Effectiveness of Wetlands for Improving Different Water Quality Parameters in Various Climatic Conditions
Abstract
1. Introduction
2. Methodology
2.1. Study Area
2.2. Functional Scenarios
2.3. SWAT Development
2.4. Pollutant Removal in Wetlands
- q = hydraulic loading rate (m/yr);
- x = fraction of distance from inlet to outlet;
- C = concentration of water quality parameters;
- C* = background concentration of water quality parameters;
- k = areal rate constant.
2.4.1. The k-C* Model
2.4.2. Wetland Model (PCSWMM) Development
2.4.3. Parameter Sensitivity Analysis
3. Results and Discussion
3.1. Sensitivity Analysis
3.2. Pollutant Removal
3.2.1. Biochemical Oxygen Demand (BOD)
3.2.2. Total Nitrogen (TN)
3.2.3. Total Phosphorous (TP)
3.2.4. Total Suspended Solids (TSSs)
3.3. General Observation
3.4. Study Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huber, W.C.; Cannon, L.; Stouder, M. BMP Modeling Concepts and Simulation; United States Environmental Protection Agency: Washington, DC, USA, 2006; pp. 1–166. [Google Scholar]
- Meals, D.W.; Dressing, S.A.; Davenport, T.E. Lag Time in Water Quality Response to Best Management Practices: A Review. J. Environ. Qual. 2010, 39, 85–96. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Bhusal, A.; Thakur, B.; Kalra, A.; Benjankar, R.; Shrestha, A. Evaluating the Effectiveness of Best Management Practices in Adapting the Impacts of Climate Change-Induced Urban Flooding. Atmosphere 2024, 15, 281. [Google Scholar] [CrossRef]
- Muthukrishnan, S.; Madge, B. The Use of Best Management Practices (BMPs) in Urban Watersheds; National Risk Management Research Laboratory, Office of Research and Development, U.S.Environmental Protection Agency: Cincinati, OH, USA, 2004; pp. 1–271. [Google Scholar]
- Meyer, D.; Chazarenc, F.; Claveau-Mallet, D.; Dittmer, U.; Forquet, N.; Molle, P.; Morvannou, A.; Pálfy, T.; Petitjean, A.; Rizzo, A.; et al. Modelling constructed wetlands: Scopes and aims—A comparative review. Ecol. Eng. 2015, 80, 205–213. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Wernick, B.G.; Cook, K.E.; Schreier, H. Land Use and Streamwater Nitrate-N Dynamics in an Urban-Rural Fringe Watershed. J. Am. Water Resour. Assoc. 1998, 34, 639–650. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Paudel, S.; Benjankar, R. Integrated Hydrological Modeling to Analyze the Effects of Precipitation on Surface Water and Groundwater Hydrologic Processes in a Small Watershed. Hydrology 2022, 9, 37. [Google Scholar] [CrossRef]
- Grimm, K.; Chu, X. Depression threshold control proxy to improve HEC-HMS modeling of depression-dominated watersheds. Hydrol. Sci. J. 2020, 65, 200–211. [Google Scholar] [CrossRef]
- Sovann, C.; Irvine, K.N.; Suthipong, S.; Kok, S.; Chea, E. Dynamic Modeling to Assess Natural Wetlands Treatment of Wastewater in Phnom Penh, Cambodia: Towards an Eco-City Planning Tool. Br. J. Environ. Clim. Change 2015, 5, 104–115. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT Calibration and Uncertainty Programs—A User Manual; Eawag: Zurich, Switzerland, 2013. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, D.; Griensven, A.V.; Liew, M.W.V.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Dakhlalla, A.O.; Parajuli, P.B. Assessing model parameters sensitivity and uncertainty of streamflow, sediment, and nutrient transport using SWAT. Inf. Process. Agric. 2019, 6, 61–72. [Google Scholar] [CrossRef]
- Griffiths, L.; Mitsch, W. Removal of nutrients from urban stormwater runoff by storm-pulsed and seasonally pulsed created wetlands in the subtropics. Ecol. Eng. 2017, 108, 414–424. [Google Scholar] [CrossRef]
- Dharmasena, T.; Chua, L.H.C.; Barron, N. Performance assessment of a constructed wetland using a numerical modelling approach. Ecol. Eng. 2021, 173, 106441. [Google Scholar] [CrossRef]
- Wadzuk, B.M.; Rea, M.; Woodruff, G.; Flynn, K.; Traver, R.G. Water-Quality Performance of a Constructed Stormwater Wetland for All Flow Conditions. J. Am. Water Resour. Assoc. 2010, 46, 385–394. [Google Scholar] [CrossRef]
- Huddleston, G.M.; Gillespie, W.B.; Rodgers, J.H. Using constructed wetlands to treat biochemical oxygen demand and ammonia associated with a refinery effluent. Ecotoxicol. Environ. Saf. 2000, 45, 188–193. [Google Scholar] [CrossRef]
- Yunus, A.P.; Masago, Y.; Hijioka, Y. Analysis of long-term (2002–2020) trends and peak events in total suspended solids concentrations in the Chesapeake Bay using MODIS imagery. J. Environ. Manag. 2021, 299, 113550. [Google Scholar] [CrossRef]
- Rossi, L.; Krejci, V.; Rauch, W.; Kreikenbaum, S.; Fankhauser, R.; Gujer, W. Stochastic modeling of total suspended solids (TSS) in urban areas during rain events. Water Res. 2005, 39, 4188–4196. [Google Scholar] [CrossRef]
- Ogilvie, B.G.; Mitchell, S.F. Does sediment resuspension have persistent effects on phytoplankton? Experimental studies in three shallow lakes. Freshw. Biol. 1998, 40, 51–63. [Google Scholar] [CrossRef]
- Aryal, R.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Urban stormwater quality and treatment. Korean J. Chem. Eng. 2010, 27, 1343–1359. [Google Scholar] [CrossRef]
- Balasubramaniana, S.V.; Pahlevan, N.; Smith, B.; Binding, C.; Schalles, J.; Loisel, H.; Gurlin, D.; Greb, S.; Alikas, K.; Randla, M.; et al. Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters. Remote Sens. Environ. 2020, 246, 111768. [Google Scholar] [CrossRef]
- Cui, S.; Yu, T.; Zhang, F.; Fu, Q.; Hough, R.; An, L.; Gao, S.; Zhang, Z.; Hu, P.; Zhu, Q.; et al. Understanding the risks from diffuse pollution on wetland eco-systems: The effectiveness of water quality classification schemes. Ecol. Eng. 2020, 155, 105929. [Google Scholar] [CrossRef]
- Cowardin, L.M.; Carter, V.; Golet, F.C.; LaRoe, E.T. Classification of Wetlands and Deepwater Habitats of the United States; Fish and Wildlife Service, U.S. Department of the Interior: Bailey’s Crossroads, VA, USA, 1979; pp. 1–142. [Google Scholar]
- Strecker, E.W.; Kersnar, J.M.; Driscoll, E.D.; Horner, R.R. The Use of Wetlands for Controlling Stormwater Pollution; The Terrene Institute: Washington, DC, USA, 1992; p. 72. [Google Scholar]
- Kadlec, R.H.; Knight, R.L.; Vymazal, J.; Brix, H.; Cooper, P.; Habert, R. Constructed Wetlands for Pollution Control—Processes, Performance, Design and Operation; IWA: London, UK, 2000; pp. 1–156. [Google Scholar]
- Kadlec, R.H.; Knight, R.L. Treatment Wetlands, 1st ed.; CRC-Press: Boca Raton, FL, USA, 1996; p. 928. [Google Scholar]
- Wong, T.H.F.; Geiger, W.F. Adaptation of wastewater surface flow wetland formulae for application in constructed stormwater wetlands. Ecol. Eng. 1997, 9, 187–202. [Google Scholar] [CrossRef]
- Desta, H.; Lemma, B.; Fetene, A. Aspects of climate change and its associated impacts on wetland ecosystem functions—A review. J. Am. Sci. 2012, 8, 582–586. [Google Scholar]
- Reinelt, L.E.; Horner, R.R. Pollutant removal from stormwater runoff by palustrine wetlands based on comprehensive budgets. Ecol. Eng. 1995, 4, 77–97. [Google Scholar] [CrossRef]
- Strecker, E.; Quigley, M.; Jones, J.; Clary, J. Determining Urban Storm Water BMP Effectiveness. J. Water Resour. Plan. Manag. 2001, 127, 144–149. [Google Scholar] [CrossRef]
- Herrmann, J. Chemical and biological benefits in a stormwater wetland in Kalmar, SE Sweden. Limnologica 2012, 42, 299–309. [Google Scholar] [CrossRef]
- Nichols, D.S. Capacity of natural wetlands to remove nutrients from wastewater. J. Water Pollut. Control Fed. 1983, 55, 495–505. [Google Scholar]
- Wong, T.H.F.; Fletcher, T.D.; Duncan, H.P.; Jenkins, G.A. Modelling urban stormwater treatment—A unified approach. Ecol. Eng. 2006, 27, 58–70. [Google Scholar] [CrossRef]
- Rossman, L.A.; Huber, W.C. Storm Water Management Model Reference Manual Volume III—Water Quality; National Risk Management Laboratory: Cincinnati, OH, USA; School of Civil and Construction Engineering, Oregon State University: Corvallis, OR, USA, 2016; p. 121. [Google Scholar]
- Canet-Martí, A.; Grüner, S.; Lavrnić, S.; Toscano, A.; Streck, T.; Langergraber, G. Comparison of simple models for total nitrogen removal from agricultural runoff in FWS wetlands. Water Sci. Technol. 2022, 85, 3301–3314. [Google Scholar] [CrossRef]
- Weerakoon, G.M.P.R.; Jinadasa, K.B.S.N.; Manatunge, J.; Wijesiri, B.; Goonetilleke, A. Kinetic modelling and performance evaluation of vertical subsurface flow constructed wetlands in tropics. J. Water Process Eng. 2020, 38, 101539. [Google Scholar] [CrossRef]
- Zhang, B.; Cui, Y.; Liao, B.; Tang, C.; Shu, Y. Experimental checking and modeling of the influence of operation conditions on the first order kinetic constants in free water surface wetlands. J. Environ. Manag. 2023, 331, 117348. [Google Scholar] [CrossRef]
- Nurmahomed, N.; Ragen, A.K.; Sheridan, C.M. Performance intensification of constructed wetland technology: A sustainable solution for treatment of high-strength industrial wastewater. Water Sci. Technol. 2022, 85, 1765–1782. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC-Press: Boca Raton, FL, USA, 2009; p. 366. [Google Scholar]
- Idris, N.N.; Chua, L.H.C.; Mustaffa, Z.; Das, S.; Takaijudin, H. A review study on the association between hydraulic performance and treatment effectiveness in free surface flow constructed wetlands. Ecol. Eng. 2024, 203, 107258. [Google Scholar] [CrossRef]
- Carleton, J.N.; Grizzard, T.J.; Godrej, A.N.; Post, H.E. Factors affecting the performance of stormwater treatment wetlands. Water Res. 2001, 35, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Manzoa, L.M.; Epelea, L.B.; Horaka, C.N.; Kutschkera, A.M.; Miserendinoa, M.L. Engineered ponds as environmental and ecological solutions in the urban water cycle: A case study in Patagonia. Ecol. Eng. 2020, 154, 105915. [Google Scholar] [CrossRef]
- Céréghino, R.; Boix, D.; Cauchie, H.-M.; Martens, K.; Oertli, B. The ecological role of ponds in a changing world. Hydrobiologia 2014, 723, 1–6. [Google Scholar] [CrossRef]
- Kumwimba, M.N.; Bao, L.; Jie, Z.; Li, X.; Huang, J.; Wang, W.; Li, X.; Su, J.; Muyembe, D.K.; Guide, A.; et al. Nutrients retention of a series of small dam-impacted urban rivers in northern China. J. Environ. Chem. Eng. 2022, 10, 107967. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Kasanin-Grubin, M.; Solomun, M.K.; Sushkova, S.; Minkina, T.; Zhao, W.; Kalantari, Z. Wetlands as nature-based solutions for water management in different environments. Curr. Opin. Environ. Sci. Health 2023, 33, 100476. [Google Scholar] [CrossRef]
- Allen, R.G. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; pp. 1–50. [Google Scholar]
- Travaini-Lima, F.; Sipaúba-Tavares, L.H. Efficiency of a constructed wetland for wastewaters treatment. Acta Limnol. Bras. 2012, 24, 255–265. [Google Scholar] [CrossRef]
- Yang, J.R.; Tang, S.; Li, Y.; Zhu, J.; Liu, Z. Assessing the nutrient removal performance from rice-crayfish paddy fields by an ecological ditch-wetland system. Heliyon 2024, 10, e38373. [Google Scholar] [CrossRef]
- Jha, M.; Arnold, J.G.; Gassman, P.W.; Giorgi, F.; Gu, R.R. Climate Change Sensitivity Assesment on Upper Mississippi River Basin Streamflows Using SWAT. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 997–1015. [Google Scholar] [CrossRef]
- HeartLands Conservancy. Prairie Du Pont & Judy’s Branch Watershed Plan; HeartLands Conservancy: Belleville, IL, USA, 2023; p. 398. [Google Scholar]
- Illinois Environmental Protection Agency (IEPA). Cahokia Canal Watershed Total Maximum Daily Load; Illinois Environmental Protection Agency (IEPA): Springfield, IL, USA, 2009; p. 276. [Google Scholar]
- Birch, G.F.; Matthai, C.; Fazeli, M.S.; Suh, J. Efficiency of a constructed wetland in removing contaminants from stromwater. Wetlands 2004, 24, 459–466. [Google Scholar] [CrossRef]
- James, W.; Rossman, L.E.; Jame, W.R.C. Water Systems Models: User’s Guide to Swmm5, 13th ed.; CHI Press: Little Ferry, NJ, USA, 2010. [Google Scholar]
- Maine, M.A.; Suñe, N.; Hadad, H.; Sa’nchez, G.; Bonetto, C. Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance. Chemosphere 2007, 68, 1105–1113. [Google Scholar] [CrossRef]
- Haryani, M.F.; Fachrul, M.F.; Hadisoebroto, R. Removal of Bod and Cod Concentration in Wastewater Using Constructed Wetland. Int. J. Sci. Technol. Res. 2020, 9, 1466–1469. [Google Scholar]
- Kadlec, R.H.; Reddy, K.R. Temperature Effects in Treatment Wetlands. Water Environ. Res. 2001, 73, 543–557. [Google Scholar] [CrossRef]
- Sheikholeslami, R.; Hall, J.W. Global patterns and key drivers of stream nitrogen concentration: A machine learning approach. Sci. Total Environ. 2023, 868, 161623. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Lusk, M.G. Nutrients in Urban Stormwater Runoff: Current State of the Science and Potential Mitigation Options. Curr. Pollut. Rep. 2018, 4, 112–127. [Google Scholar] [CrossRef]
- Shannon & Wilson Inc. BMP Effectiveness Report; 18-9001-15; Shannon & Wilson Inc: Seattle, WA, USA, 2006; pp. 1–368. [Google Scholar]
- Simpson, T.; Weammert, S. Developing Best Management Practice Definitations and Effectiveness Estimates for Nitrogen, Phosphorous and Sediment in the Chesapeake Bay Watershed; University of Maryland Mid-Atlantic Water Program: College Park, MD, USA, 2009; pp. 1–822. [Google Scholar]
- Allen, D.J.; Farrell, M.; Huang, J.; Reynolds, C.; Rupasinghe, M.; Mosley, L.M. Long-term water quality response to increased hydraulic loadings in a field-scale free water surface constructed wetland treating domestic effluent. J. Environ. Manag. 2022, 311, 114858. [Google Scholar] [CrossRef]
- Noori, N.; Kalin, L.; Isik, S. Water quality prediction using SWAT-ANN coupled approach. J. Hydrol. 2020, 590, 125220. [Google Scholar] [CrossRef]
- Wang, R.; Kalin, L. Modelling effects of land use/cover changes under limited data. Ecohydrology 2011, 4, 265–276. [Google Scholar] [CrossRef]
- Tanner, C.C. Plants for constructed wetland treatment systems—A comparison of the growth and nutrient uptake of eight emergent species. Ecol. Eng. 1996, 7, 59–83. [Google Scholar]
- Beebe, D.A.; Castle, J.W.; Molz, F.J.; Jr, J.H.R. Effects of evapotranspiration on treatment performance in constructed wetlands: Experimental studies and modeling. Ecol. Eng. 2014, 71, 394–400. [Google Scholar] [CrossRef]
- El-Refaie, G. Temperature impact on operation and performance of Lake Manzala Engineered Wetland, Egypt. Ain Shams Eng. J. 2010, 1, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Zhuo, L.; Rico-Ramirez, M.A.; Abdelhalim, A.; Han, D. Interacting Effects of Precipitation and Potential Evapotranspiration Biases on Hydrological Modeling. Water Resour. Res. 2023, 59, e2022WR033323. [Google Scholar] [CrossRef]
Water Quality Parameter | k (m/yr); C* |
---|---|
Total Suspended Solids (TSSs) | k = 1000 m/yr C* = 5.1 + 0.16Ci |
Biochemical Oxygen Demand (BOD) | k = 34 m/yr C* = 3.5 + 0.053 Ci |
Total Phosphorous (TP) | k = 12 m/yr C* = 0.02 mg/L |
Total Nitrogen (TN) | k = 22 m/yr C* = 1.50 mg/L |
BOD (mg/L) | TN (mg/L) | TP (mg/L) | TSS (mg/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry | Average | Wet | Dry | Average | Wet | Dry | Average | Wet | Dry | Average | Wet | |||
Agricultural | Input | * Average | 33.3 | 49.4 | 35.7 | 7.8 | 7.6 | 6.2 | 0.9 | 1.9 | 1.4 | 877.2 | 1259.5 | 854.6 |
** SD | 16.9 | 32.4 | 32.4 | 1.3 | 1.6 | 1.9 | 0.5 | 1.5 | 1.5 | 444.0 | 814.3 | 702.4 | ||
Output | Average | 3.6 | 4.4 | 4.3 | 1.5 | 1.7 | 1.6 | 0.0 | 0.1 | 0.1 | 13.5 | 30.4 | 25.2 | |
SD | 1.3 | 5.2 | 5.7 | 0.0 | 0.6 | 0.6 | 0.0 | 0.4 | 0.5 | 39.8 | 111.8 | 92.0 | ||
Efficiency (%) | 81 | 80 | 73 | 80 | 78 | 73 | 92 | 93 | 87 | 97 | 97 | 96 | ||
*** Slope | −20.3 | −3.6 | 5.1 | −1.7 | −47.7 | −36.3 | −12.2 | −77.2 | −67.1 | −38.6 | −32.8 | −29.3 | ||
ɸp-value | 0.07 | 0.87 | 0.82 | 0.40 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Forested | Input | Average | 47.8 | 52.3 | 30.1 | 5.8 | 4.3 | 3.8 | 0.5 | 0.8 | 0.4 | 1352.7 | 1409.0 | 765.1 |
SD | 20.1 | 43.8 | 43.8 | 2.1 | 1.6 | 2.1 | 0.2 | 0.6 | 0.5 | 609.7 | 1223.1 | 654.4 | ||
Output | Average | 3.9 | 4.6 | 4.7 | 1.5 | 1.6 | 1.4 | 0.0 | 0.1 | 0.1 | 35.5 | 60.7 | 36.8 | |
SD | 2.0 | 5.1 | 7.4 | 0.1 | 0.5 | 0.5 | 0.0 | 0.2 | 0.2 | 104.8 | 172.8 | 97.1 | ||
Efficiency (%) | 90 | 84 | 76 | 70 | 60 | 56 | 93 | 91 | 86 | 97 | 96 | 96 | ||
Slope | −10.7 | −5.6 | −11.8 | −11.9 | −28.0 | −38.9 | −20.3 | −66.7 | −71.8 | −28.3 | −24.0 | −36.1 | ||
p-value | 0.01 | 0.59 | 0.29 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Urban | Input | Average | 49.0 | 53.3 | 31.0 | 6.9 | 5.4 | 5.6 | 0.5 | 0.7 | 0.5 | 383.3 | 375.9 | 223.2 |
SD | 24.0 | 43.5 | 43.5 | 5.0 | 3.3 | 4.4 | 0.3 | 0.5 | 0.4 | 180.2 | 318.2 | 168.1 | ||
Output | Average | 3.9 | 4.7 | 4.7 | 1.5 | 1.7 | 1.4 | 0.0 | 0.1 | 0.1 | 10.5 | 15.8 | 11.0 | |
SD | 1.4 | 4.2 | 6.9 | 0.2 | 1.0 | 0.6 | 0.0 | 0.1 | 0.2 | 23.3 | 40.3 | 25.1 | ||
Efficiency (%) | 87 | 84 | 78 | 66 | 62 | 64 | 92 | 90 | 88 | 97 | 95 | 94 | ||
Slope | −11.6 | −12.1 | −23.6 | −15.4 | −46.4 | −58.2 | −23.8 | −80.2 | −103.2 | −34.3 | −23.6 | −26.6 | ||
p-value | 0.16 | 0.21 | 0.00 | 0.12 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, A.; Benjankar, R.; Kalra, A.; Bhusal, A. Effectiveness of Wetlands for Improving Different Water Quality Parameters in Various Climatic Conditions. Hydrology 2025, 12, 216. https://doi.org/10.3390/hydrology12080216
Shrestha A, Benjankar R, Kalra A, Bhusal A. Effectiveness of Wetlands for Improving Different Water Quality Parameters in Various Climatic Conditions. Hydrology. 2025; 12(8):216. https://doi.org/10.3390/hydrology12080216
Chicago/Turabian StyleShrestha, Aruna, Rohan Benjankar, Ajay Kalra, and Amrit Bhusal. 2025. "Effectiveness of Wetlands for Improving Different Water Quality Parameters in Various Climatic Conditions" Hydrology 12, no. 8: 216. https://doi.org/10.3390/hydrology12080216
APA StyleShrestha, A., Benjankar, R., Kalra, A., & Bhusal, A. (2025). Effectiveness of Wetlands for Improving Different Water Quality Parameters in Various Climatic Conditions. Hydrology, 12(8), 216. https://doi.org/10.3390/hydrology12080216