Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (138)

Search Parameters:
Keywords = nonlinear integro-differential equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2749 KB  
Article
Delayed Energy Demand–Supply Models with Gamma-Distributed Memory Kernels
by Carlo Bianca, Luca Guerrini and Stefania Ragni
AppliedMath 2025, 5(4), 162; https://doi.org/10.3390/appliedmath5040162 - 9 Nov 2025
Viewed by 401
Abstract
The stability of energy demand–supply systems is often affected by delayed feedback caused by regulatory inertia, communication lags, and heterogeneous agent responses. Conventional models typically assume discrete delays, which may oversimplify real dynamics and reduce controller effectiveness. This work addresses this limitation by [...] Read more.
The stability of energy demand–supply systems is often affected by delayed feedback caused by regulatory inertia, communication lags, and heterogeneous agent responses. Conventional models typically assume discrete delays, which may oversimplify real dynamics and reduce controller effectiveness. This work addresses this limitation by introducing a novel class of nonlinear energy models with distributed delay feedback governed by gamma-distributed memory kernels. Specifically, we consider both weak (exponential) and strong (Erlang-type) kernels to capture a spectrum of memory effects. Using the linear chain trick, we reformulate the resulting integro-differential model into a higher-dimensional system of ordinary differential equations. Analytical conditions for local asymptotic stability and Hopf bifurcation are derived, complemented by Lyapunov-based global stability criteria. The related numerical analysis confirms the theoretical findings and reveals a distinct stabilization regime. Compared to fixed-delay approaches, the proposed framework offers improved flexibility and robustness, with implications for delay-aware energy control and infrastructure design. Full article
(This article belongs to the Special Issue Mathematical Innovations in Thermal Dynamics and Optimization)
Show Figures

Figure 1

21 pages, 2842 KB  
Article
Robust Optimal Reinsurance and Investment Problem Under Markov Switching via Actor–Critic Reinforcement Learning
by Fang Jin, Kangyong Cheng, Xiaoliang Xie and Shubo Chen
Mathematics 2025, 13(21), 3502; https://doi.org/10.3390/math13213502 - 2 Nov 2025
Viewed by 417
Abstract
This paper investigates a robust optimal reinsurance and investment problem for an insurance company operating in a Markov-modulated financial market. The insurer’s surplus process is modeled by a diffusion process with jumps, which is correlated with financial risky assets through a common shock [...] Read more.
This paper investigates a robust optimal reinsurance and investment problem for an insurance company operating in a Markov-modulated financial market. The insurer’s surplus process is modeled by a diffusion process with jumps, which is correlated with financial risky assets through a common shock structure. The economic regime switches according to a continuous-time Markov chain. To address model uncertainty concerning both diffusion and jump components, we formulate the problem within a robust optimal control framework. By applying the Girsanov theorem for semimartingales, we derive the dynamics of the wealth process under an equivalent martingale measure. We then establish the associated Hamilton–Jacobi–Bellman (HJB) equation, which constitutes a coupled system of nonlinear second-order integro-differential equations. An explicit form of the relative entropy penalty function is provided to quantify the cost of deviating from the reference model. The theoretical results furnish a foundation for numerical solutions using actor–critic reinforcement learning algorithms. Full article
Show Figures

Figure 1

52 pages, 528 KB  
Article
The First- and Second-Order Features Adjoint Sensitivity Analysis Methodologies for Neural Integro-Differential Equations of Volterra Type: Mathematical Framework and Illustrative Application to a Nonlinear Heat Conduction Model
by Dan Gabriel Cacuci
J. Nucl. Eng. 2025, 6(3), 24; https://doi.org/10.3390/jne6030024 - 4 Jul 2025
Viewed by 659
Abstract
This work presents the mathematical frameworks of the “First-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Volterra-Type” (1st-FASAM-NIDE-V) and the “Second-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Volterra-Type” (2nd-FASAM-NIDE-V). It is shown that the 1st-FASAM-NIDE-V methodology [...] Read more.
This work presents the mathematical frameworks of the “First-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Volterra-Type” (1st-FASAM-NIDE-V) and the “Second-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Volterra-Type” (2nd-FASAM-NIDE-V). It is shown that the 1st-FASAM-NIDE-V methodology enables the efficient computation of exactly-determined first-order sensitivities of the decoder response with respect to the optimized NIDE-V parameters, requiring a single “large-scale” computation for solving the 1st-Level Adjoint Sensitivity System (1st-LASS), regardless of the number of weights/parameters underlying the NIE-net. The 2nd-FASAM-NIDE-V methodology enables the computation, with unparalleled efficiency, of the second-order sensitivities of decoder responses with respect to the optimized/trained weights involved in the NIDE-V’s decoder, hidden layers, and encoder, requiring only as many “large-scale” computations as there are non-zero first-order sensitivities with respect to the feature functions. These characteristics of the 1st-FASAM-NIDE-V and 2nd-FASAM-NIDE-V are illustrated by considering a nonlinear heat conduction model that admits analytical solutions, enabling the exact verification of the expressions obtained for the first- and second-order sensitivities of NIDE-V decoder responses with respect to the model’s functions of parameters (weights) that characterize the heat conduction model. Full article
18 pages, 319 KB  
Article
On the Existence of Solutions and Ulam-Type Stability for a Nonlinear ψ-Hilfer Fractional-Order Delay Integro-Differential Equation
by Cemil Tunç, Fehaid Salem Alshammari and Fahir Talay Akyıldız
Fractal Fract. 2025, 9(7), 409; https://doi.org/10.3390/fractalfract9070409 - 24 Jun 2025
Cited by 4 | Viewed by 816
Abstract
In this work, we address a nonlinear ψ-Hilfer fractional-order Volterra integro-differential equation that incorporates n-multiple-variable time delays. Employing the ψ-Hilfer fractional derivative operator, we investigate the existence of a unique solution, as well as the Ulam–Hyers–Rassias stability, semi-Ulam–Hyers–Rassias stability, and [...] Read more.
In this work, we address a nonlinear ψ-Hilfer fractional-order Volterra integro-differential equation that incorporates n-multiple-variable time delays. Employing the ψ-Hilfer fractional derivative operator, we investigate the existence of a unique solution, as well as the Ulam–Hyers–Rassias stability, semi-Ulam–Hyers–Rassias stability, and Ulam–Hyers stability of the proposed ψ-Hilfer fractional-order Volterra integro-differential equation through the fixed-point approach. In this study, we enhance and generalize existing results in the literature on ψ-Hilfer fractional-order Volterra integro-differential equations, both including and excluding single delay, by establishing new findings for nonlinear ψ-Hilfer fractional-order Volterra integro-differential equations involving n-multiple-variable time delays. This study provides novel theoretical insights that deepen the qualitative understanding of fractional calculus. Full article
22 pages, 303 KB  
Article
Remarks on a New Variable-Coefficient Integro-Differential Equation via Inverse Operators
by Chenkuan Li, Nate Fingas and Ying Ying Ou
Fractal Fract. 2025, 9(7), 404; https://doi.org/10.3390/fractalfract9070404 - 23 Jun 2025
Viewed by 1540
Abstract
In this paper, we investigate functional inverse operators associated with a class of fractional integro-differential equations. We further explore the existence, uniqueness, and stability of solutions to a new integro-differential equation featuring variable coefficients and a functional boundary condition. To demonstrate the applicability [...] Read more.
In this paper, we investigate functional inverse operators associated with a class of fractional integro-differential equations. We further explore the existence, uniqueness, and stability of solutions to a new integro-differential equation featuring variable coefficients and a functional boundary condition. To demonstrate the applicability of our main theorems, we provide several examples in which we compute values of the two-parameter Mittag–Leffler functions. The proposed approach is particularly effective for addressing a wide range of integral and fractional nonlinear differential equations with initial or boundary conditions—especially those involving variable coefficients, which are typically challenging to treat using classical integral transform methods. Finally, we demonstrate a significant application of the inverse operator approach by solving a Caputo fractional convection partial differential equation in Rn with an initial condition. Full article
22 pages, 1130 KB  
Article
Two-Mode Hereditary Model of Solar Dynamo
by Evgeny Kazakov, Gleb Vodinchar and Dmitrii Tverdyi
Mathematics 2025, 13(10), 1669; https://doi.org/10.3390/math13101669 - 20 May 2025
Viewed by 488
Abstract
The magnetic field of the Sun is formed by the mechanism of hydromagnetic dynamo. In this mechanism, the flow of the conducting medium (plasma) of the convective zone generates a magnetic field, and this field corrects the flow using the Lorentz force, creating [...] Read more.
The magnetic field of the Sun is formed by the mechanism of hydromagnetic dynamo. In this mechanism, the flow of the conducting medium (plasma) of the convective zone generates a magnetic field, and this field corrects the flow using the Lorentz force, creating feedback. An important role in dynamo is played by memory (hereditary), when a change in the current state of a physical system depends on its states in the past. Taking these effects into account may provide a more accurate description of the generation of the Sun’s magnetic field. This paper generalizes classical dynamo models by including hereditary feedback effects. The feedback parameters such as the presence or absence of delay, delay duration, and memory duration are additional degrees of freedom. This can provide more diverse dynamic modes compared to classical memoryless models. The proposed model is based on the kinematic dynamo problem, where the large-scale velocity field is predetermined. The field in the model is represented as a linear combination of two stationary predetermined modes with time-dependent amplitudes. For these amplitudes, equations are obtained based on the kinematic dynamo equations. The model includes two generators of a large-scale magnetic field. In the first, the field is generated due to large-scale flow of the medium. The second generator has a turbulent nature; in it, generation occurs due to the nonlinear interaction of small-scale pulsations of the magnetic field and velocity. Memory in the system under study is implemented in the form of feedback distributed over all past states of the system. The feedback is represented by an integral term of the type of convolution of a quadratic form of phase variables with a kernel of a fairly general form. The quadratic form models the influence of the Lorentz force. This integral term describes the turbulent generator quenching. Mathematically, this model is written with a system of integro-differential equations for amplitudes of modes. The model was applied to a real space object, namely, the solar dynamo. The model representation of the Sun’s velocity field was constructed based on helioseismological data. Free field decay modes were chosen as components of the magnetic field. The work considered cases when hereditary feedback with the system arose instantly or with a delay. The simulation results showed that the model under study reproduces dynamic modes characteristic of the solar dynamo, if there is a delay in the feedback. Full article
(This article belongs to the Special Issue Advances in Nonlinear Dynamical Systems of Mathematical Physics)
Show Figures

Figure 1

10 pages, 266 KB  
Article
Ulam–Hyers–Rassias Stability of ψ-Hilfer Volterra Integro-Differential Equations of Fractional Order Containing Multiple Variable Delays
by John R. Graef, Osman Tunç and Cemil Tunç
Fractal Fract. 2025, 9(5), 304; https://doi.org/10.3390/fractalfract9050304 - 6 May 2025
Cited by 3 | Viewed by 751
Abstract
The authors consider a nonlinear ψ-Hilfer fractional-order Volterra integro-differential equation (ψ-Hilfer FrOVIDE) that incorporates N-multiple variable time delays into the equation. By utilizing the ψ-Hilfer fractional derivative, they investigate the Ulam–Hyers–Rassias and Ulam–Hyers stability of the equation by [...] Read more.
The authors consider a nonlinear ψ-Hilfer fractional-order Volterra integro-differential equation (ψ-Hilfer FrOVIDE) that incorporates N-multiple variable time delays into the equation. By utilizing the ψ-Hilfer fractional derivative, they investigate the Ulam–Hyers–Rassias and Ulam–Hyers stability of the equation by using fixed-point methods. Their results improve existing ones both with and without delays by extending them to nonlinear ψ-Hilfer FrOVIDEs that incorporate N-multiple variable time delays. Full article
24 pages, 6901 KB  
Article
A Suitable Algorithm to Solve a Nonlinear Fractional Integro-Differential Equation with Extended Singular Kernel in (2+1) Dimensions
by Sameeha Ali Raad and Mohamed Abdella Abdou
Fractal Fract. 2025, 9(4), 239; https://doi.org/10.3390/fractalfract9040239 - 10 Apr 2025
Cited by 1 | Viewed by 768
Abstract
In this paper, the authors consider a problem with comprehensive properties in terms of form and content in the space L2a,b×c,d×C0,T,T<1. In terms of time [...] Read more.
In this paper, the authors consider a problem with comprehensive properties in terms of form and content in the space L2a,b×c,d×C0,T,T<1. In terms of time form, we assume that the time phase delay is implicitly contained in a nonlinear differential integral equation. The positional part is considered in two dimensions, and the position’s kernel is a general singular kernel, many different forms of which will be derived. In terms of content, all of the previously established numerical techniques are only appropriate for studying special cases of the kernel separately but are not suitable for studying the general kernel. This led to the use of the Toeplitz matrix method, which deals with the kernel in its extended nonlinear form and the special kernels will be studied as applications of the method. Moreover, this method has the advantage of converting all single integrals into regular integrals that can be easily solved. Additionally, the researchers examine the solution’s existence, uniqueness, and convergence in this paper. The error and its stability are also studied. At the end of the research, the authors studied some numerical applications of some of the singular kernels derived from the general kernel, examining the approximation error in each application separately. Full article
Show Figures

Figure 1

15 pages, 453 KB  
Article
A Comprehensive Study of Nonlinear Mixed Integro-Differential Equations of the Third Kind for Initial Value Problems: Existence, Uniqueness and Numerical Solutions
by Ahmed S. Rahby, Sameh S. Askar, Ahmad M. Alshamrani and Gamal A. Mosa
Axioms 2025, 14(4), 282; https://doi.org/10.3390/axioms14040282 - 8 Apr 2025
Viewed by 657
Abstract
Nonlinear mixed integro-differential equations (NM-IDEs) of the third kind present a complex challenge during solving initial value problems (IVPs), particularly after converting them from standard forms. In this work, we address the existence and uniqueness of a type of NM-IDEs employing Picard’s method. [...] Read more.
Nonlinear mixed integro-differential equations (NM-IDEs) of the third kind present a complex challenge during solving initial value problems (IVPs), particularly after converting them from standard forms. In this work, we address the existence and uniqueness of a type of NM-IDEs employing Picard’s method. Additionally, we estimate the solution using the homotopy analysis method (HAM) and analyze the convergence of the approach. To demonstrate the credibility of the theoretical results, various applications are given, and the numerical results are displayed in a group of figures and tables to highlight that solving IVPs by first converting them to NM-IDEs and using the HAM is a computationally efficient approach. Full article
(This article belongs to the Section Mathematical Analysis)
Show Figures

Figure 1

20 pages, 391 KB  
Article
Stability Analysis of a Fractional Epidemic Model Involving the Vaccination Effect
by Sümeyye Çakan
Fractal Fract. 2025, 9(4), 206; https://doi.org/10.3390/fractalfract9040206 - 27 Mar 2025
Viewed by 903
Abstract
This paper, by constructing a fractional epidemic model, analyzes the transmission dynamics of some infectious diseases under the effect of vaccination, which is one of the most effective and common control measures. In the model, considering that antibody formation by vaccination may not [...] Read more.
This paper, by constructing a fractional epidemic model, analyzes the transmission dynamics of some infectious diseases under the effect of vaccination, which is one of the most effective and common control measures. In the model, considering that antibody formation by vaccination may not cause permanent immunity, it has been taken into account that the protection period provided by the vaccine may be finite, in addition to the fact that this period may change according to individuals. The model differs from other SVIR models given in the literature in its progressive process with a distributed delay in the loss of the protective effect provided by the vaccine. To explain this process, the model was constructed by using a system of distributed delay nonlinear fractional integro-differential equations. Thus, the model aims to present a realistic approach to following the course of the disease. Additionally, an analysis was conducted regarding the minimum vaccination ratio of new members required for the elimination of the disease in the population by using the vaccine free basic reproduction number (R0vf). After providing examples for the selection of the distribution function, the variation of R0 was simulated for a specific selection of parameters in the model. Finally, the sensitivity indices of the parameters affecting R0 were calculated, and this situation is been visually supported. Full article
Show Figures

Figure 1

39 pages, 391 KB  
Article
Applications of Inverse Operators to a Fractional Partial Integro-Differential Equation and Several Well-Known Differential Equations
by Chenkuan Li and Wenyuan Liao
Fractal Fract. 2025, 9(4), 200; https://doi.org/10.3390/fractalfract9040200 - 25 Mar 2025
Cited by 3 | Viewed by 668
Abstract
This paper mainly consists of two parts: (i) We study the uniqueness, existence, and stability of a new fractional nonlinear partial integro-differential equation in Rn with three-point conditions and variable coefficients in a Banach space using inverse operators containing multi-variable functions, a [...] Read more.
This paper mainly consists of two parts: (i) We study the uniqueness, existence, and stability of a new fractional nonlinear partial integro-differential equation in Rn with three-point conditions and variable coefficients in a Banach space using inverse operators containing multi-variable functions, a generalized Mittag-Leffler function, as well as a few popular fixed-point theorems. These studies have good applications in general since uniqueness, existence and stability are key and important topics in many fields. Several examples are presented to demonstrate applications of results obtained by computing approximate values of the generalized Mittag-Leffler functions. (ii) We use the inverse operator method and newly established spaces to find analytic solutions to a number of notable partial differential equations, such as a multi-term time-fractional convection problem and a generalized time-fractional diffusion-wave equation in Rn with initial conditions only, which have never been previously considered according to the best of our knowledge. In particular, we deduce the uniform solution to the non-homogeneous wave equation in n dimensions for all n1, which coincides with classical results such as d’Alembert and Kirchoff’s formulas but is much easier in the computation of finding solutions without any complicated integrals on balls or spheres. Full article
28 pages, 3393 KB  
Article
An Improved Numerical Scheme for 2D Nonlinear Time-Dependent Partial Integro-Differential Equations with Multi-Term Fractional Integral Items
by Fan Ouyang, Hongyan Liu and Yanying Ma
Fractal Fract. 2025, 9(3), 167; https://doi.org/10.3390/fractalfract9030167 - 11 Mar 2025
Viewed by 1055
Abstract
This paper is dedicated to investigating a highly accurate numerical solution for a class of 2D nonlinear time-dependent partial integro-differential equations with multi-term fractional integral items. These integrals are weakly singular with respect to time, which are handled using the product integration rule [...] Read more.
This paper is dedicated to investigating a highly accurate numerical solution for a class of 2D nonlinear time-dependent partial integro-differential equations with multi-term fractional integral items. These integrals are weakly singular with respect to time, which are handled using the product integration rule on graded meshes to compensate for the influence generated by the initial weak singular nature of the exact solution. The temporal derivative is approximated by a generalized Crank–Nicolson difference scheme, while the nonlinear term is approximated by a linearized method. Furthermore, the stability and convergence of the derived time semi-discretization scheme are strictly proved by revising the finite discrete parameters. Meanwhile, the differential matrices of the spatial high-order derivatives based on barycentric rational interpolation are utilized to obtain the fully discrete scheme. Finally, the effectiveness and reliability of the proposed method are validated by means of several numerical experiments. Full article
Show Figures

Figure 1

18 pages, 355 KB  
Article
Hyers–Ulam–Rassias Stability of Functional Equations with Integrals in B-Metric Frameworks
by Jagjeet Jakhar, Shalu Sharma, Jyotsana Jakhar, Majeed Ahmad Yousif, Pshtiwan Othman Mohammed, Nejmeddine Chorfi and Miguel Vivas-Cortez
Symmetry 2025, 17(2), 168; https://doi.org/10.3390/sym17020168 - 23 Jan 2025
Cited by 2 | Viewed by 1311
Abstract
This study investigates the stability behavior of nonlinear Fredholm and Volterra integral equations, as well as nonlinear integro-differential equations with Volterra integral terms, through the lens of symmetry principles in mathematical analysis. By leveraging fixed-point methods within b-metric spaces, which generalize classical metric [...] Read more.
This study investigates the stability behavior of nonlinear Fredholm and Volterra integral equations, as well as nonlinear integro-differential equations with Volterra integral terms, through the lens of symmetry principles in mathematical analysis. By leveraging fixed-point methods within b-metric spaces, which generalize classical metric spaces while preserving structural symmetry, we establish sufficient conditions for Hyers–Ulam–Rassias and Hyers–Ulam stability. The symmetric framework of b-metric spaces offers a unified approach to analyzing stability across a wide range of nonlinear systems. To illustrate the theoretical results, examples are provided that underscore the practical applicability and relevance of these findings to complex nonlinear systems, emphasizing their inherent symmetrical properties. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

14 pages, 304 KB  
Article
Hyers–Ulam Stability Analysis of Nonlinear Volterra–Fredholm Integro-Differential Equation with Caputo Derivative
by Govindaswamy Gokulvijay, Salah Boulaaras and Sriramulu Sabarinathan
Fractal Fract. 2025, 9(2), 66; https://doi.org/10.3390/fractalfract9020066 - 22 Jan 2025
Cited by 7 | Viewed by 1167
Abstract
The main aim of this study is to examine the Hyers–Ulam stability of fractional derivatives in Volterra–Fredholm integro-differential equations using Caputo fractional derivatives. We explore the existence and uniqueness of solutions for the proposed integro-differential equation using Banach and Krasnoselskii’s fixed-point techniques. Furthermore, [...] Read more.
The main aim of this study is to examine the Hyers–Ulam stability of fractional derivatives in Volterra–Fredholm integro-differential equations using Caputo fractional derivatives. We explore the existence and uniqueness of solutions for the proposed integro-differential equation using Banach and Krasnoselskii’s fixed-point techniques. Furthermore, we examine the Hyers–Ulam stability of the equation under the Caputo fractional derivative by deriving suitable sufficient conditions. We analyze the graphical behavior of the obtained results to demonstrate the efficiency of the analytical method, highlighting its ability to deliver accurate and precise approximate numerical solutions for fractional differential equations. Finally, numerical applications are presented to validate the stability of the proposed integro-differential equation. Full article
Show Figures

Figure 1

12 pages, 287 KB  
Article
Controlled Filtered Poisson Processes
by Mario Lefebvre
Mathematics 2025, 13(2), 284; https://doi.org/10.3390/math13020284 - 17 Jan 2025
Viewed by 878
Abstract
Filtered Poisson processes are used as models in various applications, in particular in statistical hydrology. In this paper, controlled filtered Poisson processes are considered. The aim is to minimize the expected time that the process will spend in the continuation region. The dynamic [...] Read more.
Filtered Poisson processes are used as models in various applications, in particular in statistical hydrology. In this paper, controlled filtered Poisson processes are considered. The aim is to minimize the expected time that the process will spend in the continuation region. The dynamic programming equation satisfied by the value function is derived. To obtain the value function, and hence the optimal control, a non-linear integro-differential equation must be solved, subject to the appropriate boundary conditions. Various cases for the size of the jumps are treated and explicit results are obtained. Full article
Show Figures

Figure 1

Back to TopTop