2922; https://doi.org/10.3390/w17202922 - 10 Oct 2025
Viewed by 228
Abstract
In the rapid development process of cities, as important ecological corridors and landscape carriers, the water quality conditions of urban water bodies are not only related to the health of the ecological environment, but also closely linked to the quality of life of [...] Read more.
In the rapid development process of cities, as important ecological corridors and landscape carriers, the water quality conditions of urban water bodies are not only related to the health of the ecological environment, but also closely linked to the quality of life of residents. The landscape pattern, as an important component of the urban ecosystem, has a potential impact on water quality. As a tropical coastal city, the unique water network pattern of Haikou City is facing the dual challenges of landscape fragmentation and water quality pollution in its rapid urban expansion. In order to study the impact of the landscape pattern of Haikou City on urban water bodies, this study takes the urban water bodies of Haikou City as the research object. By comprehensively applying landscape ecology methods and water quality monitoring techniques, and using landscape pattern indices (such as the number of patches, fragmentation degree, spread degree, etc.) and on-site investigation of water quality parameter data (such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), etc.), and by using correlation analysis and redundancy analysis, we explore the mechanism by which landscape patterns affect water quality. The results show that: (1) There are significant differences in water quality among water bodies. The concentrations of COD and TN in Hongcheng Lake are relatively high. The average values reached 86.603 mg/L and 13.368 mg/L, respectively, mainly affected by the high-intensity construction land around. Jinniu Lake has a high degree of landscape fragmentation and relatively high concentrations of NH3-N and TP. The average values are 2.086 mg/L and 0.154 mg/L, respectively. The Meishe River has a strong water purification capacity due to its good vegetation coverage. (2) The influence of landscape pattern on water quality has a scale effect. Hongcheng Lake, Jinniu Lake, and Meishe River all have the best interpretation rate of water quality in the 2000 m buffer zone landscape pattern. (3) The expansion of construction land has significantly exacerbated water pollution, while natural vegetation landscapes with high connectivity and low fragmentation can effectively improve water quality. The research reveals the correlation between urban landscape planning and water quality protection. It is suggested that by enhancing ecological connectivity, controlling non-point source pollution, and implementing differentiated seasonal management, the self-purification capacity of water bodies can be improved, providing a scientific basis for ecological restoration and sustainable development in Haikou City. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

21 pages, 10220 KB  
Article
Fragmentation Susceptibility of Controlled-Release Fertilizer Particles: Implications for Nutrient Retention and Sustainable Horticulture
by Zixu Chen, Yongxian Wang, Xiubo Chen, Linlong Jing, Linlin Sun, Hongjian Zhang and Jinxing Wang
Horticulturae 2025, 11(10), 1215; https://doi.org/10.3390/horticulturae11101215 - 9 Oct 2025
Viewed by 210
Abstract
As an important technology to enhance nutrient use efficiency and reduce agricultural non-point source pollution, controlled-release fertilizers (CRFs) have been widely applied in modern agriculture. However, during packaging, transportation, and field application, CRF particles are prone to mechanical impacts, which can lead to [...] Read more.
As an important technology to enhance nutrient use efficiency and reduce agricultural non-point source pollution, controlled-release fertilizers (CRFs) have been widely applied in modern agriculture. However, during packaging, transportation, and field application, CRF particles are prone to mechanical impacts, which can lead to particle fragmentation and damage to the controlled-release coating. This compromises the release kinetics, increases nutrient loss risk, and ultimately exacerbates environmental issues such as eutrophication. Currently, studies on the impact-induced fragmentation behavior of CRF particles remain limited, and there is an urgent need to investigate their fragmentation susceptibility mechanisms from the perspective of internal stress evolution. In this study, the mechanical properties of CRF particles were first experimentally determined to obtain essential parameters. A two-layer finite element model representing the coating and core structure of the particles was then constructed, and a fragmentation susceptibility index was proposed as the key evaluation criterion. The index, defined as the ratio of fractured volume to peak impact energy, reflects the efficiency of energy conversion at the critical moment of particle rupture (1–5). An explicit dynamic simulation framework incorporating multiple influencing factors—equivalent diameter, sphericity, impact material, velocity, and angle—was developed to analyze fragmentation behavior from the perspective of energy transformation. Based on the observed effects of these variables on fragmentation susceptibility, three regression models were developed using response surface methodology to quantitatively predict fragmentation susceptibility. Comparative analysis between the simulation and experimental results showed a fragmentation rate error range of 0–11.47%. The findings reveal the relationships between particle fragmentation modes and energy responses under various impact conditions. This research provides theoretical insights and technical guidance for optimizing the mechanical stability of CRFs and developing environmentally friendly fertilization strategies. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

19 pages, 2437 KB  
Article
Effects of Agricultural Production Patterns on Surface Water Quality in Central China’s Irrigation Districts: A Case Study of the Four Lakes Basin
by Yanping Hu, Zhenhua Wang, Dongguo Shao, Rui Li, Wei Zhang, Meng Long, Kezheng Song and Xiaohuan Cao
Sustainability 2025, 17(19), 8838; https://doi.org/10.3390/su17198838 - 2 Oct 2025
Viewed by 457
Abstract
To explore the coupling between agricultural farming models and surface water environmental in central China’s irrigation districts, this study focuses on the Four Lakes Basin within Jianghan Plain, a key grain-producing and ecological protection area. Integrating remote sensing images, statistical yearbooks, and on-site [...] Read more.
To explore the coupling between agricultural farming models and surface water environmental in central China’s irrigation districts, this study focuses on the Four Lakes Basin within Jianghan Plain, a key grain-producing and ecological protection area. Integrating remote sensing images, statistical yearbooks, and on-site monitoring data, the study analyzed the phased characteristics of the basin’s agricultural pattern transformation, the changes in non-point source nitrogen and phosphorus loads, and the responses of water quality in main canals and Honghu Lake to agricultural adjustments during the period 2010~2023. The results showed that the basin underwent a significant transformation in agricultural patterns from 2016 to 2023: the area of rice-crayfish increased by 14%, while the areas of dryland crops and freshwater aquaculture decreased by 11% and 4%, respectively. Correspondingly, the non-point source nitrogen and phosphorus loads in the Four Lakes Basin decreased by 11~13%, and the nitrogen and phosphorus concentrations in main canals decreased slightly by approximately 2 mg/L and 0.04 mg/L, respectively; however, the water quality of Honghu Lake continued to deteriorate, with nitrogen and phosphorus concentrations increasing by approximately 0.46 mg/L and 0.06 mg/L, respectively. This indicated that the adjustment of agricultural farming models was beneficial to improving the water quality of main canals, but it did not bring about a substantial improvement in the sustainable development of Honghu Lake. This may be related to various factors that undermine the sustainability of the lake’s aquatic ecological environment, such as climate change, natural disasters, internal nutrient release from sediments, and the decline in water environment carrying capacity. Therefore, to advance sustainability in this basin and similar irrigation districts, future efforts should continue optimizing agricultural models to reduce nitrogen/phosphorus inputs, while further mitigating internal nutrient release and climate disaster risks, restoring aquatic vegetation, and enhancing water environment carrying capacity. Full article
Show Figures

Figure 1

29 pages, 10675 KB  
Article
Stack Coupling Machine Learning Model Could Enhance the Accuracy in Short-Term Water Quality Prediction
by Kai Zhang, Rui Xia, Yao Wang, Yan Chen, Xiao Wang and Jinghui Dou
Water 2025, 17(19), 2868; https://doi.org/10.3390/w17192868 - 1 Oct 2025
Viewed by 390
Abstract
Traditional river quality models struggle to accurately predict river water quality in watersheds dominated by non-point source pollution due to computational complexity and uncertain inputs. This study addresses this by developing a novel coupling model integrating a gradient boosting algorithm (Light GBM) and [...] Read more.
Traditional river quality models struggle to accurately predict river water quality in watersheds dominated by non-point source pollution due to computational complexity and uncertain inputs. This study addresses this by developing a novel coupling model integrating a gradient boosting algorithm (Light GBM) and a long short-term memory network (LSTM). The method leverages Light GBM for spatial data characteristics and LSTM for temporal sequence dependencies. Model outputs are reciprocally recalculated as inputs and coupled via linear regression, specifically tackling the lag effects of rainfall runoff and upstream pollutant transport. Applied to predict the concentrations of chemical oxygen demand digested by potassium permanganate index (COD) in South China’s Jiuzhoujiang River basin (characterized by rainfall-driven non-point pollution from agriculture/livestock), the coupled model outperformed individual models, increasing prediction accuracy by 8–12% and stability by 15–40% than conventional models, which means it is a more accurate and broadly applicable method for water quality prediction. Analysis confirmed basin rainfall and upstream water quality as the primary drivers of 5-day water quality variation at the SHJ station, influenced by antecedent conditions within 10–15 days. This highly accurate and stable stack coupling method provides valuable scientific support for regional water management. Full article
Show Figures

Figure 1

24 pages, 2044 KB  
Article
Evaluation of the Synergistic Control Efficiency of Multi-Dimensional Best Management Practices Based on the HYPE Model for Nitrogen and Phosphorus Pollution in Rural Small Watersheds
by Yi Wang, Yule Liu, Huawu Wu, Junwei Ding, Qian Xiao and Wen Chen
Agriculture 2025, 15(19), 2030; https://doi.org/10.3390/agriculture15192030 - 27 Sep 2025
Viewed by 389
Abstract
Non-point source pollution (NPS) from agriculture is a primary driver of water eutrophication, necessitating effective control for regional water ecological security and sustainable agricultural development. This study focuses on the Chenzhuang village watershed, a typical green agricultural demonstration area in Jiangsu Province, using [...] Read more.
Non-point source pollution (NPS) from agriculture is a primary driver of water eutrophication, necessitating effective control for regional water ecological security and sustainable agricultural development. This study focuses on the Chenzhuang village watershed, a typical green agricultural demonstration area in Jiangsu Province, using the HYPE model to analyze hydrological processes and Total Nitrogen (TN) and Total Phosphorus (TP) migration patterns. The model achieved robust performance, with Nash–Sutcliffe Efficiency (NSE) values exceeding 0.7 for daily runoff and 0.35 for monthly TN and TP simulations, ensuring reliable predictions. A multi-scenario simulation framework evaluated the synergistic control effectiveness of Best Management Practices (BMPs), including agricultural production management, nutrient management, and landscape configuration, on TN and TP pollution. The results showed that crop rotation reduced annual average TN and TP concentrations by 11.8% and 13.6%, respectively, by shortening the fallow period. Substituting 50% of chemical fertilizers with organic fertilizers decreased TN by 50.5% (from 1.92 mg/L to 0.95 mg/L) and TP by 68.2% (from 0.22 mg/L to 0.07 mg/L). Converting 3% of farmland to forest enhanced pollutant interception, reducing TN by 4.14% and TP by 2.78%. The integrated BMP scenario (S13), combining these measures, achieved TN and TP concentrations of 0.63 mg/L and 0.046 mg/L, respectively, meeting Class II surface water standards since 2020. Economic analysis revealed an annual net income increase of approximately 15,000 CNY for a 50-acre plot. This was achieved through cost savings, increased crop value, and policy compensation. These findings validate a “source reduction–process interception” approach, providing a scalable management solution for NPS control in small rural watersheds while balancing environmental and economic benefits. Full article
(This article belongs to the Special Issue Detection and Management of Agricultural Non-Point Source Pollution)
Show Figures

Figure 1

18 pages, 3328 KB  
Article
Hydrochemical Controlling Factors and Spatial Distribution Characteristics of Shallow Groundwater in Agricultural Regions of Central-Eastern Henan Province, China
by Peng Guo, Shaoqing Chen, Xiaosheng Luo, Kelin Hu and Baoguo Li
Water 2025, 17(19), 2815; https://doi.org/10.3390/w17192815 - 25 Sep 2025
Viewed by 284
Abstract
Groundwater serves as a vital water resource for agricultural irrigation and domestic use in farmland areas. Its chemical composition is jointly influenced by agricultural fertilization, land use practices, and natural geological processes. However, research on the controlling factors and spatial distribution characteristics of [...] Read more.
Groundwater serves as a vital water resource for agricultural irrigation and domestic use in farmland areas. Its chemical composition is jointly influenced by agricultural fertilization, land use practices, and natural geological processes. However, research on the controlling factors and spatial distribution characteristics of groundwater hydrochemistry in agricultural regions remains insufficient. In this study, 56 groundwater samples were collected from the central-eastern plain of Henan Province, China. A combination of hierarchical cluster analysis, ionic ratio methods, principal component analysis, and kriging interpolation was employed to investigate the hydrochemical characteristics, spatial patterns, and primary controlling factors of regional groundwater. The results indicate that the first group of samples is characterized by high total dissolved solids (TDS), elevated Na+ and Cl concentrations, predominantly controlled by evaporation and concentration processes. The second group exhibits high pH and low Ca2+ concentrations, mainly influenced by silicate weathering, with reverse cation exchange acting as a secondary controlling process. The third group is characterized by elevated concentrations of Ca2+ and NO3, primarily controlled by carbonate weathering and agricultural activities. The western part of the study area serves as the main groundwater recharge zone and has the highest NO3 and Ca2+ concentrations. In the central area, most ion concentrations are relatively high, forming a distinct gradient with surrounding regions. Meanwhile, the eastern area displays elevated concentrations of HCO3, TDS, Na+, and Cl, highlighting pronounced spatial heterogeneity. Overall, the hydrochemical composition of groundwater in the study area is shaped by both natural processes and anthropogenic activities, exhibiting significant spatial heterogeneity. Notably, the spatial variation of NO3 concentrations is substantial, indicating that certain localities have already been affected by agricultural non-point source pollution. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 2930 KB  
Article
Phosphorus Loss Risk in the Ju River Basin, China, Under Urbanization and Climate Change: Insights from the Hydrological Simulation Program—FORTRAN (HSPF) Model
by Chaozhong Deng, Qian Xiang, Qinxue Xiong, Shunyao Jiang, Fuli Xu, Liman Li, Jianqiang Zhu and Yuan Zhou
Water 2025, 17(18), 2771; https://doi.org/10.3390/w17182771 - 19 Sep 2025
Viewed by 497
Abstract
Despite increasing concerns over recurrent phosphorus (P) pollution, the Ju River—a small tributary of the Yangtze River—has received limited scientific attention. To correct this, the present study integrates field-based observations with the Hydrological Simulation Program—FORTRAN (HSPF) model to comprehensively assess the conjunct effects [...] Read more.
Despite increasing concerns over recurrent phosphorus (P) pollution, the Ju River—a small tributary of the Yangtze River—has received limited scientific attention. To correct this, the present study integrates field-based observations with the Hydrological Simulation Program—FORTRAN (HSPF) model to comprehensively assess the conjunct effects of urban expansion and changing precipitation patterns on watershed hydrology and phosphorus dynamics at the small-catchment scale. A total of five urban expansion scenarios and three precipitation enhancement scenarios were simulated to capture both seasonal and event-driven variations in daily discharge and total phosphorus (TP) concentrations. The model was calibrated and validated using in situ water quality data, ensuring high reliability of the simulations. The results indicate that agricultural non-point sources are the primary contributor to total phosphorus (TP) loads. During the overlapping period of intensive farming and heavy rainfall (June–July), TP concentrations more than doubled compared to other months, with these two months accounting for over 70% of the annual TP load. Urban expansion significantly amplified hydrological extremes, increasing peak discharge by up to 224% under extreme rainfall, thereby intensifying flood risks. Although increased precipitation diluted TP concentrations, it simultaneously accelerated overall phosphorus export. This study offers a novel modeling–monitoring framework tailored for small watersheds and provides critical insights into how land use transitions and climate change jointly reshape nutrient cycling. The findings support the development of targeted, scenario-based strategies to mitigate eutrophication risks in vulnerable river systems. Full article
(This article belongs to the Topic Water-Soil Pollution Control and Environmental Management)
Show Figures

Figure 1

18 pages, 3692 KB  
Article
Effects of Straw Mulching on Nonpoint Source Pollutant Runoff During Snowmelt in Korean Highland Agricultural Areas
by Seonah Lee, Yoon-Seok Kim, Mingyeong Bak and Eunmi Hong
Water 2025, 17(18), 2675; https://doi.org/10.3390/w17182675 - 10 Sep 2025
Viewed by 407
Abstract
Nonpoint Source (NPS) pollution refers to water pollution that does not originate from a single identifiable source. In this study, we conducted water-quality monitoring during the snowmelt period from February to March of 2024 and 2025 in Jaun, a highland agricultural area. We [...] Read more.
Nonpoint Source (NPS) pollution refers to water pollution that does not originate from a single identifiable source. In this study, we conducted water-quality monitoring during the snowmelt period from February to March of 2024 and 2025 in Jaun, a highland agricultural area. We analyzed changes in nonpoint source pollutant concentration and evaluated Best Management Practice (BMPs) effectiveness. A year-to-year comparison showed that in 2024, a single intense snowmelt event led to a sharp increase in particulate pollutants, such as TP and SS. In 2025, repeated and gradual thawing resulted in the accumulation and release of dissolved pollutants, including TN and TOC. BMPs such as straw mulching were partially effective in reducing pollutant concentrations. However, in 2025, a lack of proper maintenance led to increased concentration at certain sites. The water quality during the snowmelt period was comparable to that during the summer monsoon season, indicating that snowmelt has a similar potential for generating nonpoint source pollution. The findings provide area-based insights into snowmelt-induced nonpoint source pollution and can form a foundation for developing seasonal water quality management policies. Full article
(This article belongs to the Special Issue Basin Non-Point Source Pollution)
Show Figures

Figure 1

21 pages, 5876 KB  
Article
Efficient Regulation and Prediction Model Construction for Water and Fertilizer Management Through Resource Utilization of Manure and Urea Co-Application
by Kaiqi Qi, Xiaofeng Tang, Jianhong Ma, Rui Zhao, Junan Bao, Pengshan Tang, Jiaqi Liu, Dandan Pei, Xiaohou Shao and Xinyu Mao
Water 2025, 17(17), 2594; https://doi.org/10.3390/w17172594 - 2 Sep 2025
Viewed by 918
Abstract
In intensive agriculture, the excessive application of chemical fertilizers leads to approximately 50% nitrogen loss, which exacerbates water pollution and the greenhouse effect. Meanwhile, nitrogen and phosphorus emissions from livestock manure have far exceeded those from chemical fertilizers, becoming the primary source of [...] Read more.
In intensive agriculture, the excessive application of chemical fertilizers leads to approximately 50% nitrogen loss, which exacerbates water pollution and the greenhouse effect. Meanwhile, nitrogen and phosphorus emissions from livestock manure have far exceeded those from chemical fertilizers, becoming the primary source of agricultural non-point-source pollution. This study aims to clarify the comprehensive effects of combining manure with urea application and precision irrigation on the soil environment, lettuce growth, and quality, and to determine the optimal water and fertilizer management strategy. The results indicate that combining manure with urea application and precision irrigation can effectively mitigate non-point-source pollution, enhance soil nutrients, promote lettuce growth, and improve quality. When the irrigation volume reaches 75–78% of field capacity and the ratio of manure to urea nitrogen ranges from 7:3 to 1:1, key indicators for soil health, lettuce growth, and quality can exceed 90% of their respective maximum levels. This study provides a scientific basis and practical guidance for the resource utilization of manure and precise water–fertilizer management in intensive lettuce production. Full article
Show Figures

Figure 1

20 pages, 4626 KB  
Review
Biochar for Mitigating Nitrate Leaching in Agricultural Soils: Mechanisms, Challenges, and Future Directions
by Lan Luo, Jie Li, Zihan Xing, Tao Jing, Xinrui Wang and Guilong Zhang
Water 2025, 17(17), 2590; https://doi.org/10.3390/w17172590 - 1 Sep 2025
Viewed by 1458
Abstract
Nitrate leaching from agricultural soils is a major contributor to groundwater contamination and non-point source pollution. Controlling this loss remains challenging due to the complexity of soil–water–nutrient interactions under intensive farming practices. Biochar, a porous, carbon-rich material derived from biomass pyrolysis, has emerged [...] Read more.
Nitrate leaching from agricultural soils is a major contributor to groundwater contamination and non-point source pollution. Controlling this loss remains challenging due to the complexity of soil–water–nutrient interactions under intensive farming practices. Biochar, a porous, carbon-rich material derived from biomass pyrolysis, has emerged as a promising amendment for nitrate mitigation. This review summarizes recent advances in understanding the roles of biochar in nitrate retention and transformation in soils, including both direct mechanisms—such as surface adsorption, ion exchange, and pore entrapment—and indirect mechanisms—such as enhanced microbial activity, soil structure improvement, and root system development. Field and laboratory evidence shows that biochar can reduce NO3-N leaching by 15–70%, depending on its properties, soil conditions, and application context. However, inconsistencies in performance due to differences in biochar types, soil conditions, and environmental factors remain a major barrier to widespread adoption. This review also suggests current knowledge gaps and research needs, including long-term field validation, biochar material optimization, and integration of biochar into precision nutrient management. Overall, biochar presents a multifunctional strategy for reducing nitrate leaching and promoting sustainable nitrogen management in agroecosystems. Full article
(This article belongs to the Special Issue Advanced Research in Non-Point Source Pollution of Watersheds)
Show Figures

Graphical abstract

18 pages, 2333 KB  
Article
Evaluation of the Water Eco-Environmental Quality of a Typical Shallow Lake in the Middle and Lower Reaches of the Yangtze River Basin
by Qinghuan Zhang, Zishu Ye, Chun Ye, Chunhua Li, Yang Wang, Ye Zheng and Yongzhe Zhang
Water 2025, 17(16), 2421; https://doi.org/10.3390/w17162421 - 16 Aug 2025
Cited by 1 | Viewed by 594
Abstract
Intensified human activities in recent years, such as wastewater discharge and agricultural non-point source pollution have led to a decline in lake water quality, especially in the middle and lower reaches of the Yangtze River Basin, which threaten the stability of lake water [...] Read more.
Intensified human activities in recent years, such as wastewater discharge and agricultural non-point source pollution have led to a decline in lake water quality, especially in the middle and lower reaches of the Yangtze River Basin, which threaten the stability of lake water ecosystems. Therefore, it is necessary to conduct a scientific assessment of the water eco-environmental quality of shallow lakes and implement targeted management measures. Considering the characteristics of shallow lakes, major ecological and environmental issues, and current standards and guidelines, an indicator system method was employed to establish a water eco-environmental quality evaluation system tailored for typical shallow lakes in the middle and lower reaches of the Yangtze River Basin. This evaluation system comprises three criteria layers (aquatic organism, habitat quality, and water quality) and 10 indicator layers. Using survey data from 2022 to 2024 for evaluation, the results showed that the water eco-environmental quality of Lake Gehu was rated as poor, with the lowest score for macrophyte coverage and the highest score for riparian vegetation coverage. This indicates that the shoreline restoration project in Lake Gehu was effective, while the lake water quality still needs improvement. Remedial measures include increasing aquatic vegetation coverage, reducing nitrogen and phosphorus pollution loads, and controlling the occurrence of algal blooms. This evaluation system combines field surveys with remote sensing monitoring data, fully considering historical and current conditions, and can guide local authorities in evaluating lake water environmental quality. The constructed evaluation system is applicable for the assessment of shallow lakes in the middle and lower reaches of Yangtze River Basin. It provides a scientific basis for the continuous improvement of eco-environmental quality and the construction of Beautiful Lakes Initiative, contributing to the management and protection of lake ecosystems. Full article
Show Figures

Figure 1

19 pages, 2326 KB  
Article
Effectiveness of Wetlands for Improving Different Water Quality Parameters in Various Climatic Conditions
by Aruna Shrestha, Rohan Benjankar, Ajay Kalra and Amrit Bhusal
Hydrology 2025, 12(8), 216; https://doi.org/10.3390/hydrology12080216 - 15 Aug 2025
Viewed by 939
Abstract
Engineered wetland has been used as a Best Management Practice (BMP) to remove pollutants and maintain water quality in watersheds. This study is focused on developing models to analyze the impacts of discharges on the efficiency of wetlands to improve water quality downstream. [...] Read more.
Engineered wetland has been used as a Best Management Practice (BMP) to remove pollutants and maintain water quality in watersheds. This study is focused on developing models to analyze the impacts of discharges on the efficiency of wetlands to improve water quality downstream. The watershed hydrological Soil & Water Assessment Tool (SWAT) and wetland (Personal Computer Storm Water Management Model—PCSWMM) models were developed to analyze the efficiency of engineered wetlands to remove the pollutants for different basins under three different climatic conditions (i.e., dry, average and wet year). The SWAT was calibrated and validated to simulate discharge and water quality parameters. The wetland model was developed using inflow hydrographs and concentrations of the water quality parameters biochemical oxygen demand (BOD), total suspended solids (TSSs), total nitrogen (TN) and total phosphorous (TP), simulated from a Soil & Water Assessment Tool (SWAT) model. A PCSWMM (wetland) was developed based on the physical and first order decay process within the wetland system for three basins in Prairie du Pont watershed in Illinois, USA. The results showed that pollutant removal efficiencies decreased from low to high discharges (dry to wet climatic conditions) for all watersheds and pollutants (except for BOD) based on trendline analysis. Nevertheless, the efficiencies were highly variable, specifically during low discharges. Furthermore, the sensitivity of the k-parameter (areal rate constant) was pollutant dependent. Overall, this study is helpful to understand the efficacy of wetlands’ pollutant removal as a function of discharge. The approach can be used in watersheds located in other geographic regions for the preliminary design of engineered wetlands to remove non-point source pollution and treat stormwater runoff. Full article
Show Figures

Figure 1

Back to TopTop