Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = nonlinear internal wave

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6663 KiB  
Article
Vortex-Induced Vibration of Deep-Sea Mining Riser Under Different Currents and Tension Conditions Using Wake Oscillator Model
by Liwen Deng, Haining Lu, Jianmin Yang, Rui Guo, Bei Zhang and Pengfei Sun
J. Mar. Sci. Eng. 2025, 13(8), 1565; https://doi.org/10.3390/jmse13081565 - 15 Aug 2025
Abstract
The vortex-induced vibration (VIV) dynamics of commercial-scale deep-sea mining risers with complex component arrangements (pumps, buffer stations, buoyancy modules) remain insufficiently explored, especially for 6000 m systems with nonlinear tension. This study investigates VIV control strategy by adjusting tension for a nonlinear riser [...] Read more.
The vortex-induced vibration (VIV) dynamics of commercial-scale deep-sea mining risers with complex component arrangements (pumps, buffer stations, buoyancy modules) remain insufficiently explored, especially for 6000 m systems with nonlinear tension. This study investigates VIV control strategy by adjusting tension for a nonlinear riser system using the Iwan-Blevins wake oscillator model integrated with Morison equation-based analysis. An analytical model incorporating four typical current profiles was established to quantify the dynamic response under different flow velocities, internal flow density, and structural parameters. Increased buffer station mass effectively suppressed drift distance (over 35% reduction under specific conditions) by regulating axial tension. Dynamic comparisons demonstrated distinct VIV energy distribution patterns under different current conditions. Spectral analysis revealed that the vibration follows Strouhal vortex shedding lock-in principles. Spatial modal differentiation was observed due to nonlinear variations in velocity profiles, pipe diameters, and axial tension, accompanied by multi-frequency resonance, coexistence of standing and traveling waves, and broadband resonance with amplitude surges under critical velocities (1.75 m/s in Current-B). This study proposes to control the VIV amplitude by adjusting internal flow density and buffer mass, which is proved effective for reducing vibrations in upper (0–2000 m) risers. It validates vibration amplitude and frequency control through current velocity, buffer mass and slurry density regulation in a nonlinear riser system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 438 KiB  
Article
Analytic Solutions and Conservation Laws of a 2D Generalized Fifth-Order KdV Equation with Power Law Nonlinearity Describing Motions in Shallow Water Under a Gravity Field of Long Waves
by Chaudry Masood Khalique and Boikanyo Pretty Sebogodi
AppliedMath 2025, 5(3), 96; https://doi.org/10.3390/appliedmath5030096 - 31 Jul 2025
Viewed by 165
Abstract
The Korteweg–de Vries (KdV) equation is a nonlinear evolution equation that reflects a wide variety of dispersive wave occurrences with limited amplitude. It has also been used to describe a range of major physical phenomena, such as shallow water waves that interact weakly [...] Read more.
The Korteweg–de Vries (KdV) equation is a nonlinear evolution equation that reflects a wide variety of dispersive wave occurrences with limited amplitude. It has also been used to describe a range of major physical phenomena, such as shallow water waves that interact weakly and nonlinearly, acoustic waves on a crystal lattice, lengthy internal waves in density-graded oceans, and ion acoustic waves in plasma. The KdV equation is one of the most well-known soliton models, and it provides a good platform for further research into other equations. The KdV equation has several forms. The aim of this study is to introduce and investigate a (2+1)-dimensional generalized fifth-order KdV equation with power law nonlinearity (gFKdVp). The research methodology employed is the Lie group analysis. Using the point symmetries of the gFKdVp equation, we transform this equation into several nonlinear ordinary differential equations (ODEs), which we solve by employing different strategies that include Kudryashov’s method, the (G/G) expansion method, and the power series expansion method. To demonstrate the physical behavior of the equation, 3D, density, and 2D graphs of the obtained solutions are presented. Finally, utilizing the multiplier technique and Ibragimov’s method, we derive conserved vectors of the gFKdVp equation. These include the conservation of energy and momentum. Thus, the major conclusion of the study is that analytic solutions and conservation laws of the gFKdVp equation are determined. Full article
Show Figures

Figure 1

14 pages, 3283 KiB  
Review
Impact of Internal Solitary Waves on Marine Suspended Particulate Matter: A Review
by Zhengrong Zhang, Xuezhi Feng, Xiuyao Fan, Yuchen Lin and Chaoqi Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1433; https://doi.org/10.3390/jmse13081433 - 27 Jul 2025
Viewed by 259
Abstract
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of [...] Read more.
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of suspended particles, enhance lateral transport above the pycnocline, and generate nepheloid layers nearshore. Meanwhile, intense turbulent mixing induced by ISWs accumulates large quantities of SPM at both the leading surface and trailing bottom of the waves, thereby altering the structure and dynamics of the intermediate nepheloid layers. This review synthesizes recent advances in the in situ observational techniques for SPM under the influence of ISWs and highlights the key mechanisms governing their interactions. Particular attention is given to representative field cases in the SCS, where topographic complexity and strong stratification amplify ISWs–sediment coupling. Finally, current limitations in observational and modeling approaches are discussed, with suggestions for future interdisciplinary research directions that better integrate hydrodynamic and sediment transport processes. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

33 pages, 2542 KiB  
Article
Trapped Modes Along Periodic Structures Submerged in a Three-Layer Fluid with a Background Steady Flow
by Gonçalo A. S. Dias and Bruno M. M. Pereira
Computation 2025, 13(8), 176; https://doi.org/10.3390/computation13080176 - 22 Jul 2025
Viewed by 163
Abstract
In this study, we study the trapping of linear water waves by infinite arrays of three-dimensional fixed periodic structures in a three-layer fluid. Each layer has an independent uniform velocity field with respect to the fixed ground in addition to the internal modes [...] Read more.
In this study, we study the trapping of linear water waves by infinite arrays of three-dimensional fixed periodic structures in a three-layer fluid. Each layer has an independent uniform velocity field with respect to the fixed ground in addition to the internal modes along the interfaces between layers. Dynamical stability between velocity shear and gravitational pull constrains the layer velocities to a neighbourhood of the diagonal U1=U2=U3 in velocity space. A non-linear spectral problem results from the variational formulation. This problem can be linearized, resulting in a geometric condition (from energy minimization) that ensures the existence of trapped modes within the limits set by stability. These modes are solutions living the discrete spectrum that do not radiate energy to infinity. Symmetries reduce the global problem to solutions in the first octant of the three-dimensional velocity space. Examples are shown of configurations of obstacles which satisfy the stability and geometric conditions, depending on the values of the layer velocities. The robustness of the result of the vertical column from previous studies is confirmed in the new configurations. This allows for comparison principles (Cavalieri’s principle, etc.) to be used in determining whether trapped modes are generated. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
Show Figures

Figure 1

28 pages, 3531 KiB  
Review
Review of Acoustic Emission Detection Technology for Valve Internal Leakage: Mechanisms, Methods, Challenges, and Application Prospects
by Dongjie Zheng, Xing Wang, Lingling Yang, Yunqi Li, Hui Xia, Haochuan Zhang and Xiaomei Xiang
Sensors 2025, 25(14), 4487; https://doi.org/10.3390/s25144487 - 18 Jul 2025
Viewed by 577
Abstract
Internal leakage within the valve body constitutes a severe potential safety hazard in industrial fluid control systems, attributable to its high concealment and the resultant difficulty in detection via conventional methodologies. Acoustic emission (AE) technology, functioning as an efficient non-destructive testing approach, is [...] Read more.
Internal leakage within the valve body constitutes a severe potential safety hazard in industrial fluid control systems, attributable to its high concealment and the resultant difficulty in detection via conventional methodologies. Acoustic emission (AE) technology, functioning as an efficient non-destructive testing approach, is capable of capturing the transient stress waves induced by leakage, thereby furnishing an effective means for the real-time monitoring and quantitative assessment of internal leakage within the valve body. This paper conducts a systematic review of the theoretical foundations, signal-processing methodologies, and the latest research advancements related to the technology for detecting internal leakage in the valve body based on acoustic emission. Firstly, grounded in Lechlier’s acoustic analogy theory, the generation mechanism of acoustic emission signals arising from valve body leakage is elucidated. Secondly, a detailed analysis is conducted on diverse signal processing techniques and their corresponding optimization strategies, encompassing parameter analysis, time–frequency analysis, nonlinear dynamics methods, and intelligent algorithms. Moreover, this paper recapitulates the current challenges encountered by this technology and delineates future research orientations, such as the fusion of multi-modal sensors, the deployment of lightweight deep learning models, and integration with the Internet of Things. This study provides a systematic reference for the engineering application and theoretical development of the acoustic emission-based technology for detecting internal leakage in valves. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 3rd Edition)
Show Figures

Figure 1

25 pages, 7859 KiB  
Article
Methodology for the Early Detection of Damage Using CEEMDAN-Hilbert Spectral Analysis of Ultrasonic Wave Attenuation
by Ammar M. Shakir, Giovanni Cascante and Taher H. Ameen
Materials 2025, 18(14), 3294; https://doi.org/10.3390/ma18143294 - 12 Jul 2025
Viewed by 470
Abstract
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements [...] Read more.
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements using advanced signal processing techniques, mainly Hilbert–Huang transform (HHT), this work aims to enhance the early detection of damage in concrete. This study presents a novel energy-based technique that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and Hilbert spectrum analysis (HSA), to accurately capture nonlinear and nonstationary signal behaviors. Ultrasonic non-destructive testing was performed in this study on manufactured concrete specimens subjected to micro-damage characterized by internal microcracks smaller than 0.5 mm, induced through controlled freeze–thaw cycles. The recorded signals were decomposed from the time domain using CEEMDAN into frequency-ordered intrinsic mode functions (IMFs). A multi-criteria selection strategy, including damage index evaluation, was employed to identify the most effective IMFs while distinguishing true damage-induced energy loss from spurious nonlinear artifacts or noise. Localized damage was then analyzed in the frequency domain using HSA, achieving an up to 88% reduction in wave energy via Marginal Hilbert Spectrum analysis, compared to 68% using Fourier-based techniques, demonstrating a 20% improvement in sensitivity. The results indicate that the proposed technique enhances early damage detection through wave attenuation analysis and offers a superior ability to handle nonlinear, nonstationary signals. The Hilbert Spectrum provided a higher time-frequency resolution, enabling clearer identification of damage-related features. These findings highlight the potential of CEEMDAN-HSA as a practical, sensitive tool for early-stage microcrack detection in concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 2490 KiB  
Article
Soliton Dynamics of the Nonlinear Kodama Equation with M-Truncated Derivative via Two Innovative Schemes: The Generalized Arnous Method and the Kudryashov Method
by Khizar Farooq, Ali. H. Tedjani, Zhao Li and Ejaz Hussain
Fractal Fract. 2025, 9(7), 436; https://doi.org/10.3390/fractalfract9070436 - 2 Jul 2025
Cited by 2 | Viewed by 336
Abstract
The primary aim of this research article is to investigate the soliton dynamics of the M-truncated derivative nonlinear Kodama equation, which is useful for optical solitons on nonlinear media, shallow water waves over complex media, nonlocal internal waves, and fractional viscoelastic wave propagation. [...] Read more.
The primary aim of this research article is to investigate the soliton dynamics of the M-truncated derivative nonlinear Kodama equation, which is useful for optical solitons on nonlinear media, shallow water waves over complex media, nonlocal internal waves, and fractional viscoelastic wave propagation. We utilized two recently developed analytical techniques, the generalized Arnous method and the generalized Kudryashov method. First, the nonlinear Kodama equation is transformed into a nonlinear ordinary differential equation using the homogeneous balance principle and a traveling wave transformation. Next, various types of soliton solutions are constructed through the application of these effective methods. Finally, to visualize the behavior of the obtained solutions, three-dimensional, two-dimensional, and contour plots are generated using Maple (2023) mathematical software. Full article
Show Figures

Figure 1

17 pages, 2302 KiB  
Article
Temporal Evolution of Small-Amplitude Internal Gravity Waves Generated by Latent Heating in an Anelastic Fluid Flow
by Amir A. M. Sayed, Amna M. Grgar and Lucy J. Campbell
AppliedMath 2025, 5(3), 80; https://doi.org/10.3390/appliedmath5030080 - 30 Jun 2025
Viewed by 196
Abstract
A two-dimensional time-dependent model is presented for upward-propagating internal gravity waves generated by an imposed thermal forcing in a layer of fluid with uniform background velocity and stable stratification under the anelastic approximation. The configuration studied is representative of a situation with deep [...] Read more.
A two-dimensional time-dependent model is presented for upward-propagating internal gravity waves generated by an imposed thermal forcing in a layer of fluid with uniform background velocity and stable stratification under the anelastic approximation. The configuration studied is representative of a situation with deep or shallow latent heating in the lower atmosphere where the amplitude of the waves is small enough to allow linearization of the model equations. Approximate asymptotic time-dependent solutions, valid for late time, are obtained for the linearized equations in the form of an infinite series of terms involving Bessel functions. The asymptotic solution approaches a steady-amplitude state in the limit of infinite time. A weakly nonlinear analysis gives a description of the temporal evolution of the zonal mean flow velocity and temperature resulting from nonlinear interaction with the waves. The linear solutions show that there is a vertical variation of the wave amplitude which depends on the relative depth of the heating to the scale height of the atmosphere. This means that, from a weakly nonlinear perspective, there is a non-zero divergence of vertical momentum flux, and hence, a non-zero drag force, even in the absence of vertical shear in the background flow. Full article
(This article belongs to the Special Issue Exploring the Role of Differential Equations in Climate Modeling)
Show Figures

Figure 1

19 pages, 3119 KiB  
Article
Retrieval of Internal Solitary Wave Parameters and Analysis of Their Spatial Variability in the Northern South China Sea Based on Continuous Satellite Imagery
by Kexiao Lu, Tao Xu, Cun Jia, Xu Chen and Xiao He
Remote Sens. 2025, 17(13), 2159; https://doi.org/10.3390/rs17132159 - 24 Jun 2025
Viewed by 429
Abstract
The remote sensing inversion of internal solitary waves (ISWs) enables the retrieval of ISW parameters and facilitates the analysis of their spatial variability. In this study, we utilize continuous optical imagery from the FY-4B satellite to extract real-time ISW propagation speeds throughout their [...] Read more.
The remote sensing inversion of internal solitary waves (ISWs) enables the retrieval of ISW parameters and facilitates the analysis of their spatial variability. In this study, we utilize continuous optical imagery from the FY-4B satellite to extract real-time ISW propagation speeds throughout their evolution from generation to shoaling. ISW parameters are retrieved in the northern South China Sea based on the quantitative relationship between sea surface current divergence and ISW surface features in optical imagery. The inversion method employs a fully nonlinear equation with continuous stratification to account for the strongly nonlinear nature of ISWs and uses the propagation speed extracted from continuous imagery as a constraint to determine a unique solution. The results show that as ISWs propagate from deep to shallow waters in the northern South China Sea, their statistically averaged amplitude initially increases and then decreases, while their propagation speed continuously decreases with decreasing depth. The inversion results are consistent with previous in situ observations. Furthermore, a three-day consecutive remote sensing tracking analysis of the same ISW revealed that the spatial variation in its parameters aligned well with the abovementioned statistical results. The findings provide an effective inversion approach and supporting datasets for extensive ISW monitoring. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Figure 1

20 pages, 3596 KiB  
Article
Detection of Internal Defects in Concrete Using Delay Multiply and Sum-Enhanced Synthetic Aperture Focusing Technique
by Feng Li, Sheng-Kui Di, Jing Zhang, Dong Yang, Yao Pei and Xiao-Ying Wang
Buildings 2025, 15(11), 1887; https://doi.org/10.3390/buildings15111887 - 29 May 2025
Viewed by 377
Abstract
Traditional techniques for detecting internal defects in concrete are limited by the weak directivity of ultrasonic waves, significant signal attenuation, and low imaging contrast. This paper presents an improved synthetic aperture focusing technique (SAFT) enhanced by the Delay Multiply and Sum (DMAS) algorithm [...] Read more.
Traditional techniques for detecting internal defects in concrete are limited by the weak directivity of ultrasonic waves, significant signal attenuation, and low imaging contrast. This paper presents an improved synthetic aperture focusing technique (SAFT) enhanced by the Delay Multiply and Sum (DMAS) algorithm to address these limitations and improve both the resolution and signal-to-noise ratio. The proposed method sequentially transmits and receives ultrasonic waves through an array of transducers, and applies DMAS-based nonlinear beam-forming to enhance image sharpness and contrast. Its effectiveness was validated through finite element simulations and experimental tests using three precast concrete specimens with artificial defects (specimen size: 240 mm × 300 mm × 100 mm). Compared with the conventional SAFT, the proposed method improves image contrast by approximately 40%, with clearer defect boundaries and a vertical positioning error of less than ±5 mm. This demonstrates the method’s promising potential for practical applications in internal defect visualization of concrete structures. Full article
(This article belongs to the Special Issue UHPC Materials: Structural and Mechanical Analysis in Buildings)
Show Figures

Figure 1

24 pages, 6561 KiB  
Article
Simultaneous Vibration and Nonlinearity Compensation for One-Period Triangular FMCW Ladar Signal Based on MSST
by Wei Li, Ruihua Shi, Qinghai Dong, Juanying Zhao, Bingnan Wang and Maosheng Xiang
Remote Sens. 2025, 17(10), 1689; https://doi.org/10.3390/rs17101689 - 11 May 2025
Viewed by 436
Abstract
When frequency-modulated continuous-wave (FMCW) laser radar (Ladar) is employed for three-dimensional imaging, the echo signal is susceptible to modulation nonlinearity and platform vibration due to modulation and the short wavelength. These effects cause main-lobe widening, side-lobe elevation, and positional shift, which degrades distance [...] Read more.
When frequency-modulated continuous-wave (FMCW) laser radar (Ladar) is employed for three-dimensional imaging, the echo signal is susceptible to modulation nonlinearity and platform vibration due to modulation and the short wavelength. These effects cause main-lobe widening, side-lobe elevation, and positional shift, which degrades distance detection accuracy. To solve these problems, this paper proposes a compensation method combining multiple synchrosqueezing transform (MSST), equal-phase interval resampling, and high-order ambiguity function (HAF). Firstly, variational mode decomposition (VMD) is applied to the optical prism signal to eliminate low-frequency noise and harmonic peaks. MSST is used to extract the time–frequency curve of the optical prism. The nonlinearity in the transmitted signal is estimated by two-step integration. An internal calibration signal containing nonlinearity is constructed at a higher sampling rate to resample the actual signal at an equal-phase interval. Then, HAF compensates for high-order vibration and residual phase error after resampling. Finally, symmetrical triangle wave modulation is used to remove constant-speed vibration. Verifying by actual data, the proposed method can enhance the main lobe and suppress the side lobe about 1.5 dB for a strong reflection target signal. Natural-target peaks can also be enhanced and the remaining peaks are suppressed, which is helpful to extract an accurate target distance. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

19 pages, 3415 KiB  
Article
Dynamic Modeling of Heat-Integrated Air Separation Column Based on Nonlinear Wave Theory and Mass Transfer Mechanism
by Hang Zhou, Xinlei Xia and Lin Cong
Processes 2025, 13(4), 1052; https://doi.org/10.3390/pr13041052 - 1 Apr 2025
Viewed by 394
Abstract
The air separation process is an important industrial process for the production of high-purity nitrogen and oxygen, representing the level of technological development in a country’s chemical industry. It has high energy consumption but very low energy utilization efficiency. In the overall environment [...] Read more.
The air separation process is an important industrial process for the production of high-purity nitrogen and oxygen, representing the level of technological development in a country’s chemical industry. It has high energy consumption but very low energy utilization efficiency. In the overall environment of increasingly scarce global energy, the application of internal heat coupling technology in the air separation process can effectively reduce energy consumption. However, due to the low-temperature characteristics, ultra-high purity characteristics, and the nature of multi-component systems of the heat-integrated air separation column (HIASC), its modeling process and dynamic characteristic analysis are complex. To solve the disadvantages of overly complex mechanistic models and insufficient accuracy of traditional simplified models, a concentration distribution curve description method based on the mass transfer mechanism is proposed, and combined with the traditional wave theory, a nonlinear wave model of the HIASC is established. Based on this model, static and dynamic analyses were carried out, and the research results prove that the newly established nonlinear wave model maintains high accuracy while simplifying the model complexity. It can not only accurately track the concentration changes of key products but also fully reflect various typical nonlinear characteristics of the system. Compared to the mechanism model, the wave model can reduce the running time by approximately 20%, thereby improving operational efficiency. This method explains various characteristics of the system from a perspective different from that of the mechanistic model. Full article
(This article belongs to the Special Issue Heat and Mass Transfer Phenomena in Energy Systems)
Show Figures

Figure 1

33 pages, 13351 KiB  
Article
Modeling and Investigation of Long-Term Performance of High-Rise Pile Cap Structures Under Scour and Corrosion
by Shilei Niu, Zhongxiang Liu, Tong Guo, Anxin Guo and Sudong Xu
J. Mar. Sci. Eng. 2025, 13(3), 450; https://doi.org/10.3390/jmse13030450 - 26 Feb 2025
Cited by 2 | Viewed by 867
Abstract
High-rise pile cap structures, such as sea-crossing bridges, suffer from long-term degradation due to continuous corrosion and scour, which seriously endangers structural safety. However, there is a lack of research on this topic. This study focused on the long-term performance and dynamic response [...] Read more.
High-rise pile cap structures, such as sea-crossing bridges, suffer from long-term degradation due to continuous corrosion and scour, which seriously endangers structural safety. However, there is a lack of research on this topic. This study focused on the long-term performance and dynamic response of bridge pile foundations, considering scour and corrosion effects. A refined modeling method for bridge pile foundations, considering scour-induced damage and corrosion-induced degradation, was developed by adjusting nonlinear soil springs and material properties. Furthermore, hydrodynamic characteristics and long-term performance, including hydrodynamic phenomena, wave force, energy, displacement, stress, and acceleration responses, were investigated through fluid–structure coupling analysis and pile–soil interactions. The results show that the horizontal wave forces acting on the high-rise pile cap are greater than the vertical wave forces, with the most severe wave-induced damage occurring in the wave splash zone. Steel and concrete degradation in the wave splash zone typically occurs sooner than in the atmospheric zone. The total energy of the structure at each moment under load is equal to the sum of internal energy and kinetic energy. Increased corrosion time and scour depth result in increased displacement and stress at the pile cap connection. The long-term dynamic response is mainly influenced by the second-order frequency (62 Hz). Full article
(This article belongs to the Special Issue Wave Loads on Offshore Structure)
Show Figures

Figure 1

19 pages, 8500 KiB  
Article
Preliminary Investigation of the Spatial-Temporal Characteristics and Vertical Dynamics of Internal Solitary Waves in the South China Sea from SWOT Data
by Zhikuan Pan, Zhenhe Zhai, Qi Li, Qianqian Li, Lin Wu and Lifeng Bao
J. Mar. Sci. Eng. 2025, 13(2), 304; https://doi.org/10.3390/jmse13020304 - 6 Feb 2025
Viewed by 1278
Abstract
Internal waves are crucial for understanding oceanographic parameters such as spatiotemporal distribution and energy transfer. They significantly impact ocean circulation, marine ecosystems, and offshore operations. However, studying internal waves is challenging due to their dynamic nature and the need for effective observation methods. [...] Read more.
Internal waves are crucial for understanding oceanographic parameters such as spatiotemporal distribution and energy transfer. They significantly impact ocean circulation, marine ecosystems, and offshore operations. However, studying internal waves is challenging due to their dynamic nature and the need for effective observation methods. This study investigated nonlinear internal solitary waves (ISWs) in the South China Sea using SSHa data from the SWOT satellite mission (Cycles 2 to 20). The distribution patterns and seasonal variations in ISWs were analyzed, revealing that ISWs are more frequently observed in summer while being rarely detected in winter. By combining SSHa observations with a Mode-1 vertical structure model, the isopycnal displacement, velocity fields, and energy characteristics of ISWs were reconstructed. The results show a maximum isopycnal displacement of 160 m at 400 m depth and peak kinetic energy near the surface (~2000 J/m3) and potential energy at a depth of around 300 m (~9000 J/m3). These findings highlight the vertical variability of ISWs and demonstrate the capability of SWOT data in capturing their fine-scale evolution, providing new opportunities for oceanic research and enhancing our understanding of internal waves’ impact on marine environments and ocean circulation. Full article
(This article belongs to the Special Issue Monitoring of Ocean Surface Currents and Circulation)
Show Figures

Figure 1

54 pages, 18421 KiB  
Review
Innovations in Wave Energy: A Case Study of TALOS-WEC’s Multi-Axis Technology
by Fatemeh Nasr Esfahani, Wanan Sheng, Xiandong Ma, Carrie M. Hall and George Aggidis
J. Mar. Sci. Eng. 2025, 13(2), 279; https://doi.org/10.3390/jmse13020279 - 31 Jan 2025
Viewed by 1617
Abstract
The technologically advanced learning ocean system—wave energy converter (TALOS-WEC) project addresses the urgent need for sustainable and efficient energy solutions by leveraging the vast potential of wave energy. This project presents a pioneering approach to wave energy capture through its unique multi-axis and [...] Read more.
The technologically advanced learning ocean system—wave energy converter (TALOS-WEC) project addresses the urgent need for sustainable and efficient energy solutions by leveraging the vast potential of wave energy. This project presents a pioneering approach to wave energy capture through its unique multi-axis and omnidirectional point absorber design. Featuring a fully enclosed power take-off (PTO) system, the TALOS-WEC harnesses energy across six degrees of freedom (DoFs) using an innovative internal reaction mass (IRM) mechanism. This configuration enables efficient energy extraction from the relative motion between the IRM and the hull, aiming for energy conversion efficiencies ranging between 75–80% under optimal conditions, while ensuring enhanced durability in harsh marine environments. The system’s adaptability is reflected in its versatile geometric configurations, including triangular, octagonal, and circular designs, customised for diverse marine conditions. Developed at Lancaster University, UK, and supported by international collaborations, the TALOS-WEC project emphasises cutting-edge advancements in hydrodynamic modelling, geometric optimisation, and control systems. Computational methodologies leverage hybrid frequency-time domain models and advanced panel codes (WAMIT, HAMS, and NEMOH) to address non-linearities in the PTO system, ensuring precise simulations and optimal performance. Structured work packages (WPs) guide the project, addressing critical aspects such as energy capture optimisation, reliability enhancement, and cost-effectiveness through innovative monitoring and control strategies. This paper provides a comprehensive overview of the TALOS-WEC, detailing its conceptual design, development, and validation. Findings demonstrate TALOS’s potential to achieve scalable, efficient, and robust wave energy conversion, contributing to the broader advancement of renewable energy technologies. The results underscore the TALOS-WEC’s role as a cutting-edge solution for harnessing oceanic energy resources, offering perspectives into its commercial viability and future scalability. Full article
Show Figures

Figure 1

Back to TopTop