Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (226)

Search Parameters:
Keywords = nonlinear thermal radiations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3520 KB  
Article
Thermal Entropy Generation in Magnetized Radiative Flow Through Porous Media over a Stretching Cylinder: An RSM-Based Study
by Shobha Visweswara, Baskar Palani, Fatemah H. H. Al Mukahal, S. Suresh Kumar Raju, Basma Souayeh and Sibyala Vijayakumar Varma
Mathematics 2025, 13(19), 3189; https://doi.org/10.3390/math13193189 - 5 Oct 2025
Viewed by 148
Abstract
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching [...] Read more.
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching tube. The model accounts for nonlinear thermal radiation, internal heat generation/absorption, and Darcy–Forchheimer drag to capture porous medium resistance. Similarity transformations reduce the governing equations to a system of coupled nonlinear ordinary differential equations, which are solved numerically using the BVP4C technique with Response Surface Methodology (RSM) and sensitivity analysis. The effects of dimensionless parameters magnetic field strength (M), Reynolds number (Re), Darcy–Forchheimer parameter (Df), Brinkman number (Br), Prandtl number (Pr), nonlinear radiation parameter (Rd), wall-to-ambient temperature ratio (rw), and heat source/sink parameter (Q) are investigated. Results show that increasing M, Df, and Q suppresses velocity and enhances temperature due to Lorentz and porous drag effects. Higher Re raises pressure but reduces near-wall velocity, while rw, Rd, and internal heating intensify thermal layers. The entropy generation analysis highlights the competing roles of viscous, magnetic, and thermal irreversibility, while the Bejan number trends distinctly indicate which mechanism dominates under different parameter conditions. The RSM findings highlight that rw and Rd consistently reduce the Nusselt number (Nu), lowering thermal efficiency. These results provide practical guidance for optimizing energy efficiency and thermal management in MHD and porous media-based systems.: Full article
(This article belongs to the Special Issue Advances and Applications in Computational Fluid Dynamics)
Show Figures

Figure 1

22 pages, 2450 KB  
Article
Insights for the Impacts of Inclined Magnetohydrodynamics, Multiple Slips, and the Weissenberg Number on Micro-Motile Organism Flow: Carreau Hybrid Nanofluid Model
by Sandeep, Pardeep Kumar, Partap Singh Malik and Md Aquib
Symmetry 2025, 17(10), 1601; https://doi.org/10.3390/sym17101601 - 26 Sep 2025
Viewed by 173
Abstract
This study focuses on the analysis of the simultaneous impact of inclined magnetohydrodynamic Carreau hybrid nanofluid flow over a stretching sheet, including microorganisms with the effects of chemical reactions in the presence and absence of slip conditions for dilatant [...] Read more.
This study focuses on the analysis of the simultaneous impact of inclined magnetohydrodynamic Carreau hybrid nanofluid flow over a stretching sheet, including microorganisms with the effects of chemical reactions in the presence and absence of slip conditions for dilatant (n>1.0) and quasi-elastic hybrid nanofluid (n<1.0) limitations. Meanwhile, the transfer of energy is strengthened through the employment of heat sources and bioconvection. The analysis incorporates nonlinear thermal radiation, chemical reactions, and Arrhenius activation energy effects on different profiles. Numerical simulations are conducted using the efficient Bvp5c solver. Motile concentration profiles decrease as the density slip parameter of the motile microbe and Lb increase. The Weissenberg number exhibits a distinct nature depending on the hybrid nanofluid; the velocity profile, skin friction, and Nusselt number fall when (n>1.0) and increase when (n<1.0). For small values of inclination, the 3D surface plot is far the surface, while it is close to the surface for higher values of inclination but has the opposite behavior for the 3D plot of the Nusselt number. A detailed numerical investigation on the effects of important parameters on the thermal, concentration, and motile profiles and the Nusselt number reveals a symmetric pattern of boundary layers at various angles (α). Results are presented through tables, graphs, contour plots, and streamline and surface plots, covering both shear-thinning cases (n<1.0) and shear-thickening cases (n>1.0). Full article
Show Figures

Figure 1

27 pages, 6025 KB  
Article
Optimized Random Forest Framework for Integrating Cultivar, Environmental, and Phenological Interactions in Crop Yield Prediction
by Jiaojiao Tan, Lu Jiang, Yingnan Wei, Ning Yao, Gang Zhao and Qiang Yu
Agronomy 2025, 15(10), 2273; https://doi.org/10.3390/agronomy15102273 - 25 Sep 2025
Viewed by 362
Abstract
Accurate rice yield prediction remains a major challenge due to the complex and nonlinear interactions among cultivar, environment, and phenology. Existing approaches often focus on analyzing individual components while ignoring their interdependencies, which results in limited predictive accuracy and generalizability. To overcome these [...] Read more.
Accurate rice yield prediction remains a major challenge due to the complex and nonlinear interactions among cultivar, environment, and phenology. Existing approaches often focus on analyzing individual components while ignoring their interdependencies, which results in limited predictive accuracy and generalizability. To overcome these problems, this study proposes a novel interpretable random forest model that integrates cultivar, environmental, and phenological dimensions. Different from conventional approaches, the proposed method incorporates a factor-combination optimization strategy to identify the most effective information for yield estimation. For analysis, 24 key determinants were screened, including the geographical location, meteorological conditions, phenological events, and cultivar traits. The RF models were also evaluated when built with seven factor combinations. The results reveal the following: (1) Meteorological conditions play a dominant role during the vegetative growth period, including net solar radiation (r = 0.42), daylength (r = 0.38), and thermal summation (r = 0.29). On the other hand, thermal summation (r = 0.28), mean minimum temperature (r = −0.23), and mean temperature (r = −0.20) are most relevant during the reproductive growth period. (2) The full-factor model achieves optimal performance (RMSE = 601.45 kg/ha and MAE = 454.98 kg/ha, R2 = 0.77). (3) Importance analysis reveals that meteorological factors provide the greatest contribution (53.59%), followed by phenological factors (20.39%), geographical factors (17.20%), and cultivar (8.82%), respectively. The results also reveal that threshold effects of key determinants on yield, and identify mid-April to early May as the optimal sowing window. These findings demonstrate that integrating cultivar, environment, and phenology factors creates a powerful predictive model for rice yields. Full article
(This article belongs to the Special Issue Application of Machine Learning and Modelling in Food Crops)
Show Figures

Graphical abstract

22 pages, 4160 KB  
Article
External Temperature Distribution and Characteristics of Building-Integrated Photovoltaics (BIPV) Under Summer High-Temperature Conditions
by Yingge Zhang, Tian Mu and Yibing Xue
Buildings 2025, 15(18), 3415; https://doi.org/10.3390/buildings15183415 - 22 Sep 2025
Viewed by 335
Abstract
This study investigates the external environmental temperature distribution of a small single-story BIPV building on a university campus in Jinan City, Shandong Province, China, under the most adverse summer high-temperature conditions. The temporal and spatial distribution characteristics and variation patterns of building external [...] Read more.
This study investigates the external environmental temperature distribution of a small single-story BIPV building on a university campus in Jinan City, Shandong Province, China, under the most adverse summer high-temperature conditions. The temporal and spatial distribution characteristics and variation patterns of building external temperature are analyzed. The results indicated the following: (1) During summer high-temperature days, the peak temperature of the BIPV photovoltaic surface reached 52.4 °C, which is 17.4 °C higher than the ambient temperature. (2) External measurement points exhibited significant daytime heating (+2.86 °C) and nighttime cooling (average relative temperature increment of −1.52 °C). (3) Complex nonlinear temperature gradient variations existed within the 10–100 cm range from the surface, with localized heat accumulation occurring around 60 cm, where 77% of high-temperature days show temperature gradient anomalies. (4) Based on dimensionless analysis, a modified Richardson criterion for BIPV buildings is established: Ri < 0.3 represents building-geometry-dominated mechanisms, and Ri > 0.7 represents thermal-plume-dominated mechanisms. The critical values occur earlier than in classical theory. (5) Solar radiation and wind speed are key factors affecting temperature distribution, with more pronounced local heat accumulation under low-wind-speed conditions. This study provides scientific evidence for BIPV building performance optimization and environmental control. Full article
Show Figures

Figure 1

20 pages, 5619 KB  
Article
Seasonal Dynamics, Environmental Drivers, and Hysteresis of Sap Flow in Forests of China’s Subtropical Transitional Zone
by Houbing Chen, Guoping Tang, Nan Jiang, Zhongkai Ren, Xupeng Fang and Yaoliang Chen
Forests 2025, 16(9), 1480; https://doi.org/10.3390/f16091480 - 18 Sep 2025
Viewed by 323
Abstract
The subtropical transitional zone of China exhibits highly complex climatic conditions and diverse forest ecosystems, making it a critical region for understanding vegetation–water interactions. This study employed the Thermal Dissipation Probe (TDP) method to monitor sap flow in three typical forest types—evergreen broad-leaved [...] Read more.
The subtropical transitional zone of China exhibits highly complex climatic conditions and diverse forest ecosystems, making it a critical region for understanding vegetation–water interactions. This study employed the Thermal Dissipation Probe (TDP) method to monitor sap flow in three typical forest types—evergreen broad-leaved forest, bamboo forest (Dendrocalamus latiflorus), and Chinese fir (Cunninghamia lanceolata)—in a subtropical transitional watershed in southern China. The aims were to quantify seasonal and annual variations in sap flow, to examine the effects of environmental drivers, and to analyze the hysteretic responses between sap flow and the drivers. The main findings were as follows: (1) bamboo forests exhibited significantly higher sap flow density than evergreen broad-leaved and fir forests at both annual and seasonal scales, though the overall transpiration of bamboo forests was lower than the others due to its limited sapwood area; (2) sap flow was positively correlated with potential evapotranspiration, solar radiation (Ra), vapor pressure deficit (VPD), air temperature, and soil temperature, while it was negatively correlated with relative humidity, atmospheric pressure, soil moisture, and precipitation; (3) Ra and VPD were identified as the dominant drivers of sap flow variations, with nonlinear increases that leveled off once thresholds were reached; (4) clear hysteresis patterns were observed, with sap flow peaks consistently lagging behind Ra but occurring earlier than VPD. These results advance our understanding of forest water-use strategies in the subtropical transitional zone and provide a scientific basis for improving water resource management and ecosystem sustainability in this region. Full article
(This article belongs to the Special Issue Forestry Activities and Water Resources)
Show Figures

Figure 1

18 pages, 18416 KB  
Article
Radiation-Induced Degradation Mechanisms in Silicon MEMS Under Coupled Thermal and Mechanical Fields
by Xian Guo, Deshou Yang, Jibiao Qiao, Hui Zhang, Tong Ye and Ning Wei
Processes 2025, 13(9), 2902; https://doi.org/10.3390/pr13092902 - 11 Sep 2025
Viewed by 338
Abstract
Silicon-based MEMS devices are essential in extreme radiation environments but suffer progressive reliability degradation from irradiation-induced defects. Here, the generation, aggregation, and clustering of defects in single-crystal silicon were systematically investigated through molecular dynamics (MD) simulations via employing a hybrid Tersoff–ZBL potential that [...] Read more.
Silicon-based MEMS devices are essential in extreme radiation environments but suffer progressive reliability degradation from irradiation-induced defects. Here, the generation, aggregation, and clustering of defects in single-crystal silicon were systematically investigated through molecular dynamics (MD) simulations via employing a hybrid Tersoff–ZBL potential that was validated by nanoindentation and transmission electron microscopy. The influences of the primary knock-on atom energy, temperature, and pre-strain state on defect evolution were quantified in detail. Frenkel defects were found to cause a linear reduction in the Young’s modulus and a nonlinear decline in thermal conductivity via enhanced phonon scattering. To link atomic-scale damage with device-level performance, MD-predicted modulus degradation was incorporated into finite element (FE) models of a sensing diaphragm. The FE analysis revealed that modulus reductions result in nonlinear increases in deflection and stress concentration, potentially impairing sensing accuracy. This integrated MD–FE framework establishes a robust, physics-based approach for predicting and mitigating irradiation damage in silicon-based MEMS operating in extreme environments. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

7 pages, 831 KB  
Proceeding Paper
Modeling the Thermal State of a Wind Turbine Generator Considering External Factors
by Alina Fazylova, Yaroslav Napadailo, Galina V. Rybina, Baurzhan Tultayev, Teodor Iliev and Ivaylo Stoyanov
Eng. Proc. 2025, 104(1), 88; https://doi.org/10.3390/engproc2025104088 - 8 Sep 2025
Viewed by 1729
Abstract
This paper presents the mathematical modeling of the thermal state of a 1000 W wind turbine generator (WTG) integrated into a vertical-axis wind turbine (VAWT) system, taking into account external environmental factors, mechanical losses, and the operation of the cooling system. The developed [...] Read more.
This paper presents the mathematical modeling of the thermal state of a 1000 W wind turbine generator (WTG) integrated into a vertical-axis wind turbine (VAWT) system, taking into account external environmental factors, mechanical losses, and the operation of the cooling system. The developed model considers the influence of ambient temperature, wind speed, air humidity, ventilation openings, radiator cooling, and mechanical losses. An analysis was conducted over a range of operating conditions from −20 °C to 50 °C, with wind speeds from 0.5 m/s to 15 m/s and air humidity from 10% to 90%. The nonlinear dependence of the winding temperature on these factors was investigated, and critical operating conditions leading to potential overheating were identified. It was found that high humidity (>70%) increases the winding temperature by 5–10% compared to low humidity (<30%). The developed model can be used to optimize cooling systems and improve the reliability of wind turbines in various climatic conditions. In addition, the proposed model is intended to be integrated into fault detection and diagnosis systems for wind turbines, enabling the identification of potential faults related to thermal overload. Full article
Show Figures

Figure 1

22 pages, 4675 KB  
Article
Thermal Stress of Fractured Rock Under Solar Radiation Based on a Typical Shape Function Method
by Yang Wang and Wenhua Chen
Mathematics 2025, 13(17), 2864; https://doi.org/10.3390/math13172864 - 5 Sep 2025
Viewed by 455
Abstract
Tunnel portal rocks in southern China, which are exposed to intense solar radiation and temperature fluctuations, are susceptible to thermal stress, which directly or indirectly affects the safety, stability, and normal use of a tunnel and its peripheral structures. Fractures act as conduits [...] Read more.
Tunnel portal rocks in southern China, which are exposed to intense solar radiation and temperature fluctuations, are susceptible to thermal stress, which directly or indirectly affects the safety, stability, and normal use of a tunnel and its peripheral structures. Fractures act as conduits for solar radiation energy, converting it into thermal energy within the rock, thereby altering the thermal stress field. As formation mechanisms of rock, fractures are complex, and the nonlinear thermal conduction at fracture tips leads to thermal stress concentration. A parabolic shape function for the heat source and thermal stress at tips of rock fractures is herein proposed, and the thermal stress field of fractured rocks under solar radiation is obtained. The applicability of different fracture heat source functions for analyzing the effects of heat on rocks with varying thermodynamic properties is discussed. Compared with a linear heat source function, the thermal stress values of rock fracture tips are larger. The daily maximum σθmax increases by 8.14% when αc=0.05 based on the parabolic heat source function, providing more conservative results for the thermal stability analysis of fractured rock under solar radiation. Parabolic heat source functions are more reasonable for soft rocks with high thermal conductivity and low thermal deformation, while linear heat source functions are more appropriate for hard rocks. A parabolic heat source function is a typical function for analyzing the effects of heat on fractured rocks under solar radiation. Full article
Show Figures

Figure 1

23 pages, 1445 KB  
Article
Inclined MHD Flow of Carreau Hybrid Nanofluid over a Stretching Sheet with Nonlinear Radiation and Arrhenius Activation Energy Under a Symmetry-Inspired Modeling Perspective
by Praveen Kumari, Hemant Poonia, Pardeep Kumar and Md Aquib
Symmetry 2025, 17(8), 1330; https://doi.org/10.3390/sym17081330 - 15 Aug 2025
Cited by 1 | Viewed by 564
Abstract
This work investigates the intricate dynamics of the Carreau hybrid nanofluid’s inclined magnetohydrodynamic (MHD) flow, exploring both active and passive control modes. The study incorporates critical factors, including Arrhenius activation energy across a stretched sheet, chemical interactions, and nonlinear thermal radiation. The formulation [...] Read more.
This work investigates the intricate dynamics of the Carreau hybrid nanofluid’s inclined magnetohydrodynamic (MHD) flow, exploring both active and passive control modes. The study incorporates critical factors, including Arrhenius activation energy across a stretched sheet, chemical interactions, and nonlinear thermal radiation. The formulation of the boundary conditions and governing equations is inherently influenced by symmetric considerations in the physical geometry and flow assumptions. Such symmetry-inspired modeling facilitates dimensional reduction and numerical tractability. The analysis employs realistic boundary conditions, including convective heat transfer and control of nanoparticle concentration, which are solved numerically using MATLAB’s bvp5c solver. Findings indicate that an increase in activation energy results in a steeper concentration boundary layer under active control, while it flattens in passive scenarios. An increase in the Biot number (Bi) and relaxation parameter (Γ) enhances heat transfer and thermal response, leading to a rise in temperature distribution in both cases. Additionally, the 3D surface plot illustrates elevation variations from the surface at low inclination angles, narrowing as the angle increases. The Nusselt number demonstrates a contrasting trend, with thermal boundary layer thickness increasing with higher radiation parameters. A graphical illustration of the average values of skin friction, Nusselt number, and Sherwood number for both active and passive scenarios highlights the impact of each case. Under active control, the Brownian motion’s effect diminishes, whereas it intensifies in passive control. Passive techniques, such as zero-flux conditions, offer effective and low-maintenance solutions for systems without external regulation, while active controls, like wall heating and setting a nanoparticle concentration, maximize heat and mass transfer in shear-thinning Carreau fluids. Full article
(This article belongs to the Special Issue Symmetrical Mathematical Computation in Fluid Dynamics)
Show Figures

Figure 1

13 pages, 1895 KB  
Article
Class-Dependent Solar Flare Effects on Mars’ Upper Atmosphere: MAVEN NGIMS Observations of X8.2 and M6.0 from September 2017
by Junaid Haleem and Shican Qiu
Universe 2025, 11(8), 245; https://doi.org/10.3390/universe11080245 - 25 Jul 2025
Viewed by 566
Abstract
Transient increments of X-ray radiation and extreme ultraviolet (EUV) during solar flares are strong drivers of thermospheric dynamics on Mars, yet their class-dependent impacts remain poorly measured. This work provides the first direct, side-by-side study of Martian thermospheric reactions to flares X8.2 on [...] Read more.
Transient increments of X-ray radiation and extreme ultraviolet (EUV) during solar flares are strong drivers of thermospheric dynamics on Mars, yet their class-dependent impacts remain poorly measured. This work provides the first direct, side-by-side study of Martian thermospheric reactions to flares X8.2 on 10 September 2017 and M6.0 on 17 September 2017. This study shows nonlinear, class-dependent effects, compositional changes, and recovery processes not recorded in previous investigations. Species-specific responses deviated significantly from irradiance proportionality, even though the soft X-ray flux in the X8.2 flare was 13 times greater. Argon (Ar) concentrations rose 3.28× (compared to 1.13× for M6.0), and radiative cooling led CO2 heating to approach a halt at ΔT = +40 K (X8.2) against +19 K (M6.0) at exobase altitudes (196–259 km). N2 showed the largest class difference, where temperatures rose by +126 K (X8.2) instead of +19 K (M6.0), therefore displaying flare-magnitude dependent thermal sensitivity. The 1.95× increase in O concentrations during X8.2 and the subsequent decrease following M6.0 (−39 K cooling) illustrate the contradiction between photochemical production and radiative loss. The O/CO2 ratio at 225 km dropped 46% during X8.2, revealing compositional gradients boosted by flares. Recovery timeframes varied by class; CO2 quickly re-equilibrated because of effective cooling, whereas inert species (Ar, N2) stabilized within 1–2 orbits after M6.0 but needed >10 orbits of the MAVEN satellite after the X8.2 flare. The observations of the X8.2 flare came from the western limb of the Sun, but the M6.0 flare happened on the far side. The CME shock was the primary driver of Mars’ EUV reaction. These findings provide additional information on atmospheric loss and planetary habitability by indicating that Mars’ thermosphere has a saturation threshold where strong flares induce nonlinear energy partitioning that encourages the departure of lighter species. Full article
Show Figures

Figure 1

14 pages, 2812 KB  
Perspective
The Generation of Wind Velocity via Scale Invariant Gibbs Free Energy: Turbulence Drives the General Circulation
by Adrian F. Tuck
Entropy 2025, 27(7), 740; https://doi.org/10.3390/e27070740 - 10 Jul 2025
Viewed by 462
Abstract
The mechanism for the upscale deposition of energy into the atmosphere from molecules and photons up to organized wind systems is examined. This analysis rests on the statistical multifractal analysis of airborne observations. The results show that the persistence of molecular velocity after [...] Read more.
The mechanism for the upscale deposition of energy into the atmosphere from molecules and photons up to organized wind systems is examined. This analysis rests on the statistical multifractal analysis of airborne observations. The results show that the persistence of molecular velocity after collision in breaking the continuous translational symmetry of an equilibrated gas is causative. The symmetry breaking may be caused by excited photofragments with the associated persistence of molecular velocity after collision, interaction with condensed phase surfaces (solid or liquid), or, in a scaling environment, an adjacent scale having a different velocity and temperature. The relationship of these factors for the solution to the Navier–Stokes equation in an atmospheric context is considered. The scale invariant version of Gibbs free energy, carried by the most energetic molecules, enables the acceleration of organized flow (winds) from the smallest planetary scales by virtue of the nonlinearity of the mechanism, subject to dissipation by the more numerous average molecules maintaining an operational temperature via infrared radiation to the cold sink of space. The fastest moving molecules also affect the transfer of infrared radiation because their higher kinetic energy and the associated more-energetic collisions contribute more to the far wings of the spectral lines, where the collisional displacement from the central energy level gap is greatest and the lines are less self-absorbed. The relationship of events at these scales to macroscopic variables such as the thermal wind equation and its components will be considered in the Discussion section. An attempt is made to synthesize the mechanisms by which winds are generated and sustained, on all scales, by appealing to published works since 2003. This synthesis produces a view of the general circulation that includes thermodynamics and the defining role of turbulence in driving it. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

16 pages, 5598 KB  
Article
Hybrid Fabrics for Ohmic Heating Applications
by Jiří Militký, Karel Kupka, Veronika Tunáková and Mohanapriya Venkataraman
Polymers 2025, 17(10), 1339; https://doi.org/10.3390/polym17101339 - 14 May 2025
Viewed by 587
Abstract
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in [...] Read more.
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in different ways, e.g., from metallic yarns, conductive polymers, conductive coatings, etc. In comparison with other types of flexible ohmic heaters, these structures should be corrosion resistant, air permeable, and comfortable. They should not loose ohmic heating efficiency due to frequent intensive washing and maintenance. In this study, the basic electrical properties of a conductive fabric composed of a polyester/cotton fiber mixture and a small amount of fine stainless-steel staple fibers (SS) were evaluated and predicted. Even though the basic conductive component of SS fibers is iron and its electrical characteristics obey Ohm’s law, the electrical behavior of the prepared fabric was highly nonlinear, resembling a more complex response than that of a classical conductor. The non-linear behavior was probably due to non-ideal, poorly defined random interfaces between individual short SS fibers. A significant time–dynamics relationship was also shown. Using the Stefan–Boltzmann law describing radiation power, we demonstrated that it is possible to predict surface temperature due to the ohmic heating of a fabric related to the input electrical power. Significant local temperature variations in the heated hybrid fabric in both main directions (warp and weft) were identified. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

30 pages, 5545 KB  
Article
Design of Ricker Wavelet Neural Networks for Heat and Mass Transport in Magnetohydrodynamic Williamson Nanofluid Boundary-Layer Porous Medium Flow with Multiple Slips
by Zeeshan Ikram Butt, Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Muhammad Shoaib, Rajesh Kumar and Syed Ibrar Hussain
Magnetochemistry 2025, 11(5), 40; https://doi.org/10.3390/magnetochemistry11050040 - 9 May 2025
Cited by 1 | Viewed by 963
Abstract
In the current paper, an analysis of magnetohydrodynamic Williamson nanofluid boundary layer flow is presented, with multiple slips in a porous medium, using a newly designed human-brain-inspired Ricker wavelet neural network solver. The solver employs a hybrid approach that combines genetic algorithms, serving [...] Read more.
In the current paper, an analysis of magnetohydrodynamic Williamson nanofluid boundary layer flow is presented, with multiple slips in a porous medium, using a newly designed human-brain-inspired Ricker wavelet neural network solver. The solver employs a hybrid approach that combines genetic algorithms, serving as a global search method, with sequential quadratic programming, which functions as a local optimization technique. The heat and mass transportation effects are examined through a stretchable surface with radiation, thermal, and velocity slip effects. The primary flow equations, originally expressed as partial differential equations (PDEs), are changed into a dimensionless nonlinear system of ordinary differential equations (ODEs) via similarity transformations. These ODEs are then numerically solved with the proposed computational approach. The current study has significant applications in a variety of practical engineering and industrial scenarios, including thermal energy systems, biomedical cooling devices, and enhanced oil recovery techniques, where the control and optimization of heat and mass transport in complex fluid environments are essential. The numerical outcomes gathered through the designed scheme are compared with reference results acquired through Adam’s numerical method in terms of graphs and tables of absolute errors. The rapid convergence, effectiveness, and stability of the suggested solver are analyzed using various statistical and performance operators. Full article
Show Figures

Figure 1

26 pages, 2284 KB  
Article
Mathematical Modeling of Photochemical and Chemical Interactions in Photochemical Smog Formation
by Luis Américo Carrasco-Venegas, Luz Genara Castañeda-Pérez, Daril Giovanni Martínez-Hilario, Juan Taumaturgo Medina-Collana, José Vulfrano González-Fernández, Cesar Gutiérrez-Cuba, Héctor Ricardo Cuba-Torre, Alex Pilco-Nuñez, Carlos Alejandro Ancieta-Dextre and Oscar Juan Rodriguez-Taranco
Processes 2025, 13(5), 1384; https://doi.org/10.3390/pr13051384 - 30 Apr 2025
Viewed by 1015
Abstract
Atmospheric pollution results from toxic gases in low concentrations, originating from natural processes and human activities. These gases interact with each other in the presence of solar radiation, forming much more complex compounds that contribute to the formation of photochemical smog. This study [...] Read more.
Atmospheric pollution results from toxic gases in low concentrations, originating from natural processes and human activities. These gases interact with each other in the presence of solar radiation, forming much more complex compounds that contribute to the formation of photochemical smog. This study presents a mathematical model to estimate the daily concentrations of primary and secondary pollutants, assuming that spatial variation is not considered within a control volume. The model includes nitrogen oxides, ozone, hydrocarbons, aldehydes, alcohols, and other gases, which are related through 52 chemical and photochemical reactions with rate constants that depend on factors such as the time of day and temperature. The model formulation results in 31 ordinary differential equations that are solved using a variable-step algorithm in MATLAB R2019a. Two scenarios are simulated: the “closed-box” model (CBM), where there are no inflows or outflows of gaseous flux, and the “open-box” model (OBM), which includes inflows and outflows within the control volume. The OBM is particularly useful for predicting concentrations during thermal inversion episodes. The results show that several pollutants reach their maximum concentrations at midday, suggesting an increase in the formation of secondary pollutants under high solar radiation, especially in the closed-box model. In the open-box model, concentration peaks shift toward the afternoon. To compare both models, the closed-box system conditions are considered, incorporating airflow into the open-box model without accounting for pollutants transported by this flow. The complex nonlinear dynamics observed in the pollutants highlight the combined influence of solar radiation, temperature, and emission rates on air quality. This study underscores the usefulness of mathematical models in developing effective mitigation strategies and assessing environmental and public health impacts. Full article
(This article belongs to the Special Issue Clean and Efficient Technology in Energy and the Environment)
Show Figures

Graphical abstract

25 pages, 6535 KB  
Article
ANN-Based Prediction and RSM Optimization of Radiative Heat Transfer in Couple Stress Nanofluids with Thermodiffusion Effects
by Reima Daher Alsemiry, Sameh E. Ahmed, Mohamed R. Eid and Essam M. Elsaid
Processes 2025, 13(4), 1055; https://doi.org/10.3390/pr13041055 - 1 Apr 2025
Cited by 5 | Viewed by 615
Abstract
This research investigates the impact of second-order slip conditions, Stefan flow, and convective boundary constraints on the stagnation-point flow of couple stress nanofluids over a solid sphere. The nanofluid density is expressed as a nonlinear function of temperature, while the diffusion-thermo effect, chemical [...] Read more.
This research investigates the impact of second-order slip conditions, Stefan flow, and convective boundary constraints on the stagnation-point flow of couple stress nanofluids over a solid sphere. The nanofluid density is expressed as a nonlinear function of temperature, while the diffusion-thermo effect, chemical reaction, and thermal radiation are incorporated through linear models. The governing equations are transformed using appropriate non-similar transformations and solved numerically via the finite difference method (FDM). Key physical parameters, including the heat transfer rate, are analyzed in relation to the Dufour number, velocity, and slip parameters using an artificial neural network (ANN) framework. Furthermore, response surface methodology (RSM) is employed to optimize skin friction, heat transfer, and mass transfer by considering the influence of radiation, thermal slip, and chemical reaction rate. Results indicate that velocity slip enhances flow behavior while reducing temperature and concentration distributions. Additionally, an increase in the Dufour number leads to higher temperature profiles, ultimately lowering the overall heat transfer rate. The ANN-based predictive model exhibits high accuracy with minimal errors, offering a robust tool for analyzing and optimizing the thermal and transport characteristics of couple stress nanofluids. Full article
Show Figures

Figure 1

Back to TopTop